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EMC Modeling of an Industrial Variable Speed Drive
With an Adapted PEEC Method

Vincent Ardon'2, Jérémie Aime'-3, Olivier Chadebec!, Edith Clavel!, Jean-Michel Guichon', and
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IGrenoble Electrical Engineering Laboratory, Université de Grenoble (Grenoble-INP, UJF, UMR CNRS 5269),
38402 Grenoble, France
2Technological Department-Software, Cedrat, 38246 Meylan, France
3Schneider and Toshiba Inverter Europe, 27120 Pacy sur Eure, France

This paper presents an adapted partial element equivalent circuit (PEEC)-based methodology applied to the modeling of interconnec-
tions of power electronics devices. Although this method is already well known, the originality of this work is its use to model a device
presenting an industrial complexity. To make possible this modeling, two adapted integral methods, based on two different meshings,
are presented. They are dedicated respectively to the computation of parasitic inductances and capacitances and lead to an equivalent
circuit of the system. From a time-domain simulation of this circuit, current and voltage sources can be extracted and used to compute the
radiated near magnetic field. This approach has been applied to model a real industrial static converter via system couplings, a variable
speed drive. Good agreements have been obtained between simulated and measured results on conducted and emitted electromagnetic
analysis.

Index Terms—Electromagnetic compatibility, fast multipole method, parasitic capacitances, parasitic elements, partial element equiv-

alent circuit (PEEC), power electronics, power interconnections.

1. INTRODUCTION

OWADAYS, power-electronic designers need more and

more accurate modeling tools able to simulate complex
geometries, in order to save money and time on tests. Recent
works and researches trends [1] have proven that this can be
achieved by means of a system coupling approach and the use
of a complete electrical equivalent circuit of the device. This
circuit approach is interesting because it avoids iterations be-
tween different modeling software: in the equivalent circuit,
physical and electrical behaviors are modeled together. For ex-
ample, to analyze the electromagnetic compatibility (EMC) per-
formances with respect to standards which are becoming more
and more stringent, it is necessary to model common and differ-
ential mode currents flowing into the power interconnections,
and consequently, common and differential mode loops—via
parasitic capacitances—appear and emit magnetic field into the
device. The constraints within power-electronics structures are
the following.

» The frequency range is comprised between 10 kHz and 100
or 200 MHz—so the propagation effects can be neglected
because the typical dimension of devices is about some tens
of centimeters. The wavelength at 200 MHz is A = 1.5 m
and the longest conductor L is around 15 cm (L < A/10).
On the other hand, the skin effects have to be taken into
account because the conductors have a width of tens of
millimeters. Besides the capacitive effects can not be ne-
glected because they generally appear from around 1 MHz
(depending on geometric dimensions of conductors) and
are needed in the modeling of common mode current loops
that develop between the tracks and the ground planes.
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» The space occupied by air medium is abundant and greater
than the volume of conductors.

* Geometries are often complex, compact, irregular, and
composed by multilayers of conductors separated by
dielectric substrates.

The problem can be better formalized by considering the in-

tegral form of the Maxwell’s equations and by assuming:

— quasi-static conditions;

— only surface location for the free-charges p;

—currents [ are assumed uniform and constant in each
volume element of conductors,

— vacuum permeability po surrounding the objects;

— a homogeneous medium of permittivity ¢ = ¢, - €¢;

—neglected losses in dielectric materials.

In such conditions, the external applied electric field E ap-
plied at a point r of a conductor at the pulsation w can be written
as (1) where J is current density, o the material conductivity,
A the magnetic vector potential, ¢ the electric potential and G
(r,r’) = 1/(4x||r — r’||) the Green function [1]

B() = T 1 juA(r) + Valr)

=M o [ [ [ iy

1 / I', .
+ gV/S/ G(r,r")p(x')dS M

The three parts of (1) are respectively due to resistive, induc-
tive and capacitive behaviors, which represent the main effects
that have to be taken into account in the power-interconnection
modeling.

