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2 allée Képler, 77420 Champs-sur-Marne, France

1





Abstract

The last decade has seen major progresses in studies of elementary mechanisms of
deformation in amorphous materials. Here, we start with a review of physically-based
theories of plasticity, going back to the identification of “shear-transformations” as
early as the 70’s. We show how constructive criticism of the theoretical models per-
mits to formulate questions concerning the role of structural disorder, mechanical
noise, and long-ranged elastic interactions. These questions provide the necessary con-
text to understand what has motivated recent numerical studies. We then summarize
their results, show why they had to focus on athermal systems, and point out the
outstanding questions.

0.1 Introduction

Rheology and plasticity, although they both investigate the flow of solid materials, are
generally considered as two separate fields of materials science. Plasticity deals with
the deformation of ”hard” solids, characterized by large elastic moduli (typically in
the GPa range). Rheology, on the other hand, deals with much softer materials, such
as colloidal pastes, foams, or other ”complex fluids”(Larson, 1999) with moduli that
can vary from a few Pa to kPa. In view of these differences, the experimental tools
used to investigate the flow of hard and soft materials are widely different, whether
they are mechanical or involve more indirect microscopic characterizations.

Still, if one temporarily forgets about the differences in the scale of stress levels,
striking similarities appear in the behavior of these different materials, as illustrated
schematically in figure 0.1. The differences in stress scales are indeed easily understood
in terms of the interactions. The scale for elastic moduli is an energy per unit volume.
In hard materials, typical energies will be in the range 0.1-1eV, and the typical length
scales are of order of nanometers, or even smaller. In softer materials, the energy scale is
often comparable to kBT , and length scales of the order of a tenth of a micron. Finally,
the case of foams corresponds to a stress scale set by the surface tension γ divided by
the typical bubble size. It is not excluded, that common physical properties can be
found in such widely different systems, if the proper elementary units are considered
and the appropriate rescaling are made.

In terms of ”reduced” parameters, however, the experimental conditions may cor-
respond to very different ranges for the various systems investigated. For example, a
foam or a two dimensional ”bubble raft” is essentially always athermal (the thermal
fluctuations are irrelevant compared to the energies involved at the scale of individual
bubbles) so that it should be compared to metallic or polymer glasses at low tem-
peratures. On the other hand, a not too dense colloidal system at room temperature,
in which thermal fluctuations are significant, could be compared to systems close to
their glass transition temperature. The same type of considerations applies to time
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scales and their comparison with the applied deformation rates, which have a strong
influence on the stress-strain curve, as sketched in figure 0.1. Typically, the stress peak
σmax shown in this figure tends to display a logarithmic increase with the deformation
rate ǫ̇ and, when ageing is observed, with the age tw. of the system.

In this chapter, we will limit our considerations to noncrystalline, amorphous ma-
terials. In crystalline materials, flow can be described in terms of dislocation motion,
and although the interaction between these extended defects may lead to a macro-
scopic behavior similar to that of amorphous materials (Miguel and Zapperi, 2006),
the underlying microscopic physics is different. For amorphous materials it will be
shown that flow defects, if they exist, are localized rather than extended. We will also
exclude from our considerations the case of real granular materials, that raise several
complications such as the importance of gravity and that of friction. However, we will
mention some simulation works that are dealing with idealized, frictionless grains in
the absence of gravity.

Why is a chapter on sheared materials included in a book on dynamical hetero-
geneities ? The standard plasticity or rheology approach is based on macroscopic con-
stitutive equations, established using symmetry arguments (Lubliner, 2008). These
equations relate the stress and strain (or strain history) in the system, within a fully
homogeneous, continuous medium description. However, the notion of dynamical het-
erogeneities naturally emerges when one attempts to reach an understanding of the
microscopic mechanisms that underly the macroscopic behavior. Is it possible to iden-
tify microscopic heterogeneities, that would in some respects play the role assigned to
dislocations in the flow of crystalline materials ? What governs the dynamical activity
of such heterogeneities, what are their interactions and correlations, and do they or-
ganize on larger scales? From the pioneering experiments of Argon (Argon and Kuo,
1979) emerged the notion of ”shear transformation zones”, a localized (in space and
time) region of material in which the plastic activity takes place (Argon, 1982). Such
local yield events have been very clearly identified in experiments on bubble rafts, in
colloidal systems (Schall et al., 2007), as well as in various atomistic simulations of
low temperature deformation (see e.g. (Falk and Langer, 1998,Maloney and Lemaitre,
2006,Tanguy et al., 2006)). They are now believed to constitute the elementary con-
stituent of plastic deformation in amorphous solids at low temperature. However, their
cooperative organisation is far from being understood, although a number of models
based of this notion of elementary event have been developed and studied analytically
at the mean field level or numerically. The discussion of these microscopic, dynamical
heterogeneities will be the core of this chapter.

Another, very different aspect that escapes the purely macroscopic description of
flow is the frequent experimental observation that strain in solid materials can take
place in a very heterogeneous manner at the macroscopic level. This phenomenon,
described as the existence of ”shear bands” or ”strain localisation”, takes place both
in hard and soft materials, under various conditions of deformation. Instead of being
evenly distributed and uniform through the system (affine deformation), the defor-
mation is concentrated inside a localized region of space, typically a two dimensional
”shear band” with a finite thickness. Within such shear bands that concentrate the
whole macroscopic deformation, the local strain becomes very large in a short time,
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eventually leading to material failure for hard materials. In soft materials, that, in
contrast to hard materials, can sustain steady flow when strained in a pure shear (Cou-
ette) geometry, shear bands can become permanent features of the steady state flow
and coexist with immobile parts of the same material. While shear bands are clearly
macroscopic features of the flow, understanding the mechanism of their formation and
stability necessitates the introduction of auxiliary state variables and associated length
scales, which in turn could be related to the existence of flow heterogeneities at smaller
scales. These aspects will be discussed further in section 1.2.7.

We mention to close this introduction that the focus of our paper will be on simple
shear deformation. In most materials, it is expected that the study of such deformations
will allow one to unveil the mechanisms of plasticity in more complex situations, as
the plastic deformation proceeds with little or no densification. This is true in metallic
glasses or soft condensed system, where plastic deformation often takes place at almost
constant volume, but less in network materials with a lower Poisson ratio, where
densification and shear deformation are observed simultaneously (Rouxel et al., 2008).

0.2 Theoretical background

0.2.1 Macroscale

Plasticity at the macroscale. Many tests have been developed to characterize
plastic behavior. They involve deforming a piece of material under various condi-
tions: constant stress, constant or oscillatory strain-rate, step stress or strain,... while
measuring the response using appropriate observables. Typical stress responses, for a
material loaded at constant strain-rate, are depicted in Figure 0.1. When the strain is
vanishingly small, the material responds elastically. As strain increases, plasticity pro-
gressively sets in and the stress smoothly rounds off. This transient response obviously
depends on the evolution of the internal state of the system during loading, hence on
sample preparation and loading rate. Further increase of strain may be accompanied,
in some circumstances, with the onset of an instability, as deformation localizes along
shear bands and leads the material to failure. When this instability can be avoided,
however, stress reaches a steady state plateau value.

In general, it is difficult experimentally to achieve situations in which the flow is
truly uniform: external driving must always be applied at boundaries, so that ma-
terial flow must be inhomogeneous to adapt to these conditions (a exception is the
flow of a Newtonian fluid in plane Couette geometry). So, real material flows are al-
ways inhomogeneous, and one often speaks of “localization” in this context, even to
describe a steady state flow. This acception of “localization” is most often found in
rheology, as typical experimental set-ups, such as the Couette cell necessarily lead to
flow profiles which are inhomogeneous (Coussot, 2005). “Localization” in also used in
another context, for example, in experiments on “hard” glasses (Schuh et al., 2007),
when it refers to an instability which is not directly associated with the macroscopic
stress inhomogeneity and can only be observed during transient as it leads to failure.
Whether these two forms of localization are related remains an open questions.

