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Crystal nucleation and growth processes induced by an externally applied shear strain in a model
metallic glass are studied by means of nonequilibrium molecular dynamics simulations, in a range
of temperatures. We observe that the nucleation-growth process takes place after a transient, in-
duction regime. The critical cluster size and the lag-time associated with this induction period
are determined from a mean-first passage time analysis. The laws that describe the cluster growth
process are studied as a function of temperature and strain rate. A theoretical model for crystal-
lization kinetics that includes the time-dependence for nucleation and cluster growth is developed
within the framework of the Kolmogorov-Johnson-Mehl-Avrami scenario and is compared with the
molecular dynamics data. Scalings for the cluster growth laws and for the crystallization kinetics
are also proposed and tested. The observed nucleation rates are found to display a nonmonotonic
strain rate dependency.

PACS numbers: 46.35.+z, 05.70.Ln, 64.60.qe, 64.70.pe

I. INTRODUCTION

The study of phase transformation between liquid
and crystal through a nucleation and subsequent growth
regime is a problem with a very long history [1, 2]. Un-
derstanding the crystallization process, including the rate
of phase transition and the morphology of the crystal
formed, has a great importance for many technological
applications. The situation becomes even more complex,
when the phase transformation takes place in a system
under external drive due to shear flow, electric, magnetic
or laser-optical fields etc. (for a recent review see [3]).
The problem belongs then to the class of nonequilibrium
processes in driven materials, which has attracted atten-
tion more recently [4].

Numerical simulations techniques have allowed one to
obtain a series of important results for the kinetics of
crystallization in systems driven by an imposed shear

flow [5–9], including glasses [10–12], semicrystalline poly-
mers [13], colloidal suspensions [14, 15] and Ising model
[16]. The generally established outcome here, which con-
firms the experimental observations (see, e.g., [17–20]), is
that the shear drive can have a significant impact on the
various aspects of the nonequilibrium phase transitions,
in particular, on the transition, nucleation and crystal
growth rates as well as on the induction time [3, 21].

In terms of nucleation, the influence of a finite shear
rate on the structural ordering of a system appears to
be, in general, that a small shear rate speeds up nucle-
ation, while larger shear rates prevent ordering [15, 16].
Fluid-crystal coexistence can also be affected by shear,
as found in Ref. [14] where crystallization is shown to be
suppressed by flow. Hence, the shear flow influences both
the thermodynamic and the kinetic aspects of nucleation,
in a way that may depend on the depth of supercool-
ing and on the intensity of the strain rate, presumably

compared to the system internal relaxation time. For a
deeply supercooled, glassy system, the relaxation time is
essentially infinite, so that a finite shear rate will always
have a favorable impact on nucleation.

The cluster growth process, which follows nucleation,
is also expected to be affected by a finite strain rate. For a
specific, Ising like, two-dimensional system, it was shown
recently that a moderate shear-drive plays a significant
role in crystal erosion and growth governing by single
“particle” attachment and coalescence processes [15, 16].
More generally, one may inquire how the domain growth
law are affected by the shear rate. In systems at rest, the
standard description for the apparition of a crystalline
phase through nucleation and cluster growth, is generally
reproduced by the classical Kolmogorov-Johnson-Mehl-
Avrami (KJMA) theory [1]. In the present work, we ap-
ply the extension of the KJMA theory for the case of the
time-dependent nucleation and growth in a model metal-
lic glass under shear drive. Extension of the theory is
tested together with nonequilibrium molecular dynam-
ics simulation data at different temperatures and wide
range of shear rates. The data is compatible with the
extension of the theory that includes a finite lag-time for
appearance before the onset of steady state nucleation.

