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Stability properties and mode signature for equilibria of a model of electron temperature gradient
(ETG) driven turbulence are investigated by Hamiltonian techniques. After deriving the infinite
families of Casimir invariants, associated with the noncanonical Poisson bracket of the model, a
sufficient condition for stability is obtained by means of the Energy-Casimir method. Mode signature
is then investigated for linear motions about homogeneous equilibria. Depending on the sign of the
equilibrium “translated” pressure gradient, stable equilibria can either be energy stable, i.e. possess
definite linearized perturbation energy (Hamiltonian), or spectrally stable with the existence of
negative energy modes (NEMs). The ETG instability is then shown to arise through a Krĕın-
type bifurcation, due to the merging of a positive and a negative energy mode, corresponding to
two modified drift waves admitted by the system. The Hamiltonian of the linearized system is
then explicitly transformed into normal form, which unambiguously defines mode signature. In
particular, the fast mode turns out to always be a positive energy mode (PEM), whereas the energy
of the slow mode can have either positive or negative sign.

I. INTRODUCTION

An important issue for the stability of equilibria of continuous media concerns the existence of negative energy

modes (NEMs), spectrally stable modes of oscillation of a medium with negative energy. One reason NEMs are

important is because equilibria with them, although linearly or spectrally stable, can be destabilized by arbitrarily

small perturbations. For example, if dissipation is added to the dynamics so as to remove energy from a NEM, then

it can be proven that the mode becomes spectrally unstable. On the intuitive level, dissipation removes energy from

the already negative energy of the mode, which makes it more negative and increases the amplitude of mode. In

non-dissipative systems, NEMs can become unstable with the presence of positive energy modes (PEMs) through

nonlinear coupling. By this means the system can even develop finite-time singularities while conserving the energy

of the nonlinear system (see, e.g. [1] and many original references therein).

In plasma physics, the study of NEMs has a long tradition dating to the early work of Sturrock [10] on streaming

instabilities and Greene and Coppi [2] on magnetohydrodynamic (MHD) type dissipative instabilities in confinement

systems. NEMs have been studied in many plasma contexts; for example, Vlasov-Maxwell dynamics [3–8], Maxwell

drift-kinetic [9] theories, wave-wave interaction in the two-stream instability [11, 12, 19], magnetic reconnection [13],

ideal MHD in the presence of equilibrium flows [14–16], magnetorotational instability [17, 18], and magnetosonic
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waves in the solar atmosphere [20].

Because the concept of NEM is intimately related to that of energy, it was proposed in [21] that the Hamiltonian

framework is the natural one for defining and investigating this phenomenon, contrary to the usual practice in plasma

physics. Indeed, once the Hamiltonian structure of the model under consideration is known, an unambiguous definition

of the energy of the system becomes available: the total energy corresponds to the Hamiltonian of the system and

the energy of the linear dynamics must come in a natural way from the second variation of this nonlinearly conserved

quantity. Moreover, the normal form theory for linear Hamiltonian systems, provides a clear and systematic way

for determining the signature of modes in the neighborhood of an equilibrium of the system. Indeed, for systems

with discrete degrees of freedom, the Hamiltonian of the linearized system can always be cast, for stable modes,

into the sum of Hamiltonians of decoupled harmonic oscillators, each of which possesses a characteristic frequency

and a characteristic signature. Namely this signature, which, for each mode, can be positive or negative depending

on whether the mode provides a positive or negative contribution to the total energy, provides a systematic way

to identify PEMs or NEMs of the system. Finally, given the existence of the Hamiltonian structure, energy-based

methods, akin to ‘δW ’ of MHD, can be used to obtain sufficient conditions for stability of equilibria or to indicate

the presence of NEMs. More precisely, an equilibrium has a NEM, if it is spectrally stable but the second variation

of its free energy functional, evaluated at that equilibrium, has indefinite sign.

In this paper, we investigate the presence of NEMs and stability properties of a reduced model for electron tem-

perature gradient (ETG) instabilities, in the Hamiltonian framework. ETG turbulence has been considered as one of

the mechanisms that enhances anomalous particle and electron thermal fluxes in tokamaks [22, 23]. The detection of

NEMs, is therefore important in order to see what potentially unstable modes might lie dormant in the absence of

dissipation. When destabilized by dissipation, such modes might enhance the anomalous transport across the confin-

ing magnetic field. We note, however, that the methods applied for the ETG model, can be applied, in principle, to

any ideal plasma model.