Constitutive equations. One goal of theories of plasticity is to provide a macro-
scopic description of the deforming medium, analogous to the Navier-Stokes equations
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Fig. 0.1 Top left: schematic illustration of a stress strain curve for the plastic deformation

of a solid material. The three curves correspond respectively to ideal elastoplastic behavior,

a metallic and a polymeric system at finite strain rate. The strain hardening part at large

strain is specific of polymer systems. Top right: schematic illustration of a flow curve for a

soft material; the dotted line is the Newtonian fluid case, the low strain rate limit of the full

curve corresponds to the yield stress. Bottom: actual response of a simulated strained glass at

low temperature. Note the large stress fluctuations, that are associated with the finite size of

the sample. The stress variations are also shown. The zoom on the elastic part at low strain

shows that small plastic events are also observed in this part. Adapted from (Tanguy et al.,

2006)

for Newtonian fluids. As illustrated in Figure 0.1, plastic materials exhibit significant,
preparation or age-dependent, transients in which stress does not match its steady
state value. Proper account of either transient response or of instabilities of the steady
inhomogeneous flow must rely on a description of how the internal state of the system
depends on loading history. This entails identifying variables to properly characterize
the material state and providing constitutive equations to complement the relevant
conservation equations (momentum, but also possibly density or energy). The search
of constitutive equations often rests on the idea that it is possible to provide a local and
instantaneous representation of the material state, that is to describe its response in
terms of relations between local quantities (such as stresses, strains, energy, density,...)
and their derivatives.

The introduction of internal state variables is also a necessity if one wants to
study localization, or instabilities in the material response. For example, it was shown
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that constitutive equations which are approximated (grossly) by their steady state
stress/strain-rate relation lead to instability criteria which are rudimentary, and that
internal variables have to be introduced to capture couplings of the material response
with other degrees of freedom such as elasticity (Rice and Ruina, 1983). Situations
when the plastic response is unsteady play a critical role in the identification of relevant
state variables. Localization thus attracts a considerable amount of interest not only
for its practical importance, but also for the theoretical implications of identifying the
proper variables governing its development.

State variables for localization. One most obvious state variable is temperature.
Clearly, it is expected to increase due to plastic activity when a material is strained
under adiabatic conditions. Its role in localization has thus been the subject of a long-
standing debate in the metallic glass community (Schuh et al., 2007). Some defend
that localization could be due to local heating and should be treated by introducing
thermal dependence in the stress/strain rate relationship, plus energy conservation
equations. The consensus, however, now is that this argument fails because the dissi-
pated energy due to plasticity is evacuated too fast (Schuh et al., 2007). Other features
of material response, such as localization or the peak stress, depend sensitively on age
at time scales which are completely separated from those of thermal exchanges. These
observations rule out the role of thermal inhomogeneities in most cases.

A model proposed recently to account for shear banding or fracture focusses on
compressibility and density fluctuations (Furukawa and Tanaka, 2006). Like the ther-
mal theories of localization, it is based on a purely macroscopic description. It assumes
that (i) the flow is Newtonian and (ii) stresses always assume their steady-state val-
ues. The values of shear stress and pressure are thus provided by simple steady state
equations, function of strain-rate and density, and localisation is in a sense a kinematic
effect. The proposed scenario involves a strong density dependence of the viscosity on
density or pressure. As a result, a density fluctuation (which is usually neglected in the
description of incompressible flows) results in a local decrease of the viscosity, which
in turn increases the local shear rate and an amplification of the fluctuation. A linear
stability analysis of the Navier Stokes equation under these conditions shows that for
shear rates larger than (∂η/∂P )−1, large wavelength density fluctuations at 45 degrees
from the flow direction become linearly unstable. This leads to amplification of density
fluctuations and potentially to material failure.

Similar arguments have been used to describe the coupling between density fluctu-
ations and rheology in polymer solutions (Helfand and Fredrickson, 1989) This type
of scenario predicts that strain localisation only operates above a critical strain rate,
whereas experiments on metallic glasses clearly show that localization, in the low tem-
perature regime is a phenomenon which occurs when the strain rate lies below a critical
value (Schuh et al., 2007). It thus seems that the localization they would predict is
different from the phenomenon which is discussed in metallic glasses at low strain
rates.

Discussion. These difficulties emphasize usefully the problems met when formu-
lating theories of plasticity. It seems unlikely that a description involving only the
usual thermo-mechanical observables (stress, pressure, temperature) can be sufficient.
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We know indeed that these variables do not provide a complete representation of the
internal structure of glasses, the dynamics of which, even in the absence of stress, in-
volves hopping in potential energy landscape (PEL) (Stillinger, 1995,Debenedetti and
Stillinger, 2001), over distributed energy barriers (Doliwa and Heuer, 2003a, Doliwa
and Heuer, 2003b, Doliwa and Heuer, 2003c). Deformation complicates the picture
as it competes with relaxation (Utz et al., 2000) and constantly “rejuvenates” the
glassy structure. The question is thus, using a few dynamical equations involving a
limited set of state variables, to be able to describe the response of a glass driven
out-of-equilibrium by external deformation. To describe the transient stress response
upon loading, as exemplified in Fig. 0.1, we would also have to be able to describe the
state of the glass which is produced by annealing in terms of variables that can be
introduced in a description of plastic response.

The description of flow in amorphous solids that will be presented in the following
is essentially based on ideas from elasticity theory, and therefore starts on the low
temperature, solid side of the glass or jamming transition. We mention briefly here
another alternative approach, the mode-coupling approach of Fuchs and Cates (Fuchs
and Cates, 2002). Let us remind that the mode coupling approach to dense liquids
involves a nonlinear feedback mechanism, in which the relaxation dynamics of a given
density fluctuation at some wavevector k s is coupled to that of all other fluctua-
tions at different wavevectors. This feedback leads to structural arrest – i.e. absence
of relaxation and apparition of a frozen structure – at some finite density and tem-
perature. The effect of shear described by Fuchs and Cates is the advection of density
fluctuations, in such a way that the coupling that leads to this non linear feedback
weakens with time, and that a relaxation eventually results. A dynamical yield stress
is obtained as the zero hear rate limit of the stress under steady shear, which turns
out to be non zero for high density, strongly coupled systems that the theory predicts
to be in a nonergodic state at zero shear. The theory was elaborated by Brader and
Fuchs (Brader et al., 2008), and predicts rheological behavior that is in very reason-
able agreement with experimental observations on colloidal glasses, together with a
prediction of the deviation from equilibrium fluctuation-dissipation theorem. However,
this mode coupling description has not been extended, up to now, to the description
of dynamical heterogeneities.

0.2.2 Local Inelastic Transformations

In crystals, the mechanisms of plastic deformation involve the motion and generation
of dislocations, which are a class of topological defects of the periodic structure. The
possibility to identify and precisely define the objects responsible for irreversible defor-
mation has played and continues to plays a key role in formulating phenomenologies
and constructing governing equations for crystalline plasticity. In contrast, the state
of knowledge on amorphous systems lies far behind, because the elementary objects
governing the plastic response remain quite difficult to pinpoint.

Most modern theories of plasticity are based on the idea, proposed by Ali Argon in
the late 70’s (Argon, 1979), that macroscopic plastic deformation is the net result of an
accumulation of local, collective, rearrangements of small volume elements–typically
5-10 particules in diameter. Initially corroborated by the observation of flow in a
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bubble raft (Argon and Kuo, 1979), this idea is now firmly supported by numerical
simulations (Argon et al., 1995,Falk and Langer, 1998,Maloney and Lemaitre, 2004b,
Maloney and Lemaitre, 2004a,Maloney and Lemaitre, 2006,Tanguy et al., 2006), and
by a recent experiment (Schall et al., 2007).

In contrast with crystals, however, the notion of rearrangements (also called “lo-
cal inelastic transformations”, “shear transformations”, or “(zone) flips”) refers to a
process, not to a specific type of defect. Means have been devised to identify “zones”
before they flip, via measurements of particule displacement fields, (Lemaitre and Car-
oli, 2007) or of local elastic moduli (Yoshimoto et al., 2004,Tsamados et al., 2009), but
these observations can be unequivocally correlated with rearrangements only rather
close to yielding, and there is no consensual prescription to identify a priori the loca-
tions (the “zones”) where flips occur. Of course, it seems reasonable to infer that there
should be some specific features of the local packing, which make these transformations
possible–and are probably related to the fluctuations of local thermodynamic quanti-
ties such as energy, stress, or density (free-volume). Many terms have been coined to
reflect this notion–“flow defects”, “τ -defects”, or more recently “shear transformation
zones” (STZ)–but what is precisely a zone, how could they be identified before-the-
fact, remain largely open questions.