The numerical model used in our simulations, as well
as the extended KJMA theory, are presented in sections
II and III. The results of molecular dynamics simulations
and parameters of the KJMA theory, in particular, the
critical cluster size, the lag-time and the steady state
nucleation rate, are analyzed and discussed in section
IV. Finally, we present our conclusions in section V.
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II. MODEL, SIMULATION DETAILS AND

CLUSTER ANALYSIS

In this work we focus on a system of particles interact-
ing through the spherically symmetric Dzugutov poten-
tial

U(r∗)/ǫ = A (r∗−m −B) exp

(

c

r∗ − a

)

H(a− r∗)

+ B exp

(

d

r∗ − b

)

H(b− r∗), (1)

r∗ = r/σ,

where σ and ǫ define the unit length and energy, re-
spectively1. The parameters A, B, m, a, b and c are
chosen as proposed originally in Ref. [22], the Heav-
iside step function H(. . .) sets the range of the vari-
ous contributions in relation (1). Besides a minimum
U(r∗min = 1.13) = −0.581ǫ, the potential includes a max-
imum U(r∗max = 1.628) = 0.46ǫ and falls off rapidly with
the interatomic distance r. Such a short-ranged, oscillat-
ing interaction mimics in a simple way the ion-ion inter-
action influenced by the electron screening effects in the
metallic systems. Moreover, the maximum in potential
(1) reflects the first of the Friedel oscillations and favors
icosahedral local order in the system, therefore making
it a good glass-former at low pressure [23].

The system under study and the simulation setup are
completely identical to the considered one in Ref. [12].
Namely, the system consists of N = 19 652 particles
within the simulation box L3 with L = 28.55σ that
corresponds to the density ρ = 0.84σ−3. A set of
glassy samples is prepared by fast cooling from the equi-
librated liquid state to the temperatures T = 0.01,
0.03 and 0.06ǫ/kB that is well below the melting point
T = 0.5ǫ/kB [24].

The shear drive is applied by moving two amorphous
walls created at the sides of the simulation cell perpen-
dicular to the ey direction. The bottom wall is fixed,
whereas the top wall is moving in the x-direction with
the instantaneous velocity u(t) = γ̇L(t)ex at a constant
strain rate γ̇ and pressure Pyy = 7.62ǫ/σ3, which in the
equilibrium phase diagram would favor the fcc phase.
Here L(t) is the instantaneous distance between the walls.

To identify the nuclei of the ordered phase (clusters)
we use a cluster analysis, which is based on the consid-
eration of the local environment around each particle by
means of a (2 × l + 1)-dimensional complex vector with

1 For convenience, all quantities are expressed in reduced form.
The time unit is τ = σ

√

m0/ǫ, m0 is a particle mass, the strain
rate is in units of τ−1, the temperature T is in units of ǫ/kB
and the pressure is in units of ǫ/σ3, where kB is the Boltzmann
constant.

the components

qlm(i) =
1

Nb(i)

Nb(i)
∑

j=1

Ylm(θij , ϕij), (2)

where Ylm(θij , ϕij) are the spherical harmonics with the
polar θij and azimuthal ϕij angles between radius-vector
rij and a reference direction; Nb(i) is the number of
neighbors for a particle i, which are the particles located
within a sphere of the radius |rij | = 1.5σ (see Ref. [25]).
Following the ten Wolde-Frenkel scheme [26], we specify
the pair of neighbors, particles i and j, as correlated into
an ordered structure if the following condition is satisfied:

∣

∣

∣

∣

∣

6
∑

m=−6

q̃6m(i)q̃∗6m(j)

∣

∣

∣

∣

∣

> 0.5, (3)

where the normalization

q̃lm(i) =
qlm(i)

[

l
∑

m=−l

|qlm(i)|2
]1/2

(4)

sets the maximum possible value in the r.h.s. of inequal-
ity (3) equal to unity. Moreover, to exclude from consid-
eration the structures with a negligible number of bonds
per atom, which occurs even in liquid phase, we apply
the following additional restriction [26]: particle i is con-
sidered as included into a crystalline structure if it has
seven and more neighbors satisfying the condition (3).

