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Abstract

A methodology is introduced for the identification of a multi-modal real-valued
random variable from a collection of samples. The random variable is seen as a
finite mixture of uni-modal random variables. A functional representation of the
random variable is used, which can be interpreted as a mixture of polynomial chaos
expansions. After a suitable separation of samples into sets of uni-modal samples,
the coefficients of the expansion are identified by using an empirical projection
technique. This identification procedure allows for a generic representation of a
large class of multi-modal random variables with low-order generalized polynomial
chaos representations.

Résumé

Identification de variables aléatoires multi-modales par mélange de dé-
compositions sur la chaos polynômial. Une méthodologie est proposée pour
l’identification d’une variable aléatoire multi-modale à partir d’échantillons. La va-
riable aléatoire est vue comme un mélange fini de variables aléatoires uni-modales.
Une représentation fonctionnelle de la variable aléatoire est utilisée. Elle peut être
interprétée comme un mélange de décompositions sur le chaos polynômial. Après une
séparation adaptée des échantillons en sous-ensembles d’échantillons uni-modaux,
les coefficients de la décomposition sont identifiés en utilisant une technique de
projection empirique. Cette procédure d’identification permet une représentation
générique d’une large classe de variables aléatoires multi-modales avec une décom-
position sur chaos polynômial généralisé de faible degré.
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1 Introduction

Uncertainty quantification and propagation in physical systems appear as a
critical path for the improvement of the prediction of their response. For
the numerical estimation of outputs of stochastic systems driven by finite-
dimensional noise, the so-called spectral stochastic methods [7,13,20,9] have
received a growing attention in the last two decades. These methods rely on
a functional representation of random outputs, considered as second order
random variables, by using truncated expansions on suitable Hilbertian basis.
Classical basis consist in polynomial functions (finite-dimensional Polynomial
Chaos [19,2,7]), piecewise polynomial functions [3,8,18] or more general or-
thogonal basis [16]. Of course, the accuracy of predictions depends on the
quality of the input probabilistic model. Some works have been recently de-
voted to the identification of random variables (or processes), from a collection
of samples, using Polynomial Chaos (PC) representations. Classical inference
techniques have been used to identified the coefficients of functional expan-
sions, such as maximum likelihood estimation [4,17] or Bayesian inference
[6,1]. Polynomial Chaos a priori allows for the representation of second order
random variables with arbitrary probability laws. However, for some classes of
random variables, classical PC expansions may exhibit very slow convergence
rates, thus requiring very high order expansions for an accurate representa-
tion. When introducing such representations for random input parameters of
a physical model, very high order expansions are also required for an accurate
approximation of random outputs. Classical spectral stochastic methods, such
as Galerkin-type methods, then require to deal with high-dimensional approx-
imation spaces, which leads to prohibitive computational costs. Although the
use of efficient solvers or model reduction techniques based on separated rep-
resentations [11,12,14] may help to reduce computational costs, a convenient
alternative consists in identifying more suitable representations of random in-
puts.

The aim of the present article is to propose a PC-based numerical methodology
for the identification of real-valued multi-modal random variables. In section
2, we briefly recall the basics of PC expansions of uni-variate random variables
and introduce an empirical projection technique in order to identify these ex-
pansions from samples. This projection technique is an efficient alternative to
classical inference techniques. We then illustrate the limitations of classical PC
expansions when trying to represent multi-modal random variables. In section
3, we introduce a methodology for representing multi-modal real-valued ran-
dom variables. From a theoretical point of view, it consists in introducing a
complete set of events allowing a separation of modes. The probability den-
sity function of the random variable to be identified appears as a mixture of
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probability density functions of random variables (finite mixture model [10]).
We then propose a natural representation of the random variable on a gen-
eralized Polynomial Chaos, which can be interpreted as a “mixture of chaos
expansions”, estimated from samples using an efficient empirical projection.
Section 4 will illustrate the efficiency of the proposed methodology.