To model a complex industrial device, the finite element
method [2] would be little adapted regarding the difficulty to
properly mesh volume air regions and conductors to accurately
take into account skin and proximity effects. The use of ap-
proximated analytical formulas or multiconductor transmission
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line theory [3] is also to banish because they are not accurate
enough and the medium is not always homogeneous. On the
contrary, the partial element equivalent circuit (PEEC) method
(i.e., extraction of equivalent circuit components thanks to inte-
gral approach) is known to be well adapted to model complex
geometries with an important surrounded air region [1]-[4].
However, the classical PEEC method which is widely used at
high frequencies (antennas, RF devices, etc.), would be very
memory-consuming and not adapted to the consideration of
skin effects, as it is based on dual inductive and capacitive
meshings. This method would require the computation of a
parasitic capacitance between each surface mesh element of
conductors, and to take into account accurately the skin effects,
the meshing would need to be refined on the conductor sides
(an adapted meshing with two mesh elements in the skin depth).
Consequently, the inductive effects would be difficult to model
and on the contrary, capacitive effects too detailed depending
on the frequency range.

In this paper, an adapted technique that takes advantages from
different integral methods to analyze the performances of an in-
dustrial variable speed drive is proposed. The modeling strategy
is based on the extraction of two series of equivalent electrical
parameters and on a scheme for coupling them into a global
circuit. In fact, on the one hand, parasitic resistances (R), in-
ductances and mutual-inductances (L-M) are computed from a
volume meshing of the conductors. On the other hand, capaci-
tances (C) are extracted from free-charges located on conductor
and dielectric interfaces. A non-necessarily conformal surface
meshing adapted to the spatial location of free-charges is used
in order to limit the number of surface elements and to improve
the modeling of side effects.

Those extractions of equivalent parasitic components are pre-
sented in the two next sections, whereas in Section IV, the con-
struction of the complete equivalent circuit is detailed. In the last
section, the proposed approach is tested by modeling an indus-
trial variable speed drive and some comparisons between sim-
ulations and measurements are carried out: the behavior of the
harmonic response and the emitted near magnetic field are ana-
lyzed and compared to measurements.

II. EXTRACTION OF PARASITIC EQUIVALENT RESISTANCES
AND INDUCTANCES

This section details methods and meshing techniques used for
the computation of parasitic elements which model the resistive
and the inductive behaviors of an interconnection structure. The
volume of the conductor is meshed into parallelepiped elements
where the current density is assumed uniform. The main advan-
tage of our approach is the fact that the meshing depends on
a chosen frequency. To properly model skin and proximity ef-
fects, conductors must be considered either unidirectional (thin
or long tracks) or bidirectional (large tracks and ground planes),
depending on the directions of the flowing current. The conduc-
tors belonging to the first type are meshed in the skin depth (at
least two elements in the skin depth) but not in the length (gain
in number of elements), whereas the bidirectional ones are dis-
cretized in two directions.

To compute a parasitic resistance R; in each volume element
V; of length 1;, section S;, and resistivity p, the following ana-
lytical formula is used: 1

Ri=pg- @)
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Fig. 1. Three-phase busbar system (six bars by phase).

Each mesh element V; presents also a self inductance L; de-
pending from its section S; and its length 1; (3). Moreover, each
couple of nonperpendicular elements is also characterized by a
mutual inductance which is computed by integrating the mag-
netic vector potential created by one volume element V; on the
other V; and with the unit vectors u; and u; which define the
direction of the flowing current

L= [[[ [ [[f G(i,1)dV; | dV;
Vi AV 3)

Mij = po Lé;] ‘\Hf <V‘Hf G(I‘i,fj)d\h) dV;

Because of the parallelepiped shape of the elements the double
integral in I; can be expressed in an analytical form and easily
computed. The mutual inductances M;; are computed thanks to
a analytical/numerical integration technique (an analytical ex-
pression for the first integral is used, the second one being com-
puted thanks to an adaptive gauss point integration ensuring a
good accuracy). It is worth to notice that the mesh elements are
not necessarily parallel. All values of L; and Mj; can then be or-
ganized in a dense and square matrix [L-M] whose size is equal
to the number of mesh elements [5].

To illustrate our approach let us consider a 3-phase busbar
system, where each phase is constituted by six parallel bars
(Fig. 1, on the right) [6]. The distribution of the current den-
sity along three bars of the same phase is computed by means
of the presented PEEC approach and a FEM tool. In the PEEC
approach, the bars are not meshed in their length, but only in
the cross section: 15 elements along the z axis and 4 along the
x axis whereas in the FEM approach, air and bars are meshed
with a total number of mesh elements around 600 000. So the
gap between degrees of freedom number of the two methods is
very different.