This idea does not imply that only shear transformations exist, neither that each
rearrangement is a pure shear event. Rearrangements may involve some local changes
of volume too, and some theories–such as free-volume approaches–may attempt to take
this into account. Occurring at a very local scale, rearrangements are also inevitably
broadly distributed. But in view of constructing a theory of stress relaxation, it is the
net effects of local contributions to shear strain which clearly matters.

0.2.3 Activation Theories

Activation theories attempt to describe plasticity as the net result of independent
shear transformations, which are supposed to be rare events, the occurrence of which
is controlled by thermal activation. It is thus assumed that the system spends most
of its time near local equilibria: clearly, this picture belongs to a low temperature
region, when the dynamics in PEL would be described by unfrequent hops between
local minima. With these postulates, constitutive equations require a specification of
transition rates (function of energy, density, stress) governing the rearrangements.

Eyring’s theory. The simplest form of such an activation theory of material flow
dates back to the works by Eyring, and was initially intended to account for the
viscous behavior of liquids (above Tg). In Eyring’s view, flow proceeds by the motion
of single molecules into holes left open by neighboring ones. This obviously misses the
possibility that elementary events are in fact collective, but Eyring introduces several
assumptions which are still quite fundamental to the field and useful to keep in mind
as a reference.

He first assigns a typical value E to the energy barrier that must be overcome to
allow such hops–it is, in his view, the energy needed to create a hole–and observes that
various types of hops are possible, which can either increase or reduce the macroscopic
stress. He then restricts his description to two types of opposite moves, contributing to
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Fig. 0.2 Top: schematic illustration of a force quadrupole that corresponds to the theoretical

description of shear transformation zones (left), and its Eshelby stress field. Bottom, from left

to right: displacement field, stress response, and energy change associated with a localized

plastic event, as observed in the quasistatic simulations described in section 0.3. Figures

adapted from refs (Picard et al., 2004,Maloney and Lemaitre, 2004b,Tanguy et al., 2006).

elementary strains of opposite signs ±∆ǫ0, so that the macroscopic strain-rate takes
the form:

γ̇ = ∆ǫ0 (R+ −R−) (0.1)

with R± the rates of forward and backward moves. They are estimated assuming that
the work of the external stress corresponding to ± hops over activations barriers:

R± = ω0 exp(−E±/kT ) (0.2)

with ω0 a microscopic frequency. Eyring assumes stress induces a linear bias between
energy levels, so that the barrier depends linearly on σ: E± = E0 ∓ σΩ0, with Ω0 an
“activation” volume. This leads to writing the stress/strain-rate relation as:

γ̇ = 2ω0∆ǫ0 exp

(

−
E0

kT

)

sinh

(

Ω0σ

kT

)

(0.3)

Of course, the linearisation of this relationship for small stresses leads to Newtonian
behavior, with an Arrhenius viscosity. At large σ, it is customary to keep only the
dominant exponential term and write stress as:

σ =
kT

Ω0

ln (τ0(T )γ̇)

with τ0(T ) = exp
(

E0

kT

)

/ω0∆ǫ0.
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Argon’s theory. Eyring’s formulation relied on a representation of deformation in
terms of hops of single atoms of molecules, instead of collective motions. Early repre-
sentations of plasticity addressed this issue while borrowing from the main frame of
Eyring’s works, and in particular the idea that the linear viscous behavior arises from
a balance between forward (stress releasing) flips and a “back flux”. In order to take
into account the collective character of elementary transitions, Argon (Argon, 1979)
argues that the shear zones can be viewed as inclusions which are elastically coupled
to the surrounding medium, and postulates that a flip occurs when a zone elastically
deforms up to some critical strain, in the range of ∼ 2− 4%, at which it becomes un-
stable. The calculation borrows from Eshelby’s works on martensites (Eshelby, 1957),
which offers an analytical framework to estimate the total change in elastic energy due
to a change in the internal strain state of an inclusion.

The question is how to take into account the fact that the average stress level biases
the elastic potential of a zone. At high temperatures, Argon computes the stress bias at
linear order, like Eyring, leading to an expression similar to (0.3). At low temperatures,
he performs an imposing treatment of the elastic problem, to arrive at a perturbative,
second order, estimate of the effect of stress on the minimum where the system resides.
It leads to an expression of the form (Argon, 1979):

E+ ∝

(

1−
σ

σc

)2

(0.4)

where σc = µ(T )ǫc is a typical scale of the shear stress needed to reach the yield point
ǫc. Using equations (0.1), (0.2) and neglecting the back-flux, equation (0.4) leads to

a stress/strain-rate relation of the form: σ − σc ∝ − (T ln (∆ǫ0 ω0/γ̇))
1/2

. The main
interest of this theory is that it captures important features of experimental data on
metallic glasses, in particular, (i) an apparent singular behavior in the low-T limit,
and (ii) the weak γ̇ dependence over a broader range of temperatures (Schuh et al.,
2007).

One main limitation of this approach is that it treats perturbatively–at second
order–the effect of stress on the elastic potential of a shear transformation zone. This
approach must break down if the stress level is sufficiently large to bring a zone near
instability, as the system then approaches a catastrophe. There is indeed evidence
from numerical simulations that deformation-induced instabilities correspond to a
saddle node bifurcation (Malandro and Lacks, 1997,Malandro and Lacks, 1999,Mal-
oney and Lemaitre, 2004a). The energy barrier near instability is thus of the form

E ∝ (1− σ/σc)
3/2 which, after insertion in equations (0.1) and (0.2) would lead to

a stress/strain-rate relation of the form: σ − σc ∝ − (T ln (∆ǫ0 ω0/γ̇))
2/3

. Already
formulated by Caroli and Nozières (Caroli and Nozières, 1996) in the context of dry
friction, this argument was brought up recently by Johnson and Samwer (Johnson and
Samwer, 2005) for metallic glasses, and successfully compared with experimental data.

Discussion. A first objection which should be made against these activation the-
ories is that they treat flips as uncorrelated events. As Bulatov and Argon first
noted (Bulatov and Argon, 1994b, Bulatov and Argon, 1994c, Bulatov and Argon,
1994d), however, each rearrangement creates a long-range elastic field (Eshelby (Es-
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helby, 1957)), hence alters the stress in the rest of the system. These stress changes can
be viewed as mechanical signals which are emitted by flips and may trigger secondary
events (Lemaitre and Caroli, 2009). This mechanism shows up strikingly in numeri-
cal simulation of athermal systems, via the emergence of avalanche behavior (Maloney
and Lemaitre, 2004b,Demkowicz and Argon, 2005,Maloney and Lemaitre, 2006,Bailey
et al., 2007,Lerner and Procaccia, 2009,Lemaitre and Caroli, 2009). When these elastic
effects are effective, it becomes essential to understand the role of the self-generated
stress noise in the activation of plastic events themselves.

A second objection is that the above theories obviously ignore the fact that the
energy barriers which limit plastic transformation are broadly distributed (Doliwa
and Heuer, 2003a,Doliwa and Heuer, 2003b,Doliwa and Heuer, 2003c). Moreover, as
the material is strained, shear transformation zones are driven towards their insta-
bility threshold (Maloney and Lemaitre, 2004a, Lemaitre and Caroli, 2007). This is
quite different from the situation of a glass undergoing thermal relaxation: here, the
distribution of barriers is set by the competition between elastic loading and plastic
yielding (Rodney and Schuh, 2009a), and some regions of space could, depending on
the parameters, present temporarily, very low energy barriers. Rather than being set
a priori, the relevant barriers distribution must thus result from a complex dynamical
process.

Third, activation theories of plasticity ignore the role of fluctuations of local quan-
tities such as free-volume, elastic constants, stresses, etc. As we will see in Section 0.3,
however, the idea that yielding can be easily associated with a unique critical value of
the local stress or energy is strongly challenged by numerical observations (Tsamados
et al., 2008). Moreover, the activation process should depend significantly on details of
the atomic packing, in particular via the fluctuations of local elastic moduli (Tsamados
et al., 2009), local density or pressure levels (Demkowicz and Argon, 2004,Demkowicz
and Argon, 2005,Argon and Demkowicz, 2006).

0.2.4 Dynamics of the local stress field

A number of models (Bulatov and Argon, 1994b, Bulatov and Argon, 1994c, Bulatov
and Argon, 1994d,Baret et al., 2002,Picard et al., 2002,Picard et al., 2004,Picard et al.,
2005) focus on the local stress field and its dynamics, in order to take into account
two important features which where identified in the previous discussion: (i) the fact
that loading drives the system towards local instability thresholds, hence that barriers
result from a dynamical process (ii) the fact, that rearrangements may interact via
their Eshelby stress fields.

