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Identification of multi-modal random variables through mixtures of polynomial chaos expansions

Introduction

Uncertainty quantification and propagation in physical systems appear as a critical path for the improvement of the prediction of their response. For the numerical estimation of outputs of stochastic systems driven by finitedimensional noise, the so-called spectral stochastic methods [START_REF] Ghanem | Stochastic finite elements: a spectral approach[END_REF][START_REF] Nouy | Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations[END_REF][START_REF] Xiu | Fast numerical methods for stochastic computations: a review[END_REF][START_REF] Matthies | Stochastic finite elements: Computational approaches to stochastic partial differential equations[END_REF] have received a growing attention in the last two decades. These methods rely on a functional representation of random outputs, considered as second order random variables, by using truncated expansions on suitable Hilbertian basis. Classical basis consist in polynomial functions (finite-dimensional Polynomial Chaos [START_REF] Wiener | The homogeneous chaos[END_REF][START_REF] Cameron | The orthogonal development of non-linear functionals in series of fourier-hermite functionals[END_REF][START_REF] Ghanem | Stochastic finite elements: a spectral approach[END_REF]), piecewise polynomial functions [START_REF] Deb | Solution of stochastic partial differential equations using galerkin finite element techniques[END_REF][START_REF] Le Maître | Uncertainty propagation using Wiener-Haar expansions[END_REF][START_REF] Wan | Multi-element generalized polynomial chaos for arbitrary propability measures[END_REF] or more general orthogonal basis [START_REF] Soize | Physical systems with random uncertainties: chaos representations with arbitrary probability measure[END_REF]. Of course, the accuracy of predictions depends on the quality of the input probabilistic model. Some works have been recently devoted to the identification of random variables (or processes), from a collection of samples, using Polynomial Chaos (PC) representations. Classical inference techniques have been used to identified the coefficients of functional expansions, such as maximum likelihood estimation [START_REF] Desceliers | Maximum likelihood estimation of stochastic chaos representations from experimental data[END_REF][START_REF] Stefanou | Identification of random shapes from images through polynomial chaos expansion of random level-set functions[END_REF] or Bayesian inference [START_REF] Ghanem | On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data[END_REF][START_REF] Arnst | Identification of bayesian posteriors for coefficients of chaos expansions[END_REF]. Polynomial Chaos a priori allows for the representation of second order random variables with arbitrary probability laws. However, for some classes of random variables, classical PC expansions may exhibit very slow convergence rates, thus requiring very high order expansions for an accurate representation. When introducing such representations for random input parameters of a physical model, very high order expansions are also required for an accurate approximation of random outputs. Classical spectral stochastic methods, such as Galerkin-type methods, then require to deal with high-dimensional approximation spaces, which leads to prohibitive computational costs. Although the use of efficient solvers or model reduction techniques based on separated representations [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations[END_REF][START_REF] Nouy | Generalized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem and dedicated algorithms[END_REF][START_REF] Nouy | Proper Generalized Decompositions and separated representations for the numerical solution of high dimensional stochastic problems[END_REF] may help to reduce computational costs, a convenient alternative consists in identifying more suitable representations of random inputs.

The aim of the present article is to propose a PC-based numerical methodology for the identification of real-valued multi-modal random variables. In section 2, we briefly recall the basics of PC expansions of uni-variate random variables and introduce an empirical projection technique in order to identify these expansions from samples. This projection technique is an efficient alternative to classical inference techniques. We then illustrate the limitations of classical PC expansions when trying to represent multi-modal random variables. In section 3, we introduce a methodology for representing multi-modal real-valued random variables. From a theoretical point of view, it consists in introducing a complete set of events allowing a separation of modes. The probability density function of the random variable to be identified appears as a mixture of probability density functions of random variables (finite mixture model [START_REF] Mclachlan | Finite Mixture Models[END_REF]). We then propose a natural representation of the random variable on a generalized Polynomial Chaos, which can be interpreted as a "mixture of chaos expansions", estimated from samples using an efficient empirical projection. Section 4 will illustrate the efficiency of the proposed methodology.