However, the results in Fig. 1 show that the two numerical
methods are very closed, confirming that this simple PEEC
meshing used to extracted parasitic resistances and inductances
is efficient to model the electrical behavior of a device with
only a few number of mesh elements. But to take into account
the electrical couplings like the common mode loops at higher
frequencies, capacitive effects have to be added to this inductive
approach.

III. PARASITIC CAPACITANCES

A. Free-Charges Computation by a Full Interaction Method

According to the geometrical dimensions and frequency
range considered, the propagation phenomena can be neglected



2894

(L < )\/10). Consequently, an electrostatic formulation
based on the computation of the surface distribution of the
free-charges thanks to a meshing of the conductor and di-
electric interfaces may be sufficient to model the capacitive
effects. In order to take into account side effects and the spatial
variation of surface charges, a mesh with thinner elements than
the inductive ones but which is not-necessarily conformal is
required. Capacitive elements will be then gathered to compute
some equivalent capacitances to be connected to the R-L-M
circuit.

Let us consider a surface meshing of the conductor and di-
electric interfaces composed of Nc conductor elements and Nd
dielectric elements. The electric potential P; at a conductor-di-
electric interface and the normal field E; at a dielectric-dielectric
interface (which is due to the jump of the normal field coeffi-
cient) can be written as

I\Z—H\Id £0 ff 0j -

Nc+Nd
2=t ‘Eoff

Pi(ri) = I‘,,I‘J dSJ

“4)

Ei(r;) = "(r;, r;) - nydS;

where r; is a point of the space, o; the surface charge of the ele-
ment j, G the green function, G’ the gradient of G : G'(r,r’) =
—(r—r')/(4x||r —r'||?) and n, the outside normal vector. This
normal field is null at the dielectric-dielectric interfaces.

An integral method, closely linked to the MoM method [7],
namely the building of a matrix linear system with a full and
square interaction matrix, can be solved to compute the surface
charges that are assumed constant on each surface element. Tra-
ditionally with the MoM method, the coefficients of the interac-
tion matrix are computed between each mesh center point: this
is a 0-order point matching approach. This interaction matrix
P/E links the charges Q (Q. and Qq for the conductor and di-
electric charges) to the potential V of the conductors [2-8-9]

p Qc| |V
LRkt .
where the coefficients are the potential coefficients P; ; and the

normal field coefficients E; ; due to unit charge [9], [10]
Pi,j = 1/ EOS ffG I‘l,I‘J)dS

608 ffG I‘,,I‘J)-l’ldej,i#j (6)

—E&r1 + Er2
250(51"1 - 5r2)si

Ei,j:
i=]j

S;, the surface of the element j, is out the integral because the
charge is assumed constant on the surface (0-order). Those
coefficients are respectively calculated between each Nc con-
ductor or Nd dielectric elements and all Nc+Nd elements of
the meshing. The surface integrals are numerically computed
thanks to the gauss point technique. The computation algorithm
of the interaction matrix is totally vectorised in order to avoid
double “for” loops and save time. After this computation and to
improve the accuracy of the potential coefficient computation
P;;, analytic formulations are used [10] to correct the diagonal
of the P matrix.

Other approaches with different order of integration have
been developed and compared to solve the matrix system (5).
In a O-order Galerkin approach, double integrals are used to
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Fig. 2. Comparison of capacitance C'; for three integration techniques de-
pending on the number of mesh elements of two parallel plates.

compute the coefficient of (6) and the second member of the
matrix linear system (6) is multiplied by the element surfaces.
Potential coefficient P;; are also corrected analytically [11],
[12].

The first-order integration with a triangular shape function
has also been developed for a Galerkin approach. A first-order
point matching method is not adapted because it would try to
evaluate the potential at the nodes and the potential is singular
at each node of triangular surfaces.