2 Polynomial chaos decomposition of a second order random vari-
able

2.1 Polynomial chaos representation

Let X denote a real-valued random variable defined on an abstract probability
space (Θ,BΘ, P ). Let FX denote its cumulative density function (CDF) and
pX its probability density function (PDF). We introduce a random variable
ξ defined on (Θ,BΘ, P ), with known support Ξ ⊂ R and probability law Pξ,
thus defining a new probability space (Ξ,BΞ, Pξ). The random variable g(ξ) :=
F −1

X ◦Fξ(ξ) have the same probability law as X. We then make the hypothesis
that g is a Pξ-square integrable function from Ξ to R, i.e. g ∈ L2(Ξ, dPξ).
Introducing an Hilbertian basis {hi}i∈N of L2(Ξ, dPξ), the random variable X
then admits the following representation: X = ∑

i∈N Xihi(ξ), with coefficients
Xi being defined by Xi =< g, hi >L2(Ξ,dPξ):= E(g(ξ)hi(ξ)), where E denotes
the mathematical expectation. An approximate representation of X can be
obtained by truncating the decomposition: X ≈ ∑p

i=0 Xihi(ξ). A classical
choice for the hi consists in polynomial functions orthonormal with respect to
scalar product < ·, · >L2(Ξ,dPξ), thus leading to the so-called uni-dimensional
Polynomial Chaos (PC) expansion of degree p of X [7,21,16].

2.2 Identification of the decomposition

Classical inference techniques have been applied for the identification of co-
efficients Xi from a collection of independent samples {X(k)}Q

k=1 of X: max-
imum likelihood estimation [4], Bayesian inference [6]. Here, in order to es-
timate the coefficients, we use a simple and efficient numerical technique,
named “empirical projection”. It is based on the estimation of mapping g
from samples and the introduction of a quadrature scheme to compute its
projection on the PC basis. We denote by F̃X the empirical CDF of X,
estimated from samples: F̃X(x) = 1

Q

∑Q
k=1 I(X(k) 6 x), where I(A) is the

indicator function of event A. We then introduce the following approxima-
tion g(ξ) ≈ F̃ −1

X ◦ Fξ(ξ), where F̃ −1
X : [0, 1] → R is uniquely defined as

F̃ −1
X (y) = min {x ∈ {X(k)}Q

k=1; F̃X(x) > y}. Then, the coefficients of the
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chaos expansion can be approximated using a numerical integration:

Xi =
∫

Ξ
F −1

X (Fξ(y))hi(y)dPξ(y) ≈
N∑

k=1
ωkF̃ −1

X (Fξ(yk))hi(yk) (1)

where the {ωk, yk}N
k=1 are integration weights and points. In practice, an ac-

curate Gauss-quadrature associated with measure Pξ can be used.

2.3 Limitations of classical polynomial chaos representations

Classical polynomial chaos decompositions allow for an accurate representa-
tion of a wide class of probability laws. The accuracy can be simply improved
by choosing a suitable germ ξ (Gaussian, Uniform,...), associated with classical
orthogonal polynomial basis (Hermite, Legendre,...). However, these classical
polynomial decompositions may not be adapted for some classes of random
variables, particularly for multi-modal random variables. Figure 1 illustrates
the convergence of a Hermite polynomial chaos expansion 1 of a bi-modal
random variable X(θ), defined by

X(θ) =

 a(θ) − δ if b(θ) < 1/3

a(θ) + δ if b(θ) > 1/3
,

where a and b are independent standard Gaussian random variables and where
δ is a parameter controlling the separation of modes. We observe that when
increasing δ, the convergence of a classical PC expansion drastically deterio-
rates, thus needing for a high polynomial degree for an accurate representation
of the PDF.
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Figure 1. PC expansion of a bi-modal random variable: convergence with the ex-
pansion’s degree p

1. Expansions are identified with the empirical projection technique, using a
highly accurate (and converged) Gauss-Hermite quadrature.
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3 Identification of a multi-modal random variable

3.1 Mixture of probability laws

Let us denote by m the number of modes of the random variable X (which can
be defined as the number of local maxima of pX). We introduce a complete
set 2 of m events {Θi}m

i=1 of BΘ and we define associated real-valued random
variables Yi with probability law defined for all B ∈ BR by

PYi
(B) = P (X ∈ B|Θi) = P (X−1(B)|Θi) = P (X−1(B) ∩ Θi)/P (Θi).

We admit that the events Θi are such that the Yi are uni-modal random
variables. The probability law of X can then be defined by: ∀B ∈ BR,

PX(B) =
m∑

i=1
P (X−1(B) ∩ Θi) =

m∑
i=1

PYi
(B)P (Θi).