The model for ETG turbulence considered here, has been previously investigated in Refs. [24, 25], and in Ref.[24] it

was described how this model possesses a noncanonical Hamiltonian formulation, with a Poisson bracket that turns

out to be essentially identical to that for reduced MHD [26] (see also [27]). In the present paper we first provide

further information about the Hamiltonian structure of the model by deriving explicitly its families of Casimir invari-

ants. We then determine sufficient conditions for stability of generic equilibria by making use of the Energy-Casimir
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method. The investigation of the presence of NEMs is carried out for the case of homogeneous equilibria, for which

we derive an explicit condition for the presence of NEMs. This condition warns us that NEMs are present if the value

of the equilibrium pressure gradient lies in a given interval whose end points depend on the perpendicular wave vector

and the magnetic field curvature. In particular, the length of this interval shrinks to zero as the perpendicular wave

number goes to infinity. After obtaining the eigenvalues and eigenvectors of the system, we explicitly construct and

carry out the transformation that puts the Hamiltonian for the ETG model into normal form.

The paper is organized as follows. In Sec.II we review the model and its Hamiltonian formulation, and then derive

the Casimir invariants. In Sec.III we apply the Energy-Casimir method and obtain conditions for energy stability. In

Sec.IV, after reviewing the theory of mode signature for linear Hamiltonian systems we apply it to the ETG model.

Explicit conditions for the existence of NEMs, their relationship to energy stability and spectral stability conditions

coming from the dispersion relation are derived, and the normal form transformation is explicitly obtained. Finally,

we conclude in Sec.V.

II. HAMILTONIAN STRUCTURE OF THE ETG MODEL

The non-dissipative ETG driven turbulence model of [24, 25] is given by

∂

∂t
(1−∇2)φ = [φ,∇2φ+ x] +

[

p√
r
,
√
rx

]

, (1)

∂

∂t

p√
r

=

[

p√
r
, φ

]

+ [
√
rx, φ] , (2)

where two-dimensional slab geometry is assumed so that the field variables, φ the stream function and p the pressure,

are functions of the Cartesian coordinates (x, y). The quantity [f, g] = ∂f/∂x∂g/∂y − ∂f/∂y∂g/∂x is the canonical

Poisson bracket. Equations (1) and (2) are written in the normalized form described in [24], where the constant

parameter r is defined as

r =
L2
n

LBLP

, (3)

with Ln, LB and LP being the characteristic length scales of variation of the background density, magnetic, and

electron pressure fields, respectively. The parameter r is thus related to the mechanism providing the drive for the

ETG instability. In particular, in the limit r → 0, which is attained if one flattens the electron pressure gradient, the

linear dispersion relation indicates that ETG modes degenerate into marginally stable drift waves [25].



4

In [24], the authors showed that the system (1)-(2) possesses a Hamiltonian structure in terms of a noncanonical

Poisson bracket. This means (see, e.g. [1, 27]) that the system can be cast in the form

∂χi

∂t
= {χi, H}, i = 1, · · · , n (4)

with χi(x, t) indicating a suitable set of n field variables (with n = 2 in our case) and H [χ1, · · · , χn] a Hamiltonian

functional that is conserved by the dynamics. The Poisson bracket {, } appearing in (4) is an antisymmetric bilinear

binary operator satisfying the Leibniz rule and the Jacobi identity. For the model of (1) and (2), it was shown [24]

that, with the choice χ1 = φ, χ2 = p, the Hamiltonian of the system is

H [φ, p] =
1

2

∫

d2x

(

φ2 + |∇φ|2 − p2

r

)

(5)

and the Poisson bracket is

{F,G} = −
∫

d2x(φ −∇2φ− x)[L−1Fφ,L−1Gφ] + (p+ rx) ([L−1Fφ, Gp] + [Fp,L−1Gφ]), (6)

where the operator L, and its inverse L−1 are formally defined so that Lf = f −∇2f , and L−1Lf = LL−1f = f , for

a generic field f . The subscripts on F and G in (6) denote functional derivatives with respect to the fields φ or p.

Noncanonical Poisson brackets such as (6) are characterized by the presence of so called Casimir invariants (see,

e.g. Ref. [1]), due to degeneracy in the cosymplectic operator of the bracket. More precisely, a Casimir invariant of a

Poisson bracket is a functional C(χ1, · · · , χn) that satisfies

{C,F} = 0 (7)

for any functional F of the field variables. Because they commute in particular with any H , Casimir functionals

are preserved during the dynamics. In order to derive the Casimir invariants of the ETG model, it is convenient to

introduce the variables

P =
p√
r
+
√
rx, λ = φ−∇2φ− x, (8)

which correspond to a “translated” pressure and to a variable analogous to the potential vorticity of the Charney-

Hasegawa-Mima equation [28, 29], respectively. In terms of these variables the model equations read

∂

∂t
λ = −[L−1(λ + x), λ] + [P ,

√
rx], (9)

∂

∂t
P = [P ,L−1(λ+ x)], (10)
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whereas the Hamiltonian and the bracket become

H(λ,P) =
1

2

∫

d2x
(

(λ+ x)L−1(λ+ x)− P2 + 2
√
rPx

)

, (11)

{F,G} = −
∫

d2xλ[Fλ, Gλ] + P([Fλ, GP ] + [FP , Gλ]) , (12)

where the bracket is seen to be identical to that for reduced MHD as first given in [26].