III. NUCLEATION AND GROWTH KINETICS

According to the KJMA theory for crystallization ki-
netics [1], the fraction of material transformed into a crys-
talline phase at a given time t is defined by

α(t) = 1− exp

{

−
∫ t

0

I(t′)vex(t
′, t)dt′

}

, (5)

where I(t) is the nucleation rate and vex(t
′, t) is the vol-

ume at time t of a nucleus formed at time t′:

vex(t
′, t) = cg

[
∫ t

t′
G(t′′)dt′′

]3

, (6)

G(t) is the growth rate of the nucleus radius, cg is a di-
mensionless shape factor. This description is obviously
correct if critical sized nuclei grow isotropically and are
much smaller than the system size. In the simplest ver-
sion of the theory, the growth rate does not depend on
size or time, G(t) ≃ Gc and the nucleation rate I(t) is
approximated by the steady-state nucleation rate Is, –
Eqs. (5) and (6) are simplified to give a well-known ex-
pression for steady-state homogeneous nucleation kinet-
ics:

α(t) = 1− exp

(

−cgIsG3
c t

4

4

)

. (7)
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However, if the time scale of the transient regime, which
precedes the steady nucleation and growth kinetics, is
comparable to nucleation and growth time scales, a lag-
time tc that accounts for the non-stationary character of
the transition kinetics should be introduced, as discussed
below.
The growth law of a supercritical cluster is commonly

chosen (see Ref. [1], p. 378) to be of the form

R(t) = (Gct)
ν , (8)

with the growth rate averaged over directions2

G(t) = νGν
c t

ν−1. (9)

Here, R is the averaged radius of a crystallite, the growth
constant Gc and the exponent ν take positive values and
are determined by the growth mechanisms. Note that

the term Gc has a dimension of (length)
1/ν

(time)
−1

.
Taking into account the last equation, one obtains the

volume of the supercritical cluster V (t) = cgR(t)3 =
cg(Gct)

3ν . As a result, the growth law of a supercriti-
cal cluster can be written as

N(tc, t) = Nc + cgρsG3ν
c (t− tc)

3ν , t ≥ tc, (10)

where Nc is a critical cluster size, ρs is a numerical den-
sity of the crystalline cluster and tc is the mean lag-time
for the appearance of a critical cluster. This equation
can be rewritten in the dimensionless form:

N(ξ)

Nc
− 1 =

cgρs(Gctc)
3ν

Nc
(ξ − 1)3ν , (11)

where

ξ =
t

tc
, ξ ≥ 1.

Assuming that Eq. (10) holds to describe the growth of
a supercritical cluster, we obtain equation for the time-
dependent extended volume of a single cluster

vex(tc, t) =
N(tc, t)

ρs
(12)

=
1

ρs

[

Nc + cgρsG3ν
c (t− tc)

3ν
]

.

Further, the simplest model to take into account the
existence of a transient regime on the nucleation rate
consists in assuming that this rate is zero until tc, and
becomes constant hereafter [28, 29]. This corresponds to
a function I(t) given by

I(t) = IsH(t− tc), (13)

2 Generally, clusters can have a distribution of shapes and struc-
tures. Here we use a simplified description in terms of appropri-
ately averaged cluster shapes [27].

where H(t) is the Heaviside step function. By inserting
Eqs. (12) and (13) into Eq. (5), we obtain for nucleation-
growth regime t ≥ tc the following equation:

α(t)

α∞

= 1− exp

{

−IsNc

ρs

[

(t− tc) (14)

+
cgρsG3ν

c

(3ν + 1)Nc
(t− tc)

3ν+1

]}

,

where the normalization factor α∞ indicates the possi-
bility of incomplete crystallization of the parent phase,
0 < α∞ ≤ 1. By analogy with the growth law for a su-
percritical cluster [see Eq. (11)] the last equation can be
also written in the dimensionless form:

α(ξ)

α∞

= 1− exp

{

−IsNctc
ρs

[

(ξ − 1) (15)

+
cgρsG3ν

c t3νc
(3ν + 1)Nc

(ξ − 1)3ν+1

]}

.