2 Polynomial chaos decomposition of a second order random variable

Polynomial chaos representation

Let X denote a real-valued random variable defined on an abstract probability space (Θ, B Θ , P ). Let F X denote its cumulative density function (CDF) and p X its probability density function (PDF). We introduce a random variable ξ defined on (Θ, B Θ , P ), with known support Ξ ⊂ R and probability law P ξ , thus defining a new probability space (Ξ, B Ξ , P ξ ). The random variable g(ξ) := F -1 X • F ξ (ξ) have the same probability law as X. We then make the hypothesis that g is a P ξ -square integrable function from Ξ to R, i.e. g ∈ L 2 (Ξ, dP ξ ). Introducing an Hilbertian basis {h i } i∈N of L 2 (Ξ, dP ξ ), the random variable X then admits the following representation:

X = ∑ i∈N X i h i (ξ), with coefficients X i being defined by X i =< g, h i > L 2 (Ξ,dP ξ ) := E(g(ξ)h i (ξ))
, where E denotes the mathematical expectation. An approximate representation of X can be obtained by truncating the decomposition: X ≈ ∑ p i=0 X i h i (ξ). A classical choice for the h i consists in polynomial functions orthonormal with respect to scalar product < •, • > L 2 (Ξ,dP ξ ) , thus leading to the so-called uni-dimensional Polynomial Chaos (PC) expansion of degree p of X [START_REF] Ghanem | Stochastic finite elements: a spectral approach[END_REF][START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF][START_REF] Soize | Physical systems with random uncertainties: chaos representations with arbitrary probability measure[END_REF].

Identification of the decomposition

Classical inference techniques have been applied for the identification of coefficients X i from a collection of independent samples {X (k) } Q k=1 of X: maximum likelihood estimation [START_REF] Desceliers | Maximum likelihood estimation of stochastic chaos representations from experimental data[END_REF], Bayesian inference [START_REF] Ghanem | On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data[END_REF]. Here, in order to estimate the coefficients, we use a simple and efficient numerical technique, named "empirical projection". It is based on the estimation of mapping g from samples and the introduction of a quadrature scheme to compute its projection on the PC basis. We denote by F X the empirical CDF of X, estimated from samples:

F X (x) = 1 Q ∑ Q k=1 I(X (k)
x), where I(A) is the indicator function of event A. We then introduce the following approximation g

(ξ) ≈ F -1 X • F ξ (ξ), where F -1 X : [0, 1] → R is uniquely defined as F -1 X (y) = min {x ∈ {X (k) } Q k=1 ; F X (x) y}.
Then, the coefficients of the chaos expansion can be approximated using a numerical integration:

X i = ∫ Ξ F -1 X (F ξ (y))h i (y)dP ξ (y) ≈ N ∑ k=1 ω k F -1 X (F ξ (y k ))h i (y k ) (1) 
where the {ω k , y k } N k=1 are integration weights and points. In practice, an accurate Gauss-quadrature associated with measure P ξ can be used.

Limitations of classical polynomial chaos representations

Classical polynomial chaos decompositions allow for an accurate representation of a wide class of probability laws. The accuracy can be simply improved by choosing a suitable germ ξ (Gaussian, Uniform,...), associated with classical orthogonal polynomial basis (Hermite, Legendre,...). However, these classical polynomial decompositions may not be adapted for some classes of random variables, particularly for multi-modal random variables. Figure 1 illustrates the convergence of a Hermite polynomial chaos expansion 1 of a bi-modal random variable X(θ), defined by

X(θ) =      a(θ) -δ if b(θ) < 1/3 a(θ) + δ if b(θ) > 1/3
, where a and b are independent standard Gaussian random variables and where δ is a parameter controlling the separation of modes. We observe that when increasing δ, the convergence of a classical PC expansion drastically deteriorates, thus needing for a high polynomial degree for an accurate representation of the PDF. 

Identification of a multi-modal random variable

Mixture of probability laws

Let us denote by m the number of modes of the random variable X (which can be defined as the number of local maxima of p X ). We introduce a complete set 2 of m events {Θ i } m i=1 of B Θ and we define associated real-valued random variables Y i with probability law defined for all B ∈ B R by

P Y i (B) = P (X ∈ B|Θ i ) = P (X -1 (B)|Θ i ) = P (X -1 (B) ∩ Θ i )/P (Θ i ).
We admit that the events Θ i are such that the Y i are uni-modal random variables. The probability law of X can then be defined by: ∀B ∈ B R ,

P X (B) = m ∑ i=1 P (X -1 (B) ∩ Θ i ) = m ∑ i=1 P Y i (B)P (Θ i ).
Its probability density function then appears as a mixture [START_REF] Mclachlan | Finite Mixture Models[END_REF] (i.e. convex combination) of probability density functions of uni-modal random variables:

p X (x) = m ∑ i=1 p Y i (x)P (Θ i ). (2) 
The identification of X is then replaced by the identification of random variables Y i , which are expected to admit accurate low-order chaos representations. The questions are now: how to define the partition {Θ i } m i=1 , what kind of chaos representation can be used for X and how to identify this representation from samples ?