The first of these models was proposed by Argon and Bulatov (Bulatov and Ar-
gon, 1994a, Bulatov and Argon, 1994b, Bulatov and Argon, 1994c, Bulatov and Ar-
gon, 1994d) in a study involving various aspects of plasticity but also of glassy relax-
ation (Bulatov and Argon, 1994c). They showed that even in the absence of deforma-
tion, taking into account long-range interactions between shear transformations could
lead to net behavior which ressembles that of glassy models incorporating e.g. distri-
butions of timescales. Their model involves a collection of weak zones which are dis-
tributed on a triangular lattice. Transformation probabilities are determined from acti-
vation theory, with stress-dependent free-energy barriers ∆G∗(σ) = ∆F0 −Ωσαβ∆ǫαβ
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where ∆ǫαβ is the strain increment of a transforming zone during transition. Only
pure shear transformations are allowed for convenience, but this does not exclude
dilation which is introduced via a dilation parameter meant to account for how ac-
tivation energy depends on pressure. Finally, each transformation alters the stress
levels in the whole system via a Green tensor, corresponding to the solution of the
Eshelby problem. The zone flips are thermally activated, but the barriers depend of
the stress sustained by the zones, so that the introduction of this mechanism allows
for correlations between flips.

The gist of Bulatov and Argon’s viewpoint is that initially, after a quench, many of
these weak zones should be far from their threshold as a consequence of annealing. As
stress increases, energy barriers decrease, and some flips might occur. For small values
of external stresses, only a few zones, sufficiently near their instability thresholds at
the end of annealing, will respond. Moreover, as most zones are far from instability,
the stress released by these rare flip events is insufficient to trigger secondary events.
Initial loading is thus accompanied by few, isolated rearrangements. As stress increases,
however, an increasing number of zones come close to their instability thresholds.
Mechanical noise then starts to be able to push zone farther away, leading in some
cases to localisation.

Two more recent models, strongly inspired by the Argon Bulatov model, have been
proposed by Baret and coworkers (Baret et al., 2002) and Picard and coworkers (Picard
et al., 2002,Picard et al., 2004,Picard et al., 2005). The model of reference (Baret et al.,
2002) has the interesting feature of incorporating a distribution of threshold values for
the local yield stress, but uses extremal dynamics do describe the evolution of the
system at vanishingly small strain rate. The model of Picard, on the other hand,
does not include disorder, but has the advantage of a relative simplicity and of easily
incorporating finite strain rate effects. The model describes the evolution of a scalar
stress σi on a lattice site trough an equation of the form

∂tσi = µγ̇ +
∑

j

Gij ǫ̇j,plast (0.5)

where µ is a shear elastic modulus. The first term describes an elastic loading pro-
portional to an average external strain rate. The second term is the supplementary
loading that arises from the plastic activity at all other sites in the system, which
is assumed to be transferred instantaneously trough an elastic propagator Gij . This
plastic activity ǫ̇j,plast is computed in turn by assuming that any site that reaches
a stress beyond some local critical yield σY releases its stress with a time constant
τ . Numerical studies of the model show that, at low strain rates, zones of persistant
plastic activities can be observed, with a typical size that tends to diverge as the strain
rate vanishes.

0.2.5 Dynamics of distributions

Based on the ideas mentioned above, several approaches have been proposed, which
describe the state of the system by the distribution of a scalar variable–corresponding
to either stress levels (Hebraud and Lequeux, 1998) or energy barriers (Sollich et al.,
1997,Sollich, 1998). They are based on some empirical assumptions that are inspired
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by the physical picture of interacting flow defects. In most of these approaches, an as-
sumption of homogeneous deformation is made, so that the description of macroscopic
strain localisation is not permitted. Moreover, a scalar description of stress and strain
is retained, with the implicit assumption that the scalar stress corresponds to a local
shear stress. Despite this apparent simplicity, these models are far richer that simple
local constitutive equations, as they introduce in the picture some auxiliary quantity
describing the internal state of the system, in the spirit of the ”rate and state” models
of solid friction (Rice and Ruina, 1983)1.

Hébraud-Lequeux fluidity model. The simplest of these models is probably the
one introduced by Hébraud and Lequeux (Hebraud and Lequeux, 1998). In this model,
one deals with an ensemble of sites that can each sustain a stress σ. The central quan-
tity is the probability distribution (pdf) P (σ, t) of the local stress, which is assumed
to evolve according to the equation

∂tP (σ, t) = −G0γ̇∂σP (σ, t)−
1

τ
H(|σ|−σc)P (σ, t)+

1

τ
δ(σ)

∫

|σ′|>σc

P (σ′, t)dσ′+D∂2
σ2P (σ, t)

(0.6)
where the ”stress diffusion term” D is given self consistently by

D =
α

τ

∫

|σ′|>σc

P (σ′, t)dσ′ (0.7)

. Equation 0.6 is a simple evolution equation for the pdf: the first term correspond to
elastic loading at constant strain rate, with an elastic modulus G0. The second and
third terms correspond to a description of plastic events that take place with a rate
1/τ for sites that exceed the critical yield stress σc; according to the third term, each
plastic event corresponds to a complete release of the stress, which is set equal to
zero. The last term describes a ”diffusion” along the stress scale, that is the result of
the average activity (stress redistribution after loading or unloading) of all other sites.
This could also be described as a ”stress noise”, and the intensity of this noise is taken,
according to equation 0.7, to be proportional to the total plastic activity present in
the third term of equation 0.6. The coupling parameter α in eq. 0.7 is the control
parameter of the model. It could be interpreted as corresponding to the intensity of
the elastic coupling between sites. For small values of α (α < αc the system is jammed,
with a vanishing activity D = 0 in the absence of strain, and multiple solutions for
P (σ). In this jammed situation, the model exhibits a nonzero yield stress (the limit of
< σ > when γ̇ goes to zero is nonzero) and a complex rheological behavior. Despite its
apparent simplicity, this model illustrates how the introduction of couplings between
simple elasto-plastic elements, even when treated at the mean field level, can give rise
to a complex collective behavior. Such models can serve as a basis for more complex,
non-local fluidity models, as discussed below.

Soft Glassy Rheology. The first, very successful example of a model using the
dynamics of a distribution function is probably the ”Soft Glassy Rheology” approach

1Simpler rate and state models involving a single ”fluidity” internal parameter have also been
proposed in ref. (Picard et al., 2002,Coussot et al., 2002).
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of Sollich and coworkers (Sollich et al., 1997,Sollich, 1998). A number of reviews of this
approach, which has been very successfully applied to many features of the rheology
of soft glasses, including complex strain histories, are available (Cates, 2002). We will
therefore limit ourselves to a very brief description of the assumptions underlying
this model. The system is a collection of independent elastoplastic elements, each
of which is trapped in an energy minimum of depth E < 0 (relative to some zero
energy level). Each element is also assigned a strain ℓ that varies linearly with time,
and the energy barrier changes with strain as E → E(ℓ) = E + kℓ2/2, where k is
a local modulus. The escape from a potential well (corresponding to the local yield
of an element) is governed by an Arrhenius-like factor, τyield ∼ exp(−E(ℓ)/X). The
two key ingredients in the model are (i) a distribution of trap depths that implies, in
the absence of external strain and for small values of X , that the system has a very
broad distribution of relaxation times, and is effectively in a glassy state, with a ”weak
ergodicity breaking” described by the trap model of Bouchaud (Bouchaud, 1992) ; (ii)
the ”effective temperature parameter” X , which activates the dynamics of any given
element, and is intended to represent the mechanical noise arising from the yield of
all other elements in the sample. The introduction of X is a recognition that, in many
systems, thermal motion alone is not enough to trigger local yield events. The system
has to cross energy barriers that are very large compared to typical thermal energies.
However, the model suffers from the fact that this parameter is not determined self
consistently, and therefore should be considered as adjustable. The Hébraud-Lequeux
equations described above can be considered as a first, simplified attempt to obtain
self consistency within this type of framework.

0.2.6 Classical rate-and-state formulations

Dynamics of STZ densities. The models we have described so far rely on the
notion of zone flips in a weak sense: they assume macroscopic plastic behavior to be
the net effect of sudden local rearrangements which can occur anywhere within the
material depending primarily on the local or macroscopic stress level; but their focus
is on the processes–the flips–but not on their loci–the zones. Underlying all of these
theories is of course the notion that some regions of space present specific traits–low
density? modulus?–which facilitate flips.