Applying (7) we deduce that the equations determining the Casimir invariants for our system are

[Cλ, λ] + [CP ,P ] = 0,

[Cλ,P ] = 0.

(13)

By solving (13) we see that the system admits two independent infinite families of Casimirs:

C1 =

∫

d2xH(P), C2 =

∫

d2xλF(P), (14)

with H and F arbitrary functions. The dynamics described by the inviscid ETG model is then subject to an infinite

number of constraints imposed by the conservation of the Casimir invariants (14). For instance, as a consequence

of the conservation of C2, integrals of the potential vorticity λ over regions bounded by contour lines of P will be

conserved during the dynamics (see [30]).

Notice that the constant of motion I found in [24] is given by

I =

∫

d2x

(

p2

r
+ 2(φ−∇2φ)p

)

= 2
√
r

∫

d2xλP +

∫

d2xP2 − 2r

∫

d2xx
(

φ−∇2φ− x

2

)

, (15)

which is a linear combination of two particular Casimirs of (14) with the realization that the time derivative of

− 2r

∫

d2xx
(

φ−∇2φ− x

2

)

(16)

vanishes if ∂φ/∂x and ∂φ/∂y vanish or are periodic at the boundaries. Therefore, I amounts to a single special case

of the general families of (14).

III. ENERGY STABILITY

The Hamiltonian formalism provides a systematic procedure for implementing the Energy-Casimir method for

investigating stability of equilibria (see, e.g. [1, 31, 32]), a stability method that originated in plasma physics in [33]

that has often been referred to as nonlinear stability. This method has been adopted in many works; for example, in
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the context of fluid models for plasmas in [34–37]. It provides sufficient conditions for stability by taking the second

variation of the free energy, the Hamiltonian plus Casimir invariants, and extracting conditions that are necessary

for definiteness. Because the method is based on nonlinear constants of motion, the stability conditions obtained are

stronger than conditions that emerge from dispersion relations, i.e. spectral stability conditions, that follow entirely

from the linear equations of motion. Indeed this second variation stability, which we will refer to simply as energy

stability, implies linear stability [1, 38], but the converse is not true. In some works energy stability is called formal

stability when an additional convexity estimate is not provided. Usually these estimates are rather trivial and even

when they are provided they are only a small part of a mathematically rigorous stability proof – for this reason we

eschew this terminology.

For noncanonical Hamiltonian systems, equilibrium solutions can be found by solving the equations that result

from extremizing the free energy functional. For our system the free energy functional is given by F = H + C1 + C2

(which is not to be confused with the generic functional F of our Poisson brackets), with H given by (12) and C1,2

by (14). For convenience we introduce the new variables according to the transformation

Λ = λ+ x, P̄ = P (17)

and then drop the bar on P̄ in the following. In terms of these variables the Hamiltonian and the bracket become

H(Λ,P) =
1

2

∫

d2x
(

ΛL−1Λ− P2 + 2
√
rPx

)

,

{F,G} =

∫

d2x(x − Λ)[FΛ, GΛ]− P([FΛ, GP ] + [FP , GΛ]).

The free energy functional is then explicitly given by

F (Λ,P) =
1

2

∫

d2x
(

ΛL−1Λ − P2 + 2
√
rPx

)

+

∫

d2xH(P) +

∫

d2x(Λ − x)F(P) , (18)

and the equilibrium equations, obtained from setting the first variation δF equal to zero, are

FΛ = L−1Λ + F(P) = 0, (19)

FP = −P +
√
rx+H′(P) + (Λ − x)F ′(P) = 0, (20)

where the prime denotes derivative with respect to the argument of the function. Due to the presence of the arbitrary

functions in the Casimirs, such equilibrium equations possess free functions. Specifying these selects from a class of

equilibrium solutions. In particular, choosing F corresponds to fixing the relation between the equilibrium stream

function φeq = L−1Λeq and the equilibrium translated pressure Peq.
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As indicated above, an equilibrium solution of (19)-(20) is energy stable (and therefore linearly) stable, if the

second variation of F , evaluated at that equilibrium, has a definite sign. In terms of the variables φ and P , the second

variation of F reads

δ2F =

∫

d2x
[

(1−F ′(P))|L−1δΛ|2 + (1 − 2F ′(P))|L−1∇δΛ|2 + F ′(P)(δΛ + δP)2

−F ′(P)(L−1∇2δΛ)2 +
(

H′′(P)− 1 + (Λ− x)F ′′(P)−F ′(P)
)

|δP|2
]