Fig. 2 represents the self-capacitance C;; and the integration
time of the matrix P/E of one of two parallel plates (10*10 mm?,
gap 2 mm) for those three integration techniques. The charges
used to compute these capacitances are solved by a LU-de-
composition. The capacitance computation from charges will
be presented at the end of this section. This figure shows that
the Galerkin approach is more accurate than the point matching
one. But, as far as the integration time is concerned, the O or
first-order computation with a Galerkin method is slower than
the point matching method because double integrals are com-
puted. A nonconformal meshing can be very interesting to refine
easily the areas where the gradient of potential or field are high
while saving number of elements. That is why we have chosen
to use 0-order point matching.

However, the worst drawback of this integral method is the
storage of the full matrix and the integration time which in-
creases in O (n?). To overcome this issue, the fast multipole
method (FMM) appears to be very interesting to enable the mod-
eling of large devices.

B. Free-Charges Computation by the Fast Multipole Method

At the origin, the FMM has been developed in order to ac-
celerate the computation of far potential interactions between
punctual electric charges [13]. This algorithm is low-memory
consuming thanks to the use of a truncated multipole decompo-
sition of interactions. For example the potential far from a set of
m charges Q can be written in spherical coordinates as

R e DD DR

n=0 m=-—n

)/t

Nq
My = Z Qirf'Y " (e, i)
i=1
m _ /(o —|m|)! |m| me
Y0, ) = (7 m])! -Pl™l(cosb) - e (8)
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where M}, the multipole depends on the spherical harmonics
Y that are composed of Legendre functions. To use these mul-
tipole series efficiently, an octree algorithm is needed to do a hi-
erarchical partitioning of the geometry in different cube levels.
This octree drives the type of interactions between each cube de-
pending on the distance between them. To summarize the prin-
ciple of the method, far interactions are computed by the FMM
and the near interactions between adjacent cubes are computed
by the full method presented previously.

A second version of the FMM [14], the adaptive multilevel
fast multipole method (AMLFMM) is more adapted to a nonuni-
form distribution of charges. It allows to save memory and to
accelerate even more the computation of interactions. However,
in our problem, charges are not punctual but linked to surface
and the meshing can be nonconform, but the second part of the
FMM theorems ensures an upper bound of the error of the po-
tential, computed by a multipole decomposition, due to a punc-
tual distribution of charges. This maximum error value is not
guaranteed with surface charges because the cube partitioning
done by the octree algorithm does not deal with these surfaces.
Consequently, we have developed a new version, quite similar
to [15], that adaptively takes into account the size of the surface
mesh element in the octree in order to better evaluate the prox-
imity of the mesh elements and their belonging to a cube at a
certain level.

Concerning the far electric field with the FMM, the compu-
tational effort, namely the differentiation of the electric poten-
tial (E = —VV), is relatively weak because only the last co-
efficient Y™ (6, ) /p"*! in (8) depends on the evaluation point
coordinates. Consequently, all the multipole coefficients used
to evaluate the electric potential are also used to compute the
electric field. This last one converted into Cartesian coordinates
by means of a jacobian matrix is multiplied by the unit normal
vector of surface.

To solve the problem with the FMM, an iterative solver is
necessarily used. Because there is no “true” interaction matrix,
a left preconditioned GMRESR(m) algorithm [16] is chosen.
Thanks to the near integration, all the full and square small ma-
trixes are inverted and used in the preconditioning [17]. Com-
parisons of integration and resolution time on the two plates ex-
ample, plotted in the Fig. 3, shows the dramatic rapidity of the
FMM algorithm developed. Moreover, the memory consump-
tion is very low: in the full method, to integer and solve the two
plates meshed in 10 000 elements, 3 Gb of memory are needed
(because of the storage of the full and square interaction matrix
of size 10 000?) whereas with the FMM algorithm, a problem
of 300 000 elements requires less than 1.6 Gb.

C. Computation of Capacitances From Free-Charges

Let us consider N conductors, a N? square capacitance ma-
trix between the conductors is computed and models the main
capacitive electric couplings between the N conductors of the
device (or part of conductors). The capacitance coefficient C; ;
is computed by adding charge sets that are solved from the full
matrix system (5) presented above or with the FMM

Ne(j)
_ @@
Cij= ) ewQk Cond(i) =1V - @
k=1 Cond(j) =0V,i#]
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Fig. 3. Comparison integration and resolution time (GMRES) between a full
method and a FMM.