The STZ model proposed by Falk and Langer (Falk and Langer, 1998), departs
from these works in its stricter interpretation of the concept of zones. They are seen as
sufficiently well-defined objects, preexisting the occurrence of flips, so that it actually
makes sense to speak of their density. It thus becomes a dynamical state variable,
somewhat like defect densities in models of crystalline plasticity. Hence, a constitu-
tive law for amorphous solids must include equations of motion for the density and
internal state of these zones. Although recent works have introduced tensorial formu-
lations (Langer, 2004), the gist of STZ theory is captured by assuming that zones
are two-level (±) systems, which can produce strain changes ±∆ǫ0 only when they
undergo ± → ∓ internal transitions. This leads to writing an equation à la Eyring
(see (0.1)) for strain-rate as:

γ̇ = ∆ǫ0 (R+ n+ −R− n−) (0.8)
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where n± stand for the number densities of ± zones. The dynamical equations for the
number densities n± then take up the form:

ṅ± = −R+ n+ +R− n− + X (0.9)

where the last term accounts for creation/destruction mechanisms which are meant
to describe how the mean flow affect zone populations–in practice, it is assumed to
depend e.g. on the macroscopic energy dissipation rate.

The rate factors, of course, must then be expressed in terms of parameters such
as stress, or density. In particular, a linear dependence in terms of stress will com-
monly be assumed. But without going into any more details, it is possible to see,
following (Falk and Langer, 1998), how the STZ model accounts for the existence of
an elasto-plastic transition. Indeed, the strain-rate in equation (0.8) vanishes provided
R+ n+ = R− n−. A jammed state can thus be achieved even with non-zero transi-
tion probabilities, for a specific value of the ration n+/n− = R−/R+. Under various
assumptions for the transition probabilities and for the creation/destruction term X
in (0.9), these equations can be constructed to present a steady plastic flow, and a
transition from jammed to flow at a limit external stress, in a way which is consistent
with expectations.

The Falk-Langer mechanism for jamming, however, is ground for strong critiques
of the theory. Indeed, within this framework, jamming is identified with γ̇ = 0, or
R+ n+ = R− n−. Therefore the STZ mechanism for “jamming” is that ± flips com-
pensate each others effects, even while zone flips continue to occur. This is of course in
complete contradiction with the expectation that below threshold a material should in
fact present nearly zero plastic activity. This can be usefully contrasted with models
following from Bulatov and Argon’s work, in which jamming actually is due to a com-
plete depletion of near threshold soft zones. To phrase it in the STZ framework, the
total rate of rearrangements, R+ n++R− n−, would be expected to vanish–or achieve
quite small values–below yield stress.

Most of the later work on STZ theory (Lemâıtre, 2002,Pechenik et al., 2001,Falk
et al., 2004, Bouchbinder and Langer, 2009) contains additions which are meant to
address this issue, but then the original Falk-Langer mechanism for jamming is by-
passed (Lemâıtre and Carlson, 2004), and the dominant mechanism for jamming be-
comes a vanishing of the rate R±. For this reason, it will be useful in the coming
section to present free-volume theories, which were precisely meant to account for a
vanishing of these rates, before coming back to STZ theory.

Free-volume and effective temperature. It is nowadays commonplace for any
theorist of the glass transition to frown upon the notion of free-volume. Indeed, there
is clear evidence that changes in pressure or density do not suffice to explain the var-
ious features of the glass transition (Alba-Simionesco et al., 2002), and the original
free-volume theory by Cohen and Turnbull (Turnbull and Cohen, 1970) has not been
retained as a valid interpretation of the phenomenon. In the context of plasticity, how-
ever, the question is less neatly settled. There is experimental evidence of homogeneous
flows in which plasticity does not produce significant free-volume (Heggen et al., 2005),
but dilatancy effects have been observed during the formation of shear-bands (Chen
and Chuang, 1975,Donovan and Stobbs, 1981,Li et al., 2002). This observation does
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not mean that dilatancy actually impacts the stress response and contribute to the
instability mechanism: it may as well be just a passive marker of the formation of shear
bands. However, in the absence of better understanding of the instability mechanism,
the formulation of constitutive equations which take into account dilatancy effects
remain an important issue.

The introduction of free-volume dynamics in rate-and-state formulation of plastic-
ity was pioneered by Spaepen as early as the 70’s (Spaepen, 1977). It borrows from
Cohen and Turnbull’s free-volume theory (Turnbull and Cohen, 1970), which was pro-
posed to explain departures from Arrhenius behavior by introducing a variable which
would “replace” temperature in activation factors. A material is seen as composed
into many sub-systems of local free-volume vi. These variables are then assumed to be
exponentially distributed (with little justification) and relaxation events are assumed
to occur in regions of high free-volume vi > v0, with density ∝ e−v0/vf . Spaepen then
argues, that the strain-rate must then take up the form (Spaepen, 1977,Heggen et al.,
2005):

γ̇ ∝ ∆ǫ0 ω0 e
−v0/vf ln

(

∆ǫ0v0σ

2kT

)

(0.10)

To couple the plastic response with changes of density, he proposes to write an evo-
lution equation for the concentration cf = e−v0/vf of high free-volume defects, in the
form:

ċf = −krcf (cf − ceq) (0.11)

with a constants kr and ceq, which depend on temperature and stress. This equation
renders the idea that the evolution of cf is controlled by two antagonistic effets, (i)
deformation introduces dilatancy at a rate supposedly proportional to γ̇ and (ii) high
free-volume defects occasionally collapse via a “bimolecular” process–whence the form
c2f , which determine an equilibrium value ceq in steady state.

In this argument, the postulate that density fluctuation are exponentially dis-
tributed, or precise form of free-volume creation and destruction terms should of course
be questionned–but the same remark can be made of the creation/destruction term
X in STZ theory (equation (0.9)). A particular oddity in Spaepen’s argument is the
reference to a “bimolecular” process to explain the disappearance of free-volume, as
if high-density defects where actual objects, which were also mobile and likely to col-
lapse whenever they meet. Different free-volume equations were proposed later by
Lemaitre (Lemâıtre, 2002, Lemâıtre and Carlson, 2004), with a different interpreta-
tion, in particular, of the destruction process. It is based on the simple remark that
if vf controls activation mechanisms and evolves in time, then its decay rate should
be of the form e−v1/vf , with v1 an activation volume for the decay process which has
no reason to be equal to v0. The rate of dilatancy is moreover supposed to be propor-
tional to σγ̇. Introducing the notation χ = v0/vf , it leads to coupled equations of the
form (Lemâıtre, 2002,Lemâıtre and Carlson, 2004,Lemaitre, 2006),

γ̇ = ∆ǫ0 ω0 e
−1/χ ln

(

σ

µ

)

χ̇ = −A0 e
−κ/χ + σ γ̇
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which can reproduce various forms of the transient and unsteady response of amor-
phous materials under shear. This type of equations are central to recent developments
of STZ theory (Falk et al., 2004,Bouchbinder and Langer, 2009)–although χ is then
called an “effective temperature”. Efforts have also been made to justify STZ equations
the basis of thermodynamics principles (Bouchbinder and Langer, 2009). This allows
to produce macroscopic formulations which mimic transient response or the formation
of shear bands (Manning et al., 2007), but at the cost of an always increasing com-
plexity which often make it difficult to pinpoint the role of the diverse assumptions
which are introduced.