When the critical cluster size Nc is much smaller than
the system size, the first (linear) term in the exponent of
Eqs. (14) and (15) can be neglected. Moreover, if the lag-
time tc is negligible in the nucleation and growth kinetics,
then Eq. (14) reduces to the well-known Avrami equation
[Eq. (7)].

IV. RESULTS

A. Critical cluster

The critical cluster size Nc is one of the crucial param-
eters in nucleation theories. Since the critical clusters
are undetectable by the common traditional experimen-
tal tools, especially at the high supercoolings correspond-
ing to a glassy phase, advanced methods must be used to
define the critical cluster size and to clarify the question
about subcritical cluster morphology (see review [30]).
Here one can mention the advanced Köster’s method [31]
and the way based on the accurate study of static struc-
ture factor data [32]. On the other hand, molecular dy-
namics simulations allow one to identify clusters of all
sizes including supercritical solid clusters of the nucle-
ation regime as well as subcritical clusters of the tran-
sient regime. Therefore, the critical cluster size can be
identified, if a method to define correctly the boundary
between these regimes is found.
Yasuoko-Matsumoto method. – A first method for

identifying Nc is based on the consideration of the time-
dependent total number of clusters whose size is larger
than a given value N∗, i.e.

f(N∗, t) =

Nmax(t)
∑

s=N∗

ns(t), (16)

where ns(t) is the time-dependent cluster size distribu-
tion, Nmax(t) = maxs,ns 6=0[ns(t)] is the size of the largest
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Figure 1: (Color online) Main: Time evolution of the total
number of clusters f(N∗, t) with sizes larger than the thresh-
old value N∗. The system is under shear with the strain rate
γ̇ = 0.0001τ−1 at the temperature T = 0.01ǫ/kB . Here N∗

increases by steps of 3 from the top curve with N∗ = 3 to
the bottom curve with N∗ = 47. Inset: Full circles present
the slope of the curves f(N∗, t) at the different values of N∗

in the time range indicated by the vertical lines in the main
figure, corresponding to nucleation regime. The solid line is
the fit by the function s(N∗) = s0 + a exp (−bN∗) with the
parameters s0 = 0.01, a = 0.15 and b = 0.06 (see Fig. 2 in
Ref. [34] for comparison).

cluster at the time t. Obviously, at N∗ = Nc Eq. (16)
defines the total number of supercritical clusters f(Nc, t)
formed at time t, whereas (1/V )∂f(Nc, t)/∂t is the nucle-
ation rate I(t); V is the volume. In the steady nucleation
regime, the rate I(t) = const = Is, defined by the slope of
f(Nc, t)/V , is independent of N∗ for the range of super-
critical clusters, i.e. N∗ ≥ Nc. Note that this is correct
only if the cluster growth rate is independent of time and
size. As a result, the time-dependent curves f(N∗, t) at
different N∗ ≥ Nc must be simply shifted and have the
same slope for the steady nucleation regime. This reg-
ularity will appear in the vicinity to the critical cluster
size Nc [33].

To test the suitability of this method for extraction of
the critical cluster size Nc, we compute f(N∗, t). The
time evolution of f(N∗, t) at the different threshold val-
ues of N∗ is shown in Fig. 1. As expected, the curves
shift in t with the increase of N∗. A linear growth in
the nucleation regime (marked one in the main figure)
is observed for all the cases including the case with ex-
tremely small threshold value N∗ = 3. At the same time,
the expected regularity that would indicate the indepen-
dence of the f(N∗, t)-slope on N∗ is never observed (see
inset of Fig. 1). Instead, we find that the dependence of
the slope on N∗ is well fitted by an exponential decay
[34]. Therefore, we conclude that in the present case, the
method does not allow one to find explicitly the values
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Figure 2: (Color online) Mean first-passage time distributions
multiplied by the corresponding strain rates. The system is at
the temperature T = 0.01ǫ/kB . (a) Circles correspond to MD
simulations data as averaged over set of 50 independent runs
at the strain rate γ̇ = 0.008 and 0.01τ−1. Solid lines are their
fit to Eq. (18). Dashed lines mark for both cases the critical
cluster size defined through the location of the inflection point
of the fitting curves. (b) MD simulations data at the different
strain rates γ̇ ∈ [0.000 1, 0.01]τ−1.
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Figure 3: (Color online) Growth of the largest cluster
with the strain γ = γ̇t at the different strain rate γ̇ ∈