The Nc(j) charges ng) are located on the conductor j and are
obtained by performing the linear system with the following
conditions: the potential of the conductoriissetto 1 Vand0V
for the others. The term eff{) takes into account the nature of the
interface with a dielectric medium and applies 1, if itis air and ¢,
(or (e, +1)/2[18]),if it is a dielectric material and the conductor
is a volume (or a surface). The capacitances coefficient C;; and
C;; are respectively positive and negative, but we do not directly
use this matrix in the lumped equivalent circuit. We prefer to use
the more practical Kirchhoff’s definition for the capacitances,
i.e., so that, the potential of conductors are referenced to the
ground as

N
Qi =CiVi+ Y Cl(Vi-V)) (10)
j=1
with
N
{ Cg,i = Ej:l Ci_,j o (11)
Ci,j =-C;; ifi#]

where Q; is the total charge of the conductor i of potential V;
referenced to the ground (Vgrounda = 0 V). A well-known and
simple relation (11) permits to obtain the usable capacitance
matrix C’ from the matrix C [19].

IV. CONSTRUCTION OF THE COMPLETE (R-L-M-C) PARASITIC
EQUIVALENT CIRCUIT

The inductive and capacitive parasitic parameters are not di-
rectly connected. First the inductive problem is reduced as re-
gards the number of degrees of freedom (Fig. 4). For example,
the inductive RLM matrix between the pins A1, Ao, By and Bs
of the Fig. 4 is reduced in a matrix 2*2. In the circuit simu-
lator, currents are not solved in each inductive element because
it would require too much memory and solving-time at each
time step. Let us consider Uy, I},,Z;, and Ug respectively the
branch voltage and branch current, the impedance matrix com-
posed of the last presented parasitic RLM matrix and eventu-
ally other R, L, or C passive elements, and to finish the source
voltage. Thus, the full electric system can be written as

Uy, = Zp], + Us. (11D
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Fig. 4. Construction of the complete parasitic equivalent circuit of two unidi-
rectional conductors.

Actually, a reduced equivalent inductive matrix 7, is ex-
tracted between a set of chosen electric nodes. It is computed at
a chosen frequency. Among these nodes, there are those used to
connect the parasitic capacitances, the power supply, the load
and other electric components of power or command. To reduce
the system (11) a matrix M of independent Kirchhoff’s loops
is used. M is composed of 0, 1 or —1 and describes the connec-
tivity of each inductive element [20]. It is possible to choose
M as M - Uy, = 0. Thus, we can have a set of currents in the
independent branches as I, = M" - I,. Thus, by multiplying
(11) at the left by M and with Z,, = M - Zy, - MT, we can write

Zm Lm + M- U, = 0. (12)

After a transformation of Z,, into a partial upper triangular
matrix with a Gaussian elimination process, we can obtain the
small impedance matrix Z, composed of equivalent impedances
between the chosen electric nodes

* - *

Zn = | © (13)
: .ok %
0 - 0 7

All the other impedances between other nodes, noted *, are
not used. From Z,, a macroblock is built with the same number
of pins that the size of Z, and it represents the equivalent
impedance at the chosen frequency.
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The parasitic capacitances are directly connected to this mac-
roblock. The self capacitive effect of each unidirectional con-
ductor is divided in the two extremities and connected to a ref-
erence ground. The coupling capacitive effects with other uni-
directional conductors are also divided into their extremities
(Fig. 4). To increase the capacitive couplings of very long con-
ductors, it is possible to split those in k subdivisions and to pro-
ceed in the same way for the k parts. Thus, capacitive and in-
ductive couplings are modeled by II cells which are more con-
venient to connect than T cells as extremity nodes of conduc-
tors are accessible via the macroblock pins (and not the middle
node).

The capacitances between bidirectional conductors (ground
planes) and unidirectional conductors are connected in several
particular points to accurately take into account proximity ef-
fects. Thus, a complete equivalent circuit of interconnections
is built. By connecting the rest of the electrical circuit (power,
command, etc.) it is possible to simulate the electrical behavior
of the power device in a circuit simulator.

V. APPLICATION TO AN INDUSTRIAL VARIABLE SPEED DRIVE

A. Extraction of the (R-L-M-C) Parasitic Equivalent Circuit

These methods presented previously have been used to model
a complex real static converter: a marketed variable speed drive.