0.2.7 Nonlocal rheology approach

All the works discussed in the previous sections take for granted that some kind of
microscopic local heterogeneity governs the stress strain relationship in amorphous
materials. As we will see below, this aspect has, in essence, been confirmed by particle
based simulation, although the precise characterization of the flow events is still the
object of numerous studies. The next question is therefore the description of the spatial
organisation of these events, both in terms of large scale fluctuations and of perma-
nent strain localisation. The study of large scale fluctuations is a subject of current
interest within particle based or lattice models (Yamamoto and Onuki, 1998,Maloney
and Lemaitre, 2004b, Tanguy et al., 2006,Maloney and Lemaitre, 2006,Bailey et al.,
2007,Lerner and Procaccia, 2009,Lemaitre and Caroli, 2009), and some aspects will be
discussed in section 0.3. Here we would like to discuss recent extensions of the mean
field theories described above, that attempt a description of flow heterogeneities based
on deterministic partial differential equations. The common point to all the recently
proposed approaches is to supplement the homogeneous rheological description asso-
ciated with a description of the spatial variation of one of the parameters, based on
a diffusive kernel (Manning et al., 2007,Goyon et al., 2008,Fielding et al., 2009). For
example, in (Manning et al., 2007), the effective temperature parameter χ is assumed
to obey a diffusion equation, with a diffusion constant that is proportional to the local
rate of plastic deformation. In (Fielding et al., 2009), the effective temperature param-
eter X of the SGR model obeys a relaxation-diffusion equation, with a source term
that can be taken to be either proportional to the rate of local plastic activity or to the
rate of energy dissipation. Finally, in (Goyon et al., 2008), it is the fluidity–that is the
local value of γ̇/σ– that appears inside the diffusive term. All these models have been
shown to reproduce various forms of localization, either aiming to model the formation
of shear bands in metallic glasses (Manning et al., 2007), or near-wall localization in
microfluidics flows of colloidal suspensions (Goyon et al., 2008), or even faults (Daub
and Carlson, 2008).

This very important issue currently attracts considerable interest, but it seems
from the diversity of these works, and their various claims to actually account for
localization, that many forms of diffusive kernels would capture some of the underlying
physics, irrespectively of their actual microscopic assumptions. We must hence worry
about the severity of tests provided by fitting such lengthscales. Clearly, it seems
important to assess how sensitive the resulting behavior is on particular forms of the
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diffusive terms, in other words, to break the frontiers between different groups where
these various equations are developed, and put them in parallel for close comparison.

At the microscopic level, the specific mechanisms which justify diffusive terms,
will still have to be specified, as there are currently only very few attempts to do
so. At present, the only theoretical attempt to justify the use of a diffusive kernel
on the basis of a more microscopic approach can be found in ref. (Bocquet et al.,
2009). This reference introduces a systematic coarse graining approach of the lattice
elasto-plastic model of ref. (Picard et al., 2004), which eventually results in a coupling
between a local rheology described by the Hébraud-Lequeux model with equation (0.7)
being replaced by a nonlocal relation between stress diffusivity and the rate of plastic
activity. In other words, the stress diffusivity–in stress-space–is caused by the plastic
activity in the vicinity of the zone under concern–in real space. The Laplacian form
of this contribution can be easily understood, as a purely linear gradient in plastic
activity leads to a local compensation between neighboring zones with higher and
lower activities.

These approaches are particularly attractive and will be amenable to a direct com-
parison with numerical data obtained from elasto-plastic lattice models or from par-
ticle based simulations, and probably with experiments. Such comparisons will be, in
a first stage, based on the predictions for strain localisation and the characteristic
length/times over which this phenomenon is predicted to take place. Further refine-
ments, e.g. including tensorial aspects for the stress tensor, will be necessary to actually
predict mechanical response under various sollicitations.

0.2.8 Conclusion

What effective temperature?. It is clear from the preceding discussion that rate-
and-state formulations of plasticity should be seen as various forms of empiricism,
rather than actual microscopic theories. This does not, however, discount the fact that
they do reproduce many features of experimental data. This is particularly striking
in view of the simplicity of most of these formulations which do not involve complex,
distribution-like state variables–like Hébraud-Lequeux or SGR. And of course, rate-
and-state equations are potentially quite important are they can easily be incorporate
in Navier-Stokes equations, and used to study flows with complex geometries.

It is striking that, taken as an empirical attempt to replace temperature in activa-
tion factors by another arbitrary quantity, the introduction of free-volume parallels–
and anticipate (Spaepen, 1977)–the recourse to the notion of “effective tempera-
ture” (Cugliandolo et al., 1997,Berthier et al., 2000,Barrat and Berthier, 2001,Berthier
and Barrat, 2002,Ono et al., 2002,Haxton and Liu, 2007) which seems more accept-
able in today’s language. These practices emphasize the necessity to understand low-
temperature activation mechanisms. Clarifying whether they involve stress noise, lo-
cal fluctuation of pressure, density–like the free-volume theories would argue–or even
moduli, however, remain a largely opened issue.

Free-volume models have the merit to make a specific, testable (Spaepen, 1977,
Heggen et al., 2005), assumption about the relation of activation factors with density.
Sollich argues (Sollich et al., 1997,Sollich, 1998), that the effective temperature should
represent the noise produced by ongoing rearrangements. Yet, as long as the link
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between “noise temperature” and defect densities is not established, it seems that
these two different families of theories introduce the concept to take into account
quite different forms of disorder. In fact, both mechanical noise and local fluctuations
in moduli are present (Yoshimoto et al., 2004), and both are related to the underlying
distribution of local barrier height which, as we have discussed previously is determined
by a dynamic interplay between elastic loading and plastic activity itself. In this regard,
it is significant that the STZ and free-volume models require to introduce dynamical
equations for their effective temperature.

What zones?. The notion of a shear transformation is inevitably rather fuzzy as,
in practice, rearrangements are hard to identify and isolate in space or time. How-
ever, it offers a useful framework to rationalize observations, and articulate theories.
Phenomenologies of plasticity based on this premise, must still specify a number of
assumptions about flips, mainly in order to answer two questions: what triggers a flip?
how much does a flip contribute to stress relaxation and energy dissipation?

These questions, at the core of the construction of theories, have motivated a num-
ber of numerical and experimental studies, and some results will be discussed in section
0.3. The aim is to attempt to check the basic assumptions contained in the theoretical
description, and to identify the parameters which should be incorporated into theories.
This is of course difficult because zones are not easily identified within the disordered
structure, and because material properties, such as elastic moduli strongly fluctuate.
Basically, it can be said that a consensus is now established on the fact that elementary
flips can be identified at low temperature, and produce a stress release characterized
by a quadrupolar symmetry in two dimensions. Many questions, regarding in particu-
lar the conditions that trigger a flip, or the distribution of stress drops, remain to be
explored accurately. The situation in three dimensions is even more complex, and even
the form of the stress field released after one flip has not been studied in any detail.
The interaction between flips, the way a local rearrangement changes the probability
for a subsequent flip to take place nearby, and the associated time scales, are also sub-
jects of current interest which should be clarified and used as inputs of a theoretical
description.

0.3 Particle based simulations

0.3.1 Introduction

Particle based simulations, and in particular molecular dynamics (MD) simulations
of systems under shear have a long history, as they have been used very early to
determine the viscosity of simple fluids. A number of tools have been developed in
this context, that allow one to integrate the equations of motion for an ensemble
of a several thousands of interacting particles submitted to conditions of constant
(or possibly oscillatory) strain rate, or sometimes to conditions of constant stress.
Possible local heating associated with the shear are taken care of using thermostats
that do not perturb the shear flow (except possibly at very high shear rates which
will not be discussed in this paper). Another ”trick” that allows one to mimic shear
in large systems is the use of Lees-Edwards boundary conditions, in which the usual
square (cubic) box periodicity is replaced by that of a tilted Bravais lattice, with a



Particle based simulations xxiii

tilt angle corresponding to a deformation that increases linearly with time. As a result
the system undergoes a shear deformation driven by the boundaries of the simulation
cell. In some cases these Lees-Edwards boundary conditions will be supplemented by
a procedure that supplements the boundary driven deformation with the imposition
of an homogeneous local deformation. In quasistatic deformations (see below), this
is achieved by rescaling the particle coordinates at each strain step δǫ , in an affine
manner e.g. X ′ = X + Y × δǫ. In MD simulations an algorithm called the SLLOD
algorithm (Allen and Tildesley, 1989) is used to modify in a similar way the evolution
of the velocity along x, dvx/dt = Fx/m + ǫ̇vy, so that a linear velocity profile is
immediately obtained after application of shear.

In the context of glassy systems, the shear rate is of course an essential quantity,
that provides a natural time scales in systems in which the relaxation time is essentially
infinite. Particle based simulations are rather limited in terms of the time scales, with
simulation times that are at best of the order of 106 microscopic vibrational periods.
While this may seem very high (the corresponding shear rate, for a metallic system,
would be of the order of 108s−1) an important feature is that a reasonable scale
separation between the microscopic, vibrational time scale and the time scale of the
deformation is achieved. A common assumption, confirmed to some extend by results
described below, is that this time scale separation is sufficient to make such simulations
representative of the qualitative behavior in deformed glassy systems, in spite of the
unphysically high rates used.