. (21)

From (21) one immediately obtains sufficient conditions for positive definiteness of δ2F in the case of no flow:

F(Peq) ≡ 0 and H′′(Peq) > 1 . (22)

From (19), F(Peq) ≡ 0 implies no flow, while H′′(Peq) > 1 gives a condition on the pressure profile. Generally

speaking, the situation with flow, when F(Peq) 6≡ 0, is expected to have NEMs [1]. However, this case is more

complicated to analyze, with the Poincaré inequality often being of use, but we will not pursue it further here.

IV. NEGATIVE ENERGY MODES

In this section, we first review the theory of NEMs in the finite degree-of-freedom Hamiltonian context [39], since

it applies directly to finite systems with discrete spectra (e.g. [11]). The situation for continuous spectra is more

complicated [5, 40–42] and will not be considered here. Subsequently, after carrying out a spectral stability analysis

of the system linearized around homogeneous equilibria with no flow, we make use of the Hamiltonian formalism in

order to detect the presence of NEMs among the stable modes of the linearized system. Finally we carry out the

explicit transformation that casts the corresponding Hamiltonian into normal form.

A. Review of mode signature and normal forms for linear Hamiltonian systems

A real canonical Hamiltonian linear system with N degrees of freedom is generated by the canonical Poisson bracket

{f, g} =
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
, (23)

and a quadratic Hamiltonian

HL =
1

2
Aijz

izj, (24)
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where z = (q1, ..., qN , p1, ..., pN ), Aij are the elements of a 2N × 2N matrix with constant coefficients, and repeated

sum notation is assumed with i, j = 1, 2, . . . , N . The resulting equations of motion can then be compactly written as

ż = JcAz, (25)

where

Jc =

(

0N −IN
IN 0N

)

(26)

is the 2N × 2N canonical symplectic matrix (cosymplectic form). Assuming

z = z̃eiωt + z̃∗e−iωt, (27)

with ∗ indicating complex conjugate, (25) yields the eigenvalue problem

iωαzα = JcAzα, α = 1, · · · , N, (28)

where we have dropped the tilde on the eigenvectors and have added an eigenvalue label α. In what follows we

will assume distinct eigenvalues, precluding the existence of nontrivial Jordan form and possible secular growth in

time. We also assume that the eigenvalues ωα are real, which is the case of interest for detecting mode signature.

Because our dynamical variables are real, the remaining N eigenvalues are given by ω−α = −ωα and the corresponding

eigenvectors are zα = z∗α. Defining Ω := J−1
c , the symplectic two-form, we construct the quantity

h(α, β) := iωαz
T
β Ωzα = zTβAzα , (29)

where T denotes transpose.

It can be easily shown that the property h(α, β)−h(β, α) = 0 holds. Then, from this relation and the antisymmetry

of Ω, it follows that

h(α, β) = 0, if β 6= −α. (30)

On the other hand,

h(−α, α) = zT−αAzα = z∗α
TAzα = iωαz

∗
α
TΩzα, (31)

is clearly the energy (Hamiltonian HL) of the mode (zα, ωα; z
∗
α,−ωα). Evidently, z∗α

TΩzα is a purely imaginary

number, and a normalization constant for the eigenvectors can be chosen in such a way that

z∗α
TΩzα = ±2i, (32)
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with the sign, an invariant, depending on the specific mode under consideration. Note that the left-hand side of (32)

represents the Lagrange bracket (symplectic two-form) of z∗α and zα. If zα is an eigenvector, associated with a positive

eigenvalue ωα, and

z∗α
TΩzα = −2i, (33)

then (zα, ωα; z
∗
α,−ωα) corresponds to a positive energy mode, otherwise it is a negative energy mode. This can be

easily seen by observing that, in the case of a PEM, the corresponding energy is given by

h(−α, α) = iωαz
∗
α
TΩzα = 2ωα > 0. (34)

Note that, although here we carried out an analysis with canonical coordinates, Sylvester’s theorem guarantees that

the signature of a mode (i.e., whether it is a PEM or a NEM), does not depend on the choice of the coordinate system.