Its probability density function then appears as a mixture [10] (i.e. convex
combination) of probability density functions of uni-modal random variables:

pX(x) =
m∑

i=1
pYi

(x)P (Θi). (2)

The identification of X is then replaced by the identification of random vari-
ables Yi, which are expected to admit accurate low-order chaos representations.
The questions are now: how to define the partition {Θi}m

i=1, what kind of chaos
representation can be used for X and how to identify this representation from
samples ?

3.2 Definition of Θi by separation of samples

We introduce an artificial separation of samples {X(k)}Q
k=1 into m sets of uni-

modal samples, which allow for the construction of the desired partition of Θ.
We suppose that the empirical PDF allows estimating a set of points {xi}m−1

i=1
that separate samples into m sets of uni-modal samples, defined as follows:

Xi = {X(k), k ∈ {1 . . . Q}; X(k) ∈ [xi−1, xi)}, i ∈ {1 . . . m}, (3)

where by convention x0 = −∞ and xm = +∞. Then, Θi is defined as the
abstract event associated with samples in Xi (i.e. Xi ⊂ X(Θi)). The proba-
bility of event Θi is then defined by P (Θi) = Card(Xi)/Q. In order to define

2.
∪m

i=1 Θi = Θ, Θi ∩ Θj = ∅ for i ̸= j
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the set of events {Θi}m
i=1, we introduce a partition of [0, 1), defined by inter-

vals Bi = [zi−1, zi), i = 1 . . . m, where 0 = z0 < z1 < . . . < zm = 1. Then,
introducing a uniform random variable ξ1 ∈ U(0, 1), we define Θi = ξ−1

1 (Bi),
for i = 1 . . . m. It completely characterizes the partition of [0, 1) := Ξ1, with
zi = ∑i

j=1 P (Θj), i = 1 . . . m.

3.3 Mixture of polynomial chaos expansions

Let us now denote ξ2 another random variable, independent on ξ1. Letting
ξ = (ξ1, ξ2), we define a 2-dimensional probability space (Ξ,BΞ, Pξ), with
Ξ = Ξ1 × Ξ2 and Pξ = Pξ1 ⊗ Pξ2 . Random variable X is then seen as a
function of ξ, defined by X(ξ) = ∑m

i=1 IBi
(ξ1)Yi(ξ2), where IBi

denotes the
indicator function of Bi. We next introduce a chaos representation of each
random variable Yi = ∑

j∈N Xi,jhj(ξ2), where the hj are classical orthonormal
polynomials in L2(Ξ2, dPξ2). A generalized chaos representation of X is then
sought as:

X(ξ) =
m∑

i=1
IBi

(ξ1)
( ∑

j∈N
Xi,jhj(ξ2)

)
=

m∑
i=1

∑
j∈N

Xi,jIBi
(ξ1)hj(ξ2), (4)

which can be interpreted as a mixture of polynomial chaos expansions. Func-
tions {IBi

hj} form an orthogonal set of functions in L2(Ξ, dPξ) = L2(Ξ1, dPξ1)⊗
L2(Ξ2, dPξ2), composed by piecewise polynomial functions (polynomial with
respect to ξ2 and piecewise constant with respect to ξ1). The L2-norm of a
basis function is E((IBi

(ξ1)hj(ξ2))2)1/2 = P (Θi)1/2. Coefficients {Xi,j} of the
decomposition of X are defined as the orthogonal projections of X on these
basis functions:

Xi,j = P (Θi)−1
∫

Ξ1×Ξ2
X(y1, y2)IBi

(y1)hj(y2)pξ2(y2)dy1dy2 =
∫

Ξ2
Yi(y2)hj(y2)pξ2(y2)dy2.

(5)

3.4 Identification of the decomposition from samples

Classical inference techniques [15,5] could be used in order to identify from
samples the set of m(p + 1) coefficients 3 of the mixture of chaos expan-
sions (4). However, the number of parameters is such that these classical
techniques lead to high computational costs. With a maximum likelihood
estimation, the identification requires the resolution of a hard optimization

3. Note that samples separation values xi, i = 1...m − 1, could also be added to
the set of parameters to be identified.
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problem (high dimension, objective function with many local maxima, possi-
bly non-smooth function) for which classical algorithms may lack robustness.
Here, we propose to apply the empirical projection technique introduced in
section 2.2. The random variable Yi is written in terms of ξ2 in the following
way: Yi(ξ2) = F −1