An alternative to these finite shear rate calculations is to use zero temperature,
quasistatic simulations. In these simulations the system is always in a local energy min-
imum. After each elementary deformation step, which is described by an affine trans-
formation of the particle coordinates, the energy is minimized again to the ”nearest”
minimum using a conjugate gradient or steepest descent algorithm. Note that this
”nearest minimum” may, strictly speaking, depend on the minimisation algorithm.
Here the notion of time step and duration of the simulation is totally absent, and is
replaced by that of elementary strain step and of total deformation at the end of the
simulation. The elementary deformation step is limited by the need to avoid an artifi-
cial ”tunneling” trough energy barriers during the elementary deformation. While this
cannot be, strictly speaking, avoided, experience shows that elementary step strains of
the order of 10−5 are small enough to limit such problems and to produce reproducible
trajectories. As each step strain requires a careful minimization, achieving large defor-
mations with the quasistatic method is computationally costly. However, the method
has the advantage of providing a well defined, ”zero shear rate, zero temperature”
limit for the flow behavior of the system.

A critical issue in the study of glassy systems using simulations is that of equilibra-
tion. The properties of a glass are known to depend strongly on the preparation route
and on the quenching rate, which is un-physically high in simulations. The mechanical
properties under for small deformations are expected to be affected by the prepara-
tion history; however, if a large and homogeneous deformation can be achieved, the
memory of the initial configuration will be erased, and the results will not depend on
the preparation route. Note that the hypothesis of a deformation that remains homo-
geneous at large scales is important here, and that different preparation routes may
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lead to samples that display a stronger tendency to strain localization, without ever
undergoing the homogeneous deformation that would erase its memory. Such effects
were described in a model glass with partial quasicrystalline order in ref. (Shi and
Falk, 2006).

Many different systems have been explored under shear using either quasistatic
or finite shear rate simulations, periodic (Lees Edwards) cells or driving by external
walls. The studies published in the literature vary considerably in their choices for
interaction potentials and also in the type of quantities that are characterized in the
flowing systems. Broadly speaking, one may distinguish three types of interaction
potentials: mixtures of particles interacting by Lennard-Jones type potentials, that
are generally used with the intention of modeling either metallic glasses (Srolovitz
et al., 1981), or colloidal suspensions (Stevens and Robbins, 1993). Interactions with
strong directional bonding, that are suitable for systems such as amorphous silicon or
silica (Argon and Demkowicz, 2006), and contact interactions, that are used to model
granular systems (Combe and Roux, 2000) or foams (Durian, 1995)(Langer and Liu,
1997). Polymers have also been extensively simulated (Argon et al., 1995), in general
using Lennard-Jones type interactions with extra intramolecular bonding that gives
rise to strain hardening at large strain under traction.

Particle based simulations offer the possibility to obtain, within the time and length
scales permitted by simulation, all microscopic information that can be obtained from
particle coordinates. As often, the main difficulty is to find the appropriate tools to
analyze the extensive information that is available t o extract the information relevant
to the flow process and its heterogeneity. In the following, we describe some of the
generic aspects that emerge from these studies, without attempting an exhaustive
literature review. We will distinguish results obtained at relatively high T, where the
thermal fluctuations are important compared to those associated with the deformation,
and low temperature results at which microscopic motion originates essentially from
the external driving.

0.3.2 Finite temperature MD

At finite temperatures, the local motion of particles is a complex superposition of
thermal and of deformation induced movements. The identification of specific plastic
events associated with the deformation is not possible. In practice, this situation is
encountered if the temperature is close to the glass transition temperature Tg, so that
the systems at rest usually display significant ageing., The tools appropriate to analyze
this regime are largely inherited from studies of the liquid glass transition. A number
of studies have focused on the global (macroscopic) stress strain relation, and the
occurrence of macroscopic, shear banding instabilities. In spite of the short time scales
explored by simulations, stress strain curves exhibit a behavior that is remarkably
similar to the one observed in experiments. The peak stress in the curves shown in
figure 0.1 depends on shear rate and on the ”age” of the system, i.e. on the preparation
history (Varnik et al., 2004). This dependence was rationalized by Röttler and Robbins
(Rottler and Robbins, 2005) on the basis of ”rate and state” ideas borrowed from solid
friction. The peak stress varies as a logarithmic function of the strain rate and of the
age of the system
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σmax = σ0 + s0 ln θ + s1 ln γ̇ (0.12)

where θ is an effective age of the system, that depends on the waiting time after the
quench and before the train, and on the time spent under strain. This type of behavior
is somewhat similar to what could be expected in a simple Eyring description, with
the yield stress being associated with activated events of well defined energy., that
could be a function of the waiting time (Rottler and Robbins, 2005) , However the
coefficients do not behave as expected in such a description, and in particular the
coefficient s1 tends to be constant rather than proportional to temperature, which
implies that some a different description of activation has to be found.

MD simulations have developed in several directions. Attempts to get a better
understanding of activation mechanisms (Ilg and Barrat, 2007,Haxton and Liu, 2007),
studies of strain localisation at intermediate scales, and studies of correlation functions
that would allow the detection of microscopic dynamical heterogeneities.(Onuki and
Yamamoto, 1998,Yamamoto and Kim, 2000). Studies of activation tend to support the
notion of an effective temperature that would determine the rate at which the system
overcomes local energy barrier, and that depends on both temperature and shear rate.
Haxton and Liu (Haxton and Liu, 2007) claim that a data collapse for the flow curve
can be achieved on this basis, with a single parameter Teff (T, γ̇). They further argue,
that this effective temperature is itself given by the fluctuation dissipation ratio in
the system, determined for various observables (Berthier and Barrat, 2002),(O’Hern
et al., 2002).. A slightly different approach was chosen in ref (Ilg and Barrat, 2007),
in which an artificial ”reaction coordinate” of a bistable system was coupled to a
system under shear, and an Arrhenius behavior with a shear rate dependent effective
temperature was reported. While this points to the existence of a mechanical noise
that would complement -or even replace - the thermal noise, no progress has been
made that would allow one to relate the intensity of the noise to the shear rate.
A clear justification of the SGR ”effective temperature” approach from microscopic
simulations is therefore still missing.

Persistent strain localisation in the form of ”shear bands” has been observed in
a relatively small number of MD simulation studies, in 2 as well as 3 dimensions. In
general such a localisation is observed under strain conditions that are not fully peri-
odic, but rather induced by boundaries (either in pure shear or uniaxial conditions).
In (Varnik et al., 2003), this localisation was observed at the walls of the simulation
cell in isothermal simulations. Other examples of strain localisation are obtained under
uniaxial loading with free boundaries (Shi and Falk, 2005a,Shi and Falk, 2006) , multi-
axial loading (Bailey et al., 2004), or nanoindentation (Shi and Falk, 2005b) sometimes
using a notch as initiator. These studies have not resulted in a clear understanding of
the microscopic of shear bands, as mentioned in(Bailey et al., 2004), ”there is much
that is not understood about shear bands. This not only includes why they form in the
first place, but also what determines their width, what distinguishes them structurally
from the surrounding material...”. Simulation studies seem to indicate that some kind
of initial heterogeneity (e.g. boundaries) is important in the formation mechanism.
Structural differences concerning the local bond order environment or local poten-
tial energy inside the shear band have been reported in some systems (Shi and Falk,
2005a, Li and Li, 2006), but they are not observed in all simulations (Varnik et al.,
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2003). In the system studied by Shi and Falk (Shi and Falk, 2005a), the quench pro-
cedure was also shown to modify the ability to form shear bands. In rapidly quenched
samples higher strain rates lead to increased localization, while the more gradually
quenched samples exhibit the opposite strain rate dependence.

Finally, we mention that indications of large scale dynamical heterogeneities have
been found in early simulation work by Yamamoto and Onuki (Yamamoto and Onuki,
1998) on sheared systems of soft spheres. These authors studied the spatial correlations
between bond breakage events defined over a small, fixed time windows. Idications of
critical behavior in the quasistatic limit are found in this work, which can be seen as a
precursor of more detailed studies of 4 point correlations. Such correlations are studied
in some more detail in (Furukawa et al., 2009) which shows for example anisotropy of
dynamical heterogeneity in the non newtonian regime. There is certainly , however,
much room for a detailed study of dynamical heterogeneities in sheared systems at
finite temperature as a function of temperature and strain rate.