The distinction between positive and negative energy modes becomes even more transparent when we are re-

minded that, for stable modes there exists [3, 11, 39] a canonical transformation T : (Q1, · · · , QN , P1, · · · , PN ) →

(q1, · · · qN , p1, · · · pN), that casts the quadratic Hamiltonian of (24) into the following normal form:

HL =
1

2

N
∑

α=1

σα ωα(P
2
α +Q2

α) , (35)

where ωα represents the positive eigenvalues of the linearized system, whereas σi ∈ {−1, 1} is the signature of the

mode.

If the system contains unstable modes, then they have a different normal form. However, if the Hamiltonian is

restricted to the stable modes, then it can be written as the Hamiltonian for a system of N harmonic oscillators with

different frequencies. The modes for which σ = −1, which give a negative contribution to the total energy, correspond

to the NEMs, while those corresponding to σi = 1 are, of course, PEMs.

Once the eigenvalues and eigenvectors of the system are known, the procedure for constructing the map T is

algorithmic. First one needs to select, among the 2N eigenvectors of the system, the N eigenvectors zα that satisfy

z∗α
TΩzα = −2i, α = 1, · · · , N. (36)

Then the 2N × 2N matrix that defines the transformation is given by

T = col (Re z1,Re z2 ...Re zN , Im z1, Im z2, . . . , Im zN) , (37)

which is the matrix with columns given by Re z1 etc. It can be shown that the transformation constructed in this

way is canonical and indeed provides the desired diagonalization.
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B. Mode signature and stability for the ETG model

Now consider a special case of the no-flow equilibria of Sec. III, the homogeneous equilibria:

Λeq = L−1Λeq = 0, Peq = αPx , (38)

where αP is a constant. The equilibrium solution (38) corresponds to the choices

F(P) = 0, H(P) =
1

2

(

1−
√
r

αP

)

P2, (39)

for the Casimir functions that appear in equations (19) and (20).

Linearizing the model equations around this equilibrium gives the system

˙̃Λ = − ∂

∂y
L−1Λ̃−

√
r
∂

∂y
P̃,

˙̃P = αP

∂

∂y
L−1Λ̃ .

Expanding the perturbations as Fourier series, as follows:

Λ = Λ̃ =

+∞
∑

k=−∞

Λ̃k(t)e
−ik·x, P = αPx+ P̃ = αPx+

+∞
∑

k=−∞

P̃k(t)e
−ik·x, (40)

yields the amplitude equations

˙̃Λk = i
ky

1 + k2
⊥

Λ̃k + i
√
rkyP̃k, (41)

˙̃Pk = −iαP

ky
1 + k2

⊥

Λ̃k , (42)

whence, the dispersion relation for modes of the form ei(ωt−k·x) is obtained,

ω2 − ky
1 + k2

⊥

ω + αP

√
r k2y

1 + k2
⊥

= 0. (43)

This expression is in agreement with that obtained in Ref.[25]. The eigenvalues correspond to a slow and a fast mode,

and are given by

ωk
s =

k

2(1 + k2
⊥
)
(1−

√

1− 4(1 + k2
⊥
)αP

√
r), (44)

ωk
f =

k

2(1 + k2
⊥
)
(1 +

√

1− 4(1 + k2
⊥
)αP

√
r), (45)

where we have set ky = k. The corresponding eigenvectors are

Λ̃k
s,f = −ωk

s,f

1 + k2
⊥

αPk
P̃k
s,f = − 1

2αP

(1±
√

1− 4(1 + k2
⊥
)αP

√
r)P̃k

s,f , (46)
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for k > 0. The system also possesses the eigenvalues ωk
−s,−f = −ωk

s,f , whose eigenvectors are the complex conjugates

of those of (46).

From (44)-(45) we obtain a necessary and sufficient condition for spectral stability, viz.

1− 4(1 + k2⊥)αP

√
r > 0 ⇒ αP <

1

4(1 + k2
⊥
)
√
r
. (47)

Therefore, if the electron pressure or magnetic field gradients are such that αP < 0, such equilibria are always spectrally

stable ∀ k. If αP > 0, on the other hand, the equilibrium will be stable only for k such that 0 < αP < 1/4(1+ k2
⊥
)
√
r

is satisfied. In other words, there will always be instability for sufficiently large k⊥.

The linearized system of (41) and (42) inherits a Hamiltonian formulation from the nonlinear system, one that can

be written in the framework described in Sec. IVA. We can then take advantage of this fact in order to see whether

NEMs are present in the system and to cast the Hamiltonian into its normal form.