Definition of Θ i by separation of samples

We introduce an artificial separation of samples {X (k) } Q k=1 into m sets of unimodal samples, which allow for the construction of the desired partition of Θ. We suppose that the empirical PDF allows estimating a set of points {x i } m-1 i=1 that separate samples into m sets of uni-modal samples, defined as follows:

X i = {X (k) , k ∈ {1 . . . Q}; X (k) ∈ [x i-1 , x i )}, i ∈ {1 . . . m}, ( 3 
)
where by convention x 0 = -∞ and x m = +∞. Then, Θ i is defined as the abstract event associated with samples in X i (i.e. X i ⊂ X(Θ i )). The probability of event Θ i is then defined by P (Θ i ) = Card(X i )/Q. In order to define 2.

∪ m i=1 Θ i = Θ, Θ i ∩ Θ j = ∅ for i ̸ = j
the set of events {Θ i } m i=1 , we introduce a partition of [0, 1), defined by intervals B i = [z i-1 , z i ), i = 1 . . . m, where 0 = z 0 < z 1 < . . . < z m = 1. Then, introducing a uniform random variable ξ 1 ∈ U (0, 1), we define

Θ i = ξ -1 1 (B i ), for i = 1 . . . m. It completely characterizes the partition of [0, 1) := Ξ 1 , with z i = ∑ i j=1 P (Θ j ), i = 1 . . . m.

Mixture of polynomial chaos expansions

Let us now denote ξ 2 another random variable, independent on ξ 1 . Letting ξ = (ξ 1 , ξ 2 ), we define a 2-dimensional probability space (Ξ, B Ξ , P ξ ), with Ξ = Ξ 1 × Ξ 2 and P ξ = P ξ 1 ⊗ P ξ 2 . Random variable X is then seen as a function of ξ, defined by

X(ξ) = ∑ m i=1 I B i (ξ 1 )Y i (ξ 2 )
, where I B i denotes the indicator function of B i . We next introduce a chaos representation of each random variable Y i = ∑ j∈N X i,j h j (ξ 2 ), where the h j are classical orthonormal polynomials in L 2 (Ξ 2 , dP ξ 2 ). A generalized chaos representation of X is then sought as:

X(ξ) = m ∑ i=1 I B i (ξ 1 ) ( ∑ j∈N X i,j h j (ξ 2 ) ) = m ∑ i=1 ∑ j∈N X i,j I B i (ξ 1 )h j (ξ 2 ), (4) 
which can be interpreted as a mixture of polynomial chaos expansions. Functions

{I B i h j } form an orthogonal set of functions in L 2 (Ξ, dP ξ ) = L 2 (Ξ 1 , dP ξ 1 )⊗ L 2 (Ξ 2 , dP ξ 2 )
, composed by piecewise polynomial functions (polynomial with respect to ξ 2 and piecewise constant with respect to ξ 1 ). The L 2 -norm of a basis function is E((I B i (ξ 1 )h j (ξ 2 )) 2 ) 1/2 = P (Θ i ) 1/2 . Coefficients {X i,j } of the decomposition of X are defined as the orthogonal projections of X on these basis functions:

X i,j = P (Θ i ) -1 ∫ Ξ 1 ×Ξ 2 X(y 1 , y 2 )I B i (y 1 )h j (y 2 )p ξ 2 (y 2 )dy 1 dy 2 = ∫ Ξ 2 Y i (y 2 )h j (y 2 )p ξ 2 (y 2 )dy 2 .
(5)

Identification of the decomposition from samples

Classical inference techniques [START_REF] Robert | The Bayesian Choice[END_REF][START_REF] Gelman | Bayesian Data Analysis[END_REF] could be used in order to identify from samples the set of m(p + 1) coefficients 3 of the mixture of chaos expansions (4). However, the number of parameters is such that these classical techniques lead to high computational costs. With a maximum likelihood estimation, the identification requires the resolution of a hard optimization problem (high dimension, objective function with many local maxima, possibly non-smooth function) for which classical algorithms may lack robustness.