It is composed of a common mode filter, a power and com-
mand module, a mechanical and cabling part. Its function is
to drive a three-phase motor depending on a command signal
order. The power module is composed of four thin copper-track
layers. To analyse this complex device, a system-coupling ap-
proach is used.

All of this inductive method described is implemented in
InCa3D, a commercially available software [21]. From the
inductive matrix, postprocessing modeling gives an accurate
description of the current density distribution and losses in the
conductors or near magnetic field [2]. A coupling with a circuit
solver, a SPICE-like tool, makes possible time-domain analysis
by using a reduced R-L-M matrix, the macroblock mentioned
before.

The Fig. 5 shows the 1-D (tracks) and 2-D (mechanical parts
or ground planes) meshings used to extract the lumped ele-
ments: a square resistive-inductive matrix (6 800 x 6 800 ele-
ments). The capacitive meshing contains 48 500 surface ele-
ments. 27 conductors are identified and the capacitive matrix
is computed with the FMM algorithm and the GMRESR(m)
solver. To finish, a system-level software, Saber [22], is used
to build the complete PEEC circuit of the interconnections of
this device made of three R-L-M macroblocks and all the ca-
pacitances which are linked themselves (Fig. 6).

B. Time-Domain Simulations

The supply chain, the load (a three-phase motor) and the com-
mand circuit are then added to the previous PEEC circuit. The
output DC bus voltage is of 538 V. It is close to the theory (548
V, i.e., gap of 2%). The PEEC circuit has a non-negligible in-
fluence on the inverter voltages especially during the commuta-
tions of the complementary inverter arms because these last ones
have higher frequency signals (Fig. 6). The equivalent circuit of
such industrial device is complex. In consequence, it has been
verified that the model is in agreements with the impedance of
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Inductive meshing
6,800 volume
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Capacitive meshing
48,500 surface
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Fig. 5. Inductive and capacitive meshing of the industrial variable speed drive.
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Fig. 6. Modeling chain of the industrial variable speed drive.
the variable speed drive. To do that, the resonances in the con- TABLE I
ducted frequency range (150 kHz—-30 MHz) are measured and MEASURED AND SIMULATED RESONANCE FREQUENCIES
modeled (Table I). It can be seen that the simulated and mea-
sured resonances are close. The F2 resonance which is linked to Frequencies in MHz FO F1 F2 F3
the cable connecting the converter to the motor does not appear Measured 1314 5.166 19.16 25.83
because it is not modeled in the simulation circuit. Simulated 1221 5.198 none 24.76
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C. Near Magnetic Field Studies

Then, a second analysis of the emitted near magnetic field,
just over the static converter, is achieved. The Fourier trans-
form of source currents and voltages, which are obtained by
a time-domain simulation, are introduced as sources in our
model. Then current distribution is solved and the magnetic
field emitted is computed at a given frequency by means of
the Biot and Savart law: the magnetic field B created by the
NbVol inductive volume mesh elements of current density j is
(H = 1B)

NbVol

b
B(r) = Y /// G'(r,r;) - jidVi. (14
i=1 7§

The comparison between the vertical coordinate of the mag-
netic field Hz at 32-kHz simulated and measured is presented
in Fig. 6. A good agreement between the two shades can be
appreciated. It means that the main current loops are correctly
modeled. These good results validate the methodology of all the
modeling chain used to model this industrial device.

VI. CONCLUSION

In this paper, the coupling between two adapted integral
methods has been presented. From two adapted meshings
allowing, respectively, resistive-inductive and capacitive
equivalent elements of power interconnections of industrial
complexity have been extracted. The use of an adapted FMM
to compute parasitic capacitances and the reduction technique
of the RLM matrix into a smaller macroblock permits to deal
with large and complex geometries with relatively few memory
consumption.

It has also been highlighted that the complete (R-L-M-C)
equivalent circuit can be exported into a SPICE-like tool where
time-domain analysis can be performed. Then, the Fourier trans-
forms of the currents and voltages obtained have been intro-
duced as sources in the 3-D geometric representation of the in-
terconnections in order to analyze the EMC performances of the
system on a wide frequency range. The electrical behavior, the
harmonic response and the emitted near magnetic field simu-
lated compared to those obtained with measurements have vali-
dated this system-coupling approach on areal industrial variable
speed drive.
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