By using the relation (see, e.g., [11, 43, 44])

δF

δΛ̃
=

k=+∞
∑

k=−∞

(

δF

δΛ̃

)

k

e−iky =
1

2π

+∞
∑

k=−∞

∂F̄

∂Λ̃−k

e−iky , (48)

where F (Λ̃) = F̄ (Λ̃k), it can be shown that the Hamiltonian structure of (41) and (42), is given by the bracket

{F,G} =
+∞
∑

k=1

ik

2π

[(

∂F

∂Λ̃k

∂G

∂Λ̃−k

− ∂F

∂Λ̃−k

∂G

∂Λ̃k

)

− α2
P

(

∂F

∂Λ̃k

∂G

∂P̃−k

+
∂F

∂P̃k

∂G

∂Λ̃−k

− ∂F

∂P̃−k

∂G

∂Λ̃k

− ∂F

∂Λ̃−k

∂G

∂P̃k

)]

. (49)

and the linear Hamiltonian, which is proportional to δ2F ,

HL =

+∞
∑

k=1

Hk
L = 2π

+∞
∑

k=1

(

|Λ̃k|2
1 + k2

⊥

−
√
r

αP

|P̃k|2
)

, (50)

where we have suppressed the sum on kx (note that kx only appears in the combination k2
⊥
= k2x+ k2). Although not

canonical, this formulation, in principle is sufficient in order to detect the presence of NEMs for the equilibrium under

consideration. Indeed, as already done for the four-field model of [13], we can make use of the property that NEMs

can change their signature only if they become unstable through a “Krĕın bifurcation” [1], or if the corresponding

eigenvalues go through zero frequency. It is then sufficient to identify a NEM in a particular limit, and we are

then guaranteed that its signature does not change as long as one of the two above mentioned phenomena does not

occur. Sylvester’s theorem also guarantees that the signature is independent on the choice of the coordinates we

make. If we fix a wave vector k, then we can first evaluate the energy associated with the corresponding mode in

the (Λ̃k, Λ̃−k, P̃k, P̃−k) coordinates by inserting eigenvalues and eigenvectors associated to k in the expression for Hk
L.
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FIG. 1: Depiction of two possible mode signature situations for ETG modes, depending on the sign of αP . The plot on the left
refers to the case of negative αP (αP = −0.3,

√

r = 0.2). In this case both modes are PEMs and the system is energy stable.
In the plot on the right, αP is positive (αP = 0.5,

√

r = 0.2). For 0 < k⊥ < 1.22, the equilibrium is stable, but the slow mode
is a NEM. A Krĕın bifurcation occurs at k⊥ = 1.22.

This results in

HL
k
s,f = 2π

(

1− 4
√
rαP − 2k2

⊥
αP

√
r ±

√

1− 4(1 + k2
⊥
)αP

√
r

2α2
P

)

|P̃k
s,f |2 , (51)

which is the energy of the slow and the fast modes of wave number k (summed over kx). In order to identify PEMs

and NEMs, it is sufficient to consider the limit k⊥ → 0, which yields

HL
k,k⊥=0

s,f = 2π

(

1− 4
√
rαP ±

√

1− 4αP

√
r

2α2
P

)

|P̃k
s,f |2. (52)

We can then see that, for the fast mode (corresponding to the + sign in (52)), HL
k,k⊥=0

f is positive, and therefore

a PEM. Also, it will remain a PEM as parameters are varied in a continuous way, until the instability threshold is

reached. For the slow mode, two cases exist for finite αP . If αP < 0, then HL
k,k⊥=0

s > 0 and, again, we have a PEM.

If 0 < αP < 1/(4
√
r), on the other hand, the slow mode is a NEM.

The above mentioned instability, occurring at large k⊥, for αP > 0, indicates a Krĕın bifurcation, which is one

of the possible types of bifurcations occurring in Hamiltonian systems. These situations are illustrated in Fig. 1.

When ωk
s is real and negative, that is for αP < 0, both the slow and the fast modes are PEMs and the two branches

correspond to two dispersive waves with opposite sign. These waves correspond to inviscid drift waves modified by

the presence of the ETG and magnetic field curvature. In the limit r → 0, corresponding to vanishing ETG, the two

modes degenerate into a Hasegawa-Mima drift wave. When ωk
s is real and positive, i.e. for 0 < αP < 1/4(1+ k2

⊥
)
√
r,

both modes are still stable but the slow mode is now a NEM. Comparing the two plots of Fig.1, one observes that

ωk
s went from negative to positive, i.e. it crossed through zero frequency, while changing from a PEM to a NEM.

For the parameters chosen for the figure, the instability threshold, due to the presence of ETG, occurs at k⊥ ≈ 1.22.