Here, we propose to apply the empirical projection technique introduced in section 2.2. The random variable Y i is written in terms of ξ 2 in the following way:

Y i (ξ 2 ) = F -1 Y i • F ξ 2 (ξ 2 )
, where F Y i = F X|Θ i is the conditional CDF of X knowing Θ i . The subset of samples X i corresponds to independent samples of Y i . Therefore, an approximation F Y i of F Y i can be simply estimated by

F Y i (y) = 1 Card(X i )
∑ z∈X i I(z y). Random variable X is then approximated by truncating polynomial chaos expansions to a degree p, the coefficients being estimated from samples in the following way: ∀i ∈ {1 . . . m}, ∀j ∈ {0 . . . p},

X i,j ≈ N ∑ k=1 ω k F -1 Y i (F ξ 2 (y k ))h j (y k ), (6) 
where the {ω k , y k } N k=1 are integration weights and points of a classical quadrature rule (e.g. Gauss-quadrature) associated with measure P ξ 2 .

Numerical illustration Exemple 1:

We generate an artificial collection of Q = 1, 000 samples from the bi-modal random variable defined in section 2.3. We consider three cases corresponding to the following three values of the mode-separation parameter: δ = 1.5, δ = 2 and δ = 3. The corresponding empirical PDFs of samples are shown on Figures 2(a-c). On the same figures, also plotted are the PDFs associated with a mixture of Hermite polynomial chaos expansions (ξ 2 is a Gaussian random variable). The coefficients of the expansion have been obtained with the empirical projection technique (see section 3.4), using a 15-points Gauss-Hermite quadrature for the numerical integration. For the three cases, samples have been separated into two sets of uni-modal samples by choosing separation values x 1 = 0, 0.2 and 0 respectively. Theses values have been determined by simply locating local minima of the empirical PDFs. Whatever the separation of modes, we observe a very good agreement between the empirical PDFs of samples and the identified mixture of polynomial chaos expansions (4), even with a low degree of expansion (p = 2 or 3).

Exemple 2:

We consider a collection of Q = 1, 000 samples corresponding to a 3-modal distribution, represented on Figure 3(a). On Figure 3(b), we illustrate the bad convergence of a classical Hermite PC expansion X ≈ ∑ p i=0 X i h i (ξ) (ξ being a standard Gaussian random variable). The coefficients are computed using the empirical projection technique (see section 2.2) with a high order Gauss-Hermite quadrature (100 quadrature points). Figure 3(c illustrates the PDF obtained with a 3-modal mixture of Hermite PC expansions of degree p:

X(ξ 1 , ξ 2 ) = ∑ 3 i=1 ∑ p j=0 X i,j I B i (ξ 1 )h j (ξ 2
). The samples have been separated into three sets of uni-modal samples by choosing separation values x 1 = 4 and x 2 = 9. These values have been chosen by approximatively locating the two local minima of the empirical PDF. For the computation of expansion coefficients, we have used the empirical projection technique introduced in section 3.4, with a 15-points Gauss-Hermite quadrature. We observe that a very good representation of the random variable is obtained with a mixture of PC expansions of low degree (p ≈ 3). Figure 4 shows the weighted PDFs y → P (Θ i )p Y i (y) of random variables Y i . It also shows the resulting PDF of X, which appears as the mixture of the weighted conditional PDFs. 

Conclusion

In this paper, we have introduced an efficient numerical technique for the identification of real-valued multi-modal random variables. A mixture of chaos representations is used, which can be interpreted as a 2-dimensional generalized polynomial chaos expansion. The expansion basis is defined by the product of polynomial functions of a first random variable and piecewise constant functions of a second random variable. The coefficients of the expansion are estimated from samples by using an efficient empirical projection technique.

Classical inference techniques such as maximum likelihood or Bayesian inference could also be used for estimating the coefficients of the expansion, although leading to much higher computational costs. The proposed mixture of polynomial chaos expansions and the empirical projection technique can be extended to vector-valued random variables. The empirical projection technique however requires more and more samples as the dimension increases.
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 4 Figure 4. Weighted probability density functions {y → P (Θ i )p Y i (y)} of random variables Y i , i = 1...3, identified with a Hermite PC expansion of degree p = 3.
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Note that samples separation values x i , i = 1...m -1, could also be added to the set of parameters to be identified.