Yi
◦ Fξ2(ξ2), where FYi

= FX|Θi
is the conditional CDF of

X knowing Θi. The subset of samples Xi corresponds to independent sam-
ples of Yi. Therefore, an approximation F̃Yi

of FYi
can be simply estimated by

F̃Yi
(y) = 1

Card(Xi)
∑

z∈Xi
I(z 6 y). Random variable X is then approximated by

truncating polynomial chaos expansions to a degree p, the coefficients being
estimated from samples in the following way: ∀i ∈ {1 . . . m}, ∀j ∈ {0 . . . p},

Xi,j ≈
N∑

k=1
ωkF̃ −1

Yi
(Fξ2(yk))hj(yk), (6)

where the {ωk, yk}N
k=1 are integration weights and points of a classical quadra-

ture rule (e.g. Gauss-quadrature) associated with measure Pξ2 .

4 Numerical illustration

Exemple 1: We generate an artificial collection of Q = 1, 000 samples
from the bi-modal random variable defined in section 2.3. We consider three
cases corresponding to the following three values of the mode-separation pa-
rameter: δ = 1.5, δ = 2 and δ = 3. The corresponding empirical PDFs of
samples are shown on Figures 2(a-c). On the same figures, also plotted are
the PDFs associated with a mixture of Hermite polynomial chaos expansions
(ξ2 is a Gaussian random variable). The coefficients of the expansion have
been obtained with the empirical projection technique (see section 3.4), using
a 15-points Gauss-Hermite quadrature for the numerical integration. For the
three cases, samples have been separated into two sets of uni-modal samples
by choosing separation values x1 = 0, 0.2 and 0 respectively. Theses values
have been determined by simply locating local minima of the empirical PDFs.
Whatever the separation of modes, we observe a very good agreement between
the empirical PDFs of samples and the identified mixture of polynomial chaos
expansions (4), even with a low degree of expansion (p = 2 or 3).

Exemple 2: We consider a collection of Q = 1, 000 samples correspond-
ing to a 3-modal distribution, represented on Figure 3(a). On Figure 3(b),
we illustrate the bad convergence of a classical Hermite PC expansion X ≈∑p

i=0 Xihi(ξ) (ξ being a standard Gaussian random variable). The coefficients
are computed using the empirical projection technique (see section 2.2) with
a high order Gauss-Hermite quadrature (100 quadrature points). Figure 3(c)
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Figure 2. Mixture of PC expansions for a bi-modal random variable: convergence
with the expansion’s degree p.

illustrates the PDF obtained with a 3-modal mixture of Hermite PC expan-
sions of degree p: X(ξ1, ξ2) = ∑3

i=1
∑p

j=0 Xi,jIBi
(ξ1)hj(ξ2). The samples have

been separated into three sets of uni-modal samples by choosing separation
values x1 = 4 and x2 = 9. These values have been chosen by approximatively
locating the two local minima of the empirical PDF. For the computation of
expansion coefficients, we have used the empirical projection technique intro-
duced in section 3.4, with a 15-points Gauss-Hermite quadrature. We observe
that a very good representation of the random variable is obtained with a
mixture of PC expansions of low degree (p ≈ 3). Figure 4 shows the weighted
PDFs y 7→ P (Θi)pYi

(y) of random variables Yi. It also shows the resulting
PDF of X, which appears as the mixture of the weighted conditional PDFs.

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

(a)
0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

reference
p = 5
p = 15
p = 40
p = 80

(b)
0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

reference
p = 1
p = 2
p = 3
p = 5

(c)

Figure 3. Probability density functions : samples (a), Hermite PC expansion (b),
Mixture of Hermite PC expansions (c).

5 Conclusion

In this paper, we have introduced an efficient numerical technique for the
identification of real-valued multi-modal random variables. A mixture of chaos
representations is used, which can be interpreted as a 2-dimensional general-
ized polynomial chaos expansion. The expansion basis is defined by the prod-
uct of polynomial functions of a first random variable and piecewise constant
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Figure 4. Weighted probability density functions {y 7→ P (Θi)pYi(y)} of random
variables Yi, i = 1...3, identified with a Hermite PC expansion of degree p = 3.

functions of a second random variable. The coefficients of the expansion are
estimated from samples by using an efficient empirical projection technique.
Classical inference techniques such as maximum likelihood or Bayesian in-
ference could also be used for estimating the coefficients of the expansion,
although leading to much higher computational costs. The proposed mixture
of polynomial chaos expansions and the empirical projection technique can be
extended to vector-valued random variables. The empirical projection tech-
nique however requires more and more samples as the dimension increases.
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