For perpendicular wave numbers above this value, the equilibrium is indeed unstable. The transition of the two real
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eigenvalues into a complex conjugate pair, occurring at k⊥ ≈ 1.22, is an example of a Krĕın bifurcation. Note that, as

predicted by Krĕın’s theorem (see, e.g., Ref. [1]), if a Krĕın bifurcation between two eigenvalues occurs, one of them

must be a NEM. This is indeed our case.

If we consider now the stability condition (22) for no-flow equilibria, together with (39), we find that the homoge-

neous equilibrium (38) is energy stable if H′′(Peq) > 1, which is equivalent to αP < 0. Indeed, if this condition is

satisfied, the equilibrium is stable, with no NEMs. If we now use the actual pressure p, as a variable, and consider the

corresponding homogeneous equilibrium peq = apx =
√
r(αP −√

r)x, we can reformulate our results in the following

way. If the equilibrium pressure gradient is such that ap < −r (i.e., αP < 0), then the system is energy stable for

every k. If, on the other hand, −r < ap < −r+1/4(1+k2
⊥
), (i.e. 0 < αP < 1/(4(1+k2

⊥
)
√
r) then the system becomes

unstable through a Krĕın bifurcation at a critical k⊥, for fixed r. For k⊥ below this critical value, the equilibrium is

spectrally stable but not energy stable. Indeed, the slow mode in this case is a NEM, which makes the equilibrium

fragile with respect to the addition of dissipation or nonlinearities.

C. Normal form for the Hamiltonian of the ETG model

The explicit knowledge of the eigenvalues of the linearized system, makes it possible to cast the Hamiltonian into

its normal form, as discussed in Sec. IVA. First of all we point out that the transformation (Λ̃k, Λ̃−k, P̃k, P̃−k) →

(q1k, q
2
k, p

1
k, p

2
k), corresponding to

q1k =

√

π

kα2
P

(P̃k + αP Λ̃k + P̃−k + αP Λ̃−k) ,

p1k = −i

√

π

kα2
P

(P̃k + αP Λ̃k − P̃−k − αP Λ̃−k) ,

q2k =

√

π

k
(Λ̃k + Λ̃−k), p2k = i

√

π

k
(Λ̃k − Λ̃−k) , (53)

puts the system into canonical Hamiltonian form. Indeed, in terms of the variables (q1k, q
2
k, p

1
k, p

2
k), the bracket of (49)

takes the canonical form

{F,G} =

∞
∑

k=1

∂F

∂qk1

∂G

∂pk1
− ∂F

∂pk1

∂G

∂qk1
+

∂F

∂qk2

∂G

∂pk2
− ∂F

∂pk2

∂G

∂qk2
. (54)

The Hamiltonian (50) in terms of the new variables, on the other hand, reads

HL =
1

2

∞
∑

k=1

4
∑

i,j=1

Ak
ijz

k
i z

k
j , (55)
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where

Ak =







a c 0 0
c b 0 0
0 0 a −c
0 0 −c b






, zk = (qk1 , q

k
2 , p

k
1 , p

k
2) (56)

with a = −√
rαPk, b = k(1/(1 + k2

⊥
) − √

rαP), and c =
√
r|αP |k. We emphasize that the transformation (53) is

constructed in such a way that the canonical variables qki and pki are real. We are thus in the framework depicted in

Sec. IVA. For each k, the equations of motion are given by

żk = JcA
kzk. (57)

Upon writing the variables as

qk1,2 = z̃k1,2e
iωkt + z̃k1,2

∗
e−iωkt, pk1,2 = z̃k3,4e

iωkt + z̃k3,4
∗
e−iωkt, (58)

and dropping the tilde in the following, we obtain that the eigenvectors of the linearized system are

zks = qk1s







1
−B−

−i
−iB−






, zk−s = qk1s

∗







1
−B−

i
iB−






, zkf = qk1f







1
−B+

−i
−iB+






, zk−f = qk1f

∗







1
−B+

i
iB+






. (59)

These are the eigenvectors corresponding to the eigenvalues ωk
s , ω

k
−s, ω

k
f and ωk

−f , respectively. In (59) we introduced

the quantities

B± =
b+ a±

√

(b+ a)2 − 4c2

2c
, (60)

whereas q1
k
s,f are complex coefficients. Following Sec. IVA, the Lagrange bracket for the slow mode reads

zk−s

T
Ωzks = 2i(1−B2

−)q
k
1s

∗
qk1s. (61)

Direct calculation shows that

1−B2
− = −

√

(b + a)2 − 4c2(
√

(b+ a)2 − 4c2 − (b+ a))

2c2
> 0. (62)

To obtain the inequality in (62), we made use of the fact that, for stable modes,
√

(b+ a)2 − 4c2 < b+ a.