[0.000 1, 0.01]τ−1 and the temperature T = 0.01ǫ/kB . The
strain rate grows from left to right for a plot. Dashed line
corresponds to the value 20. Full circles indicate the critical
cluster sizes defined as described in the text.

of the critical cluster size Nc. On the other hand, such
a behavior of f(N∗, t) can arise because both nucleation
and growth take the comparable time scales [35], and
the growth rate is a time- and size-dependent. In that
case, a supercritical cluster is growing by a single-particle
attachment as well as by a cluster coalescence, where a
larger cluster merges with a smaller one.
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Figure 4: (Color online) Cluster growth curves of a sheared system at the temperatures T = 0.01, 0.03 and 0.06ǫ/kB and the
different strain rates (solid lines) rescaled according to Eq. (11) onto the critical cluster size Nc and the lag-time tc. Full dots
present the parabolic fit A(ξ − 1)2, where A = 1.7 ± 0.3.

Mean first-passage time method. – This method fo-
cuses on the evolution of the largest cluster with the aim
to define the average time of first appearance of a cluster
with size N (see Refs. [37, 38]), i.e.

τ (N) =
1

M

M
∑

i=1

τ
(i)
N , (17)

where τ
(i)
N is the time of the first appearance of the N -

sized cluster after a single run and M is the total number
of runs, i = 1, 2, 3, . . .M . If the nucleation is followed by
fast cluster growth, the τ (N) has a pronounced sigmoidal
form and can be fitted by

τ(N) = tc[1 + erf((N −Nc)c)], (18)

where erf(. . .) is the ordinary error function, c defines
the curvature and is related to the Zeldovich factor
Z = c/

√
π [36]. Then, the critical cluster size Nc can

be simply defined by the position of the inflection point
in MFPT [38], which indicates the onset of stable clus-
ter growth, whereas the term τ (Nc) will characterize the
mean lag-time tc for the appearance of a critical cluster.
It is important to note that if the transient regime is in-
significant and the transition is characterized by steady-
state nucleation mainly, then MFPT method allows one
to estimate the nucleation rates directly as an inverse
height of plateau in MFPT divided by volume [37, 38].
Figure 2 shows MFPT distributions averaged over set

of independent runs, where each curve corresponds to

a fixed temperature and strain rate. Although a fit of
Eq. (18) to the data is suitable and the plateau in MFPT
is observable for all cases [Fig. 2(b)], the position of the
plateau is difficult to locate accurately [Fig. 2(a)]. Such a
behavior indicates once again the possible non-stationary
character of the cluster nucleation-growth process and
that nucleation and growth occur at the comparable time
scales [35]. Nevertheless, as can be seen from Fig. 2(a),
the inflection point in MFPT distributions, which is as-
sociated with the critical cluster size Nc and the lag-time
tc, is well-defined.

B. Cluster growth

Figure 3 shows the growth curves of the largest
cluster in the system under shear, for strain rates
γ̇ ∈ [0.000 1, 0.01]τ−1, and at a low temperature T =
0.01ǫ/kB. It is seen from the figure that all the curves
indicate a steady growth for a cluster with size larger
than N = 20 particles. Therefore, the threshold value
of a cluster size, associated in CNT with a critical clus-
ter size Nc, at which the steady growth starts, must be
relatively small. The values of Nc defined by means of
MFPT method are also presented in Fig. 3. These small
values of Nc are qualitatively in agreement with CNT,
which predicts a decrease of the critical cluster size with
the supercooling. Another interesting observation is re-
lated with the existence of a transient regime, which pre-
cedes the nucleation and growth processes and causes
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the delay of the cluster growth. The transient regime
can be characterized by the lag-time tc, which defines
the time required for the appearance of a critical sized
cluster [28, 33]. Hence, the shift of the growth curves,
observed in Fig. 3, indicates directly a γ̇−dependence of
the lag-times. We note that the similar growth curves are
also observed for the cases with T = 0.03 and 0.06ǫ/kB.
Growth laws of the largest cluster at various strain

rates and temperatures are presented in Fig. 4, using the
scaling form described by Eq. (11). First, as can be seen,
all curves for the fixed temperature are collapsed onto a
single master curve, which indicates the universal char-
acter of the growth kinetics. Moreover, the master curve
is very well fitted by Eq. (11) with the growth exponent
ν = 2/3 and the factor cgρs(Gctc)

2/Nc = 1.7 ± 0.3 for
all considered temperatures. Both parameters appear to
be T -independent for the temperatures we have studied.
On the other hand, it appears that the growth constant
Gc correlates with the lag-time tc and the critical cluster
size Nc, and so we have

Gc ∝
1

tc

√

Nc

cgρs
. (19)

Taking into account that ν = 1 for 3D uniform crystalline
growth controlled by interface transfer, the smaller value
of the growth exponent, ν = 2/3, can reflect the influ-
ence of shear on the growth mechanism, where the corre-
sponding cluster growth is considered as an averaged one
over directions. Note that a crystal growth law ∝ t3ν

with a small exponent 3ν = 1, was observed in the diffu-
sion wave spectroscopy “echo” experiments for colloidal
glasses under shear of Ref. [18]. While we do not have
any theoretical explanation for the empirical correlation
(19), this correlation is clearly associated with the influ-
ence of shear on the kinetic aspect of the nucleation and
growth process. The growth constant Gc is defined by
a particle attachment frequency, whereas the lag-time tc
characterizes shear-induced “unjamming” of the glassy
system [12].

C. Crystallization kinetics and nucleation rates

We now come to a discussion of the crystallization
kinetics of the glassy system under strain. The time-
dependent crystalline phase fraction α(t), as resulting
from cluster analysis applied to our simulation data at
three fixed temperatures T = 0.01, 0.03 and 0.06ǫ/kB
and four fixed values of the strain rate γ̇, is presented
in Fig. 5. The data for each case presented in the fig-
ure is the result of averaging over a set of independent
runs. One can see from the figure, that the evolution
of the crystal fraction is characterized by three distinct
regimes, in analogy with the transition without external
drive. In the first regime the crystalline fraction is prac-
tically negligible. The characteristic time scale for this
stage is defined by the time elapsed between the system
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Figure 5: (Color online) Time evolution of the crystalline
fraction at temperatures T = 0.01, 0.03 and 0.06ǫ/kB and for
different strain rates. In all plots, each curve corresponds to a
fixed value of γ̇ = [0.05, 0.001, 0.005, 0.0001]τ−1. The strain
rate grows from right to left for a plot. The circles are results
obtained from simulations, solid curves present the fits with
Eq. (14). For clarity, the curves are presented only for four
values of strain rate from the seven considered.
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Table I: Parameters of the crystallization kinetics: the system temperature T , the strain rate γ̇, the critical cluster size Nc, the
lag-time tc, the product of cluster growth characteristics cgρsG

2

c and the crystallization factor α∞. The numerical density of
the amorphous phase is ρam = 0.85σ−3 and of the crystalline fcc phase is ρc = 1.09σ−3.