The inequality (62) tells us that, for slow modes, we must pick up the plus sign in the general expression (32).

Moreover, if we choose the normalization constants so that

qk1s = qk1s
∗
=

1

D−

≡ 1
√

1−B2
−

, (63)
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we obtain that the Lagrange bracket for slow modes becomes

zk−s

T
Ωzks = 2i. (64)

Of course,

zks
T
Ωzk−s = −2i, (65)

and consequently, according to the definition, given in Sec. IVA, we have a PEM, when ωk
−s = −ωk

s > 0, and a NEM

when ωk
−s = −ωk

s < 0. This confirms the results we obtained in Sec. IVB with noncanonical variables.

Following the same procedure for the fast mode, we find

zk−f

T
Ωzkf = 2i(1−B2

+)q
k
1f

∗
qk1f . (66)

Given that 1−B2
+ < 0, the Lagrange bracket for the fast mode becomes

zk−f

T
Ωzkf = −2i, (67)

after having chosen the following normalization for the eigenvectors:

qk1f = qk1f
∗
=

1

D+
≡ 1
√

B2
+ − 1

. (68)

Because ωk
f is always positive, according to the definition, (67) tells us that the fast mode, as expected, is always a

PEM.

The transformation that casts the Hamiltonian (55) into normal form, following Sec. IVA, will be a real canonical

transformation T k that, for each k, maps a new set of coordinates z̄k = (Qk
1 , Q

k
2 , P

k
1 , P

k
2 ), in terms of which the

Hamiltonian is diagonal, into zk.

After noticing that

zk−s

∗T
Ωzk−s = −2i, (69)

zkf
∗T

Ωzkf = −2i, (70)

the matrix associated with the application T k is constructed in the following way:

T k =











1
D−

1
D+

0 0

−B−

D−

−B+

D+
0 0

0 0 1
D−

− 1
D+

0 0 B−

D−

−B+

D+











. (71)
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Direct calculation shows that

T kTAkT k =









−ωk
s 0 0 0

0 ωk
f 0 0

0 0 −ωk
s 0

0 0 0 ωk
f









. (72)

Consequently, the Hamiltonian (55) can be finally written as

HL =
1

2

+∞
∑

k=1

4
∑

i,j=1

(T kz̄k)i
T
Ak

ij(T
kz̄k)j

=
1

2

+∞
∑

k=1

ωk
f

(

Qk
2

2
+ P k

2

2
)

− ωk
s

(

Qk
1

2
+ P k

1

2
)

. (73)

The expression (73) corresponds to the normal form for the Hamiltonian of the linearized ETG model for stable modes.

It clearly shows how the corresponding energy can be decomposed into the sum of energies of harmonic oscillators

which possess, as characteristic frequencies, those of the fast and slow modes. The harmonic oscillators associated

with the fast modes always provide a positive contribution to the total energy. Those associated to the slow modes,

on the other hand, give a negative contribution if ωk
s > 0, which translates into the condition on the equilibrium

pressure gradient discussed in Sec. IVB.

V. CONCLUSIONS

By making use of the Hamiltonian formalism, we have analyzed the mode signature and the stability properties of an

ETG fluid model. The families of Casimir invariants of the model were obtained, thereby showing that the dynamics

of the model is subject to an infinite number of constraints. A stability condition has been derived, according to which,

the absence of equilibrium flow and a restriction on the pressure equilibrium profile imply stability. Subsequently, after

reviewing the concept of mode signature in the Hamiltonian framework, we have explicitly determined the energies

of stable modes. From the stability viewpoint, the dispersion relation gives us a spectral stability condition which,

however, does not give us information about the stronger condition of energy stability. Indeed, our analysis shows that

spectrally stable homogeneous equilibria can be of two types, depending on the value of the parameters. If αP < 0,

equilibria are spectrally and energy stable (i.e. with no NEMs). If 0 < αP < 1/(4(1 + k2
⊥
)
√
r), on the other hand,

equilibria are still spectrally stable, but they are not energy stable. Indeed, the sign of the second variation of the

free energy functional, in this case, is indefinite because of the presence of NEMs. Equilibria of the second type might

then be prone to dissipation-induced or nonlinearity-induced instabilities.

As anticipated in Sec. I, one of the advantages of the Hamiltonian formalism for investigating stability and mode
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signature, is that it is very general and can be applied to any plasma model with a Hamiltonian structure. The method

described and applied in the present paper, nevertheless, refers only to systems with discrete spectrum. A natural

and promising future project, would be to analyze mode signature and perform the normal form analysis for more

complex equilibria that support continuous spectrum using the techniques developed in [5, 40–42]. Such equilibria

have more spatial dependence, for example.
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