T (ǫ/kB) γ̇ (τ−1) Nc tc (τ ) cgρsG
2

c (10−5τ−2) α∞

0.01 0.000 1 10± 1 1 400± 350 0.8 0.77± 0.01
0.01 0.000 5 11 310± 10 19.4 0.68± 0.01
0.01 0.001 15 235 ± 5 46.1 0.68± 0.01
0.01 0.002 20± 1 195 ± 5 84.4 0.69± 0.01
0.01 0.005 21± 2 200 ± 6 89.3 0.69± 0.01
0.01 0.008 19± 1 215 ± 2.5 69.7 0.7± 0.01
0.01 0.01 16± 1 280 ± 5 34.6 0.7± 0.01

0.03 0.000 1 9 850± 150 2.1 0.77± 0.02
0.03 0.000 5 13± 1 298 ± 6 24.8 0.71± 0.01
0.03 0.001 15± 1 235 ± 5 46.1 0.77± 0.01
0.03 0.002 21± 2 195 ± 5 93.9 0.76± 0.01
0.03 0.005 20± 2 176± 10 109.6 0.75± 0.01
0.03 0.008 18± 1 178 97.0 0.78± 0.02
0.03 0.01 15± 1 179± 15 79.5 0.75± 0.01

0.06 0.000 1 9 835± 35 2.2 0.7± 0.01
0.06 0.000 5 13± 1 294 ± 6 25.5 0.73± 0.01
0.06 0.001 14± 1 235 ± 5 43.0 0.74± 0.01
0.06 0.002 16± 1 190 75.2 0.74± 0.01
0.06 0.005 18± 1 158 ± 8 122.4 0.72± 0.01
0.06 0.008 15± 1 150 113.3 0.68± 0.02
0.06 0.01 14 165± 10 87.4 0.75± 0.02
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Figure 7: (Color online) Main: Nucleation rate isotherms as
function of the strain rate γ̇ at the temperatures T = 0.01,
0.03 and 0.06ǫ/kB . Full symbols depict the data extracted
from crystallization kinetics; open symbols present the results
obtained according to Yatsuoko-Matsumoto method. The
short solid line indicates the unit slope. Inset: Inverse lag-
time vs. strain rate at temperatures T = 0.01, 0.03 and
0.06ǫ/kB . The correspondence between curves and tempera-
tures is the same as in the main figure.

quench and the formation of a critical cluster. The sec-
ond regime corresponds to the growth of the crystalline
fraction. Finally, in the third regime, the crystalline
growth is essentially terminated, and the small increase
appears due to coarsening and defect removal processes
[11]. Moreover, Fig. 5 shows the fit of these results by the
theoretical model (14) presented in Sec. III. Only two ad-
justable parameters, α∞ and Is, are needed to reproduce
simulation results for all considered cases, as the values
of all other terms included in Eq. (14) are known from
the cluster growth curves discussed above. It is clear that
the parameter α∞ defines the final part of the crystallized
fraction and, thereby, can be found from the final plateau
of α(t). Then, if theoretical model (14) is capable to re-
produce the data, then we obtain within such a model
an additional tool to extract the steady-state nucleation
rate Is from crystallization kinetics data3.

As can be seen from Fig. 5, an excellent agreement be-
tween the molecular dynamics simulation data and the
model (14) is obtained for all considered temperatures
and values of the strain rate γ̇. The growth exponent
ν was taken as 2/3, the product cgρsG2

c , the lag-time tc
and the critical cluster size Nc were used immediately as
found from cluster growth analysis [see Table I]. More-

3 A similar method was used in Ref. [28] to estimate the growth
and nucleation rates.
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over, from Fig. 5, the values of α∞ do not saturate to
unity. This indicates incomplete crystallization of the
glassy system, ∼ 65÷ 70% of the bulk, and represents a
consequence of the shear drive. Note, that a similar ef-
fect was observed by Rottler-Srolovitz for shear-induced
alignment in polycrystalline bilayer systems, although
the final ordered fraction was found to be less than in
our case [39].
The slope of α(t) in the nucleation-growth regime ap-

pears to be the same for all the considered shear rates
and temperatures, indicating the universal character of
the crystallization kinetics. In Fig. 6, the rescaled curves
for α(t) according to Eq. (15) with the extracted val-
ues of the parameters are presented. As can be seen,
the rescaled data generate a unified master curve, well
described by the scaling form [Eq. (15)]. So, crystalliza-
tion kinetics of the system is defined by the time scales
responsible for crystal nucleation and cluster growth, re-
spectively. This has a similarity with results of Cavagna
et al. for a lattice spin system [40, 41], where at low tem-
peratures the fast nucleation of small and stable crystal
droplets followed by slow activated crystal growth.
Fig. 7 shows the γ̇-dependence of the nucleation rate Is

at fixed temperatures. In this figure, the data obtained
from the evolution of crystallization kinetics within
Eq. (15) are compared with the results of Yatsuoko-
Matsumoto method at the known critical cluster size.
Remarkably, both methods yield a very close behav-
ior and reveal the same features for all the considered
cases. As can be seen, Is(γ̇) at the constant tempera-
ture is nonmonotonic. Namely, the nucleation rate Is
increases linearly at low strain rates. Then, at the val-
ues γ̇ = 0.2τ−1 ÷ 0.8τ−1 the nucleation rate levels off
and reaches a maximum. On further increase of γ̇ nu-
cleation rate starts to decrease. Interestingly, a similar
γ̇-dependence was earlier found by us for the phase trans-
formation rate of the system [12]. Results similar to those
shown in Fig. 7 have also been observed for steady-state
nucleation rate measurements against shear rate in very
different systems, including an industrial polydisperse
isotactic polypropylene melt [20] and a two-dimensional
Ising model [16].
To understand the observed nonmonotonic behavior of

Is(γ̇) we also consider the values of the product cgρsG2
c

and of the lag-time tc presented in Table I [the inverse
lag-time vs. the strain rate is also shown in the inset of
Fig. (7)]. As can be seen, both quantities correlate di-
rectly with nucleation rate, with a very similar nonmono-
tonic variation. The rise of nucleation rate is therefore
accompanied by the increase of the cluster growth and
by the reduction of the time scale for transient regime
and, vice versa, the decrease of nucleation rate occurs
at retarding the cluster growth and increasing the lag-
time scale. Such a correlation indicates directly that the
changes in the nucleation rate are essentially a kinetic,

rather than thermodynamic effect.
Recently, the similar nonmonotonic behavior of nucle-

ation rate vs. strain rate for a driven two-dimensional
Ising model was revealed in Ref. [16]. The authors had
related the observed behavior with an interplay between
shear-enhanced cluster growth, cluster coalescence and
cluster breakup. It was additionally found in Ref. [16]
that shear-enhanced cluster coalescence and monomer at-
tachment (single spin flip growth in Ising model) give the
similar impact in the total ordering. Results of our study
indicate rather that cluster growth and nucleation pro-
cesses are merely correlated and their features are defined
by kinetics of the transition. At the same time, a weak
γ̇-dependence observed for the critical cluster size [see
Table I] reflects the influence of shear drive on the par-
ticle cohesion in a crystalline nuclei due to mechanical
stresses.

V. CONCLUSION

In summary, we have performed nonequilibrium molec-
ular dynamics simulations to study crystal nucleation
and growth processes induced by shear drive in a metal-
lic glass for a range of temperatures and strain rates.
By applying a mean first passage time analysis, we de-
fine the size of a critical cluster and the time scale of
its appearance. We find that the nucleation-growth pro-
cess has a non-stationary character, and the crystalline
cluster grows with a time- and size-dependent rate.
To describe the crystallization kinetics under shear ob-

served in our simulations, the extension of the KJMA
theory is suggested and compared with simulation data.
As a result, an excellent agreement is obtained for all
the considered cases. Further, we find that data for time
evolution of the crystalline fraction at particular values of
strain rates can be rescaled within this theoretical model
to give an unified master curve.
The observed nonmonotonic behavior of the nucleation

rate J on the strain rate γ̇ at the fixed temperatures is
very similar with that was recently reported for the case
of a two-dimensional Ising model under shear [16]. This
behavior of J indicates directly that shear drive can speed
up as well as suppress nucleation in a glass. Finally, we
find that nucleation rate, lag-time and cluster growth are
affected by the shear in a very similar and correlated way.
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