0.3.3 The zero-temperature solid

Molecular dynamics methods can thus mimic various features of material response
which are commonly seen in experiments. But they are of course limited by the
timescales they can access, which are orders of magnitude smaller than physical ones
in numerical models of metallic glasses–the situation is not as dramatic if we seek
to model e.g. colloidal glasses. They permit to access detailed information about the
structure and dynamics. But the microscopic motions are very blurred by thermal
fluctuations, and it turns out to be quite difficult in practice to extract relevant infor-
mation.

At finite but low temperature–lower than Tg–a glass would typically spend most of
the time vibrating around a single local minimum in the potential energy landscape.
One thus expects that this vibrational component bring a trivial contribution while
the most interesting aspects of dissipation in material response are controlled by hops
between local minima–which may in some cases be thermally-activated. Therefore,
after many works on glassy relaxation (Stillinger, 1995, Debenedetti and Stillinger,
2001,Doliwa and Heuer, 2003a, Doliwa and Heuer, 2003b, Doliwa and Heuer, 2003c),
it makes sense to try to separate vibrations from hopping in PEL.

If temperature is taken to zero and in the absence of an external drive, the system
would just reach one local minimum and rest there. When studying the response of a
material to strain, this zero temperature limit permits to focus on deformation-induced
changes of local minima (Malandro and Lacks, 1997,Malandro and Lacks, 1999). We
will see that it already captures many important aspects of the elasto-plastic response.

Deformation-induced changes in PEL. Let us thus consider a numerical model
of a glass at rest in a local minimum. This configuration could have been produced by
annealing followed by an energy minimization protocol, or it could be the results of
minimization starting from the configuration obtained after some plastic deformation
has been sustained by the system.

We first consider the case when this minimum is stable and the applied deforma-
tion small enough to preserve stability. We introduce a strain parameter γ. At zero
temperature, the positions of the particles in the local minimum–that is as they adapt
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to the imposed deformation to preserve mechanical equilibrium–are smooth functions
{~ri(γ)} of strain. This comes with an important consequence, as these strain-induced
changes are reversible. In other words the material response is exactly, microcanoni-

cally, reversible. The system behaves as a perfectly elastic material.
Studies of elasticity in this regime date back to the works of Born and Huang (Huang,

1950,Born and Huang, 1954), who proposed to compute elastic constants by assuming
that the relative displacements of all particles are affine, i.e. match the macroscopic
strain. With this assumption, it is immediately possible to predict elastic moduli from
the pair correlation function. The problem is that the particle trajectories {~ri(γ)},
which trace strain-induced changes of a local minimum, are not simply dictated by
macroscopic deformation. This approximation is only valid for very simple crystals,
but not for glasses, and the displacement {~ri(γ)} contains, in general, some non-affine
contribution.

The existence of a non-affine component to the displacement field has been known
for a long time, and its existence was hinted at in various papers as a trace of
disorder (Alexander, 1998). But it was really brought to the front scene as it ap-
peared (Leonforte et al., 2005) that they affected significantly the values of the macro-
scopic elastic moduli. The existence of a non affine field reflects the disorder in lo-
cal elastic moduli, which results in an heterogeneous elastic response exhibiting long
ranged correlations (DiDonna and Lubensky, 2005,Maloney, 2006). This heterogeneity
has been characterized in detail using a systematic coarse-graining approach (Tsama-
dos et al., 2009), with the results that below a scale of a few tens of particle sizes
the elastic constants (and especially the shear moduli) differ significantly from their
macroscopic values.

Analytical expressions are available (Maloney and Lemaitre, 2004a, Lemâıtre and
Maloney, 2006) for the non-affine field and for the corrected moduli. They correspond
to the zero-temperature limit of those proposed by Lutsko at finite temperature (Lut-
sko, 1988). The important point is that the T = 0 non-affine field takes up the form:

d~ri
dγ

= −H−1
ij .~Ξj (0.13)

where H is the Hessian matrix, and ~Ξ a vector field corresponding to infinitesimal,
strain-induced, changes of forces on each particles. As ~Ξ can be constructed from the
derivatives of the potential function, it is easy to show that it does not vanish or
present any singular behavior. Consequently the non-affine displacements will catch
any singular contribution coming from the inversion of a Hessian matrix. Since glasses
present many low-lying modes, the non-affine field will pick up information about the
existence of soft regions in space (Papakonstantopoulos et al., 2008,Tsamados et al.,
2009), these soft regions precisely which control plasticity, when a material is driven
by strain towards instabilities (Lemaitre and Caroli, 2007).

Although it is, in principle, outside the scope of this review, we briefly mention the
special case of granular systems interacting trough repulsive contact forces. At zero
temperature, these systems loose their rigidity abruptly as the density is decreased,
which defines the (un)jamming transition. In the vicinity of the jamming density,
the non affine, heterogeneous response becomes the dominant feature in the elastic
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deformation of such systems (van Hecke, 2010), and can be associated with a diverging
”isostatic” length scale, below which the stability is governed by boundary conditions
(Wyart, 2005).

Plastic events in AQS shear. The AQS (athermal quasi-static) protocol consists
in applying quasi-static deformation to the zero-temperature solid described previ-
ously. It is implemented by a two-steps protocol (Malandro and Lacks, 1997,Malandro
and Lacks, 1999,Maloney and Lemaitre, 2004b,Maloney and Lemaitre, 2006). Starting
from an equilibrium configuration: (i) the system is deformed homogeneously by a very
small increment; (ii) energy is minimized. If the increments are sufficiently small, the
system will be able to track continuously deformation-induced changes of the occupied
minimum. As the procedure is iterated, the local minimum will eventually become un-
stable. Minimization will then let the system relax to a new configuration which is
disconnected from the previous one. On a flow curve, as illustrated on Fig. 0.1, the
AQS response shows up as a series of continuous branches–corresponding to the re-
versible tracking of single minima–and discontinuous jumps–corresponding to “plastic
events”.

The elastic response being perfectly reversible, the plastic events account exactly
for all of dissipation, and the serrations of the stress curve permit to identify them
unambiguously. This has made possible detailed studies their organization in space
and of their size distribution (Maloney and Lemaitre, 2004b,Maloney and Lemaitre,
2004a,Tanguy et al., 2006,Maloney and Lemaitre, 2006,Bailey et al., 2007,Lerner and
Procaccia, 2009).

In some cases, single shear transformations can be observed. This can be done by
looking at events of small sizes, which are present in the steady state flow (Maloney and
Lemaitre, 2004b,Maloney and Lemaitre, 2006), but more easily found during the early
loading phase from an annealed, isotropic state (Tanguy et al., 2006). Another way to
access them is to look at the onset of plastic events, which were found to involve a single
eigenvalue going to zero (Malandro and Lacks, 1997,Malandro and Lacks, 1999,Doye
and Wales, 2002). Close to instability, the non-affine field (see Eq. 0.13) aligns with
the vanishing mode and the singular behavior of energy, stresses and moduli can even
be predicted (Maloney and Lemaitre, 2004a). This has permitted to study the spatial
structure of this mode (Maloney and Lemaitre, 2006,Tanguy et al., 2006), showing
that it generically presents the quadrupolar structure and the decay away from its
center, which are predicted by the Eshelby inclusion model (Eshelby, 1957, Picard
et al., 2004).

But in steady flow–that is passed some preparation-dependent initial transient (Tan-
guy et al., 2006)–plastic events are not in general composed of single zone flips but
typically involve many of them collectively organized as avalanches (Maloney and
Lemaitre, 2004b,Maloney and Lemaitre, 2004a,Maloney and Lemaitre, 2006,Bailey
et al., 2007, Lerner and Procaccia, 2009). This last claim is supported, in particular,
by measurements of the average size of stress (resp. energy) drops, which scale as Lβ

(resp. Lα) with system size L, and α, β < 1. Despite some differences in the reported
exponents, this power law scaling is now accepted as a fact, and proves that the local
rearrangements are strongly correlated, in notable contradiction with the mean-field
assumption.
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Avalanches at finite strain rates. An immediate question is whether avalanches
are only a feature of the quasi-static limit, or whether they exist for realistic values of
the external parameters. In particular, the unfolding of each avalanches should indeed
take some time, determined by the duration of elementary flips and by the times of
propagations of elastic signal between flip events (Lemaitre and Caroli, 2009). Even
if we stick with athermal systems, as soon as a finite strain rate is introduced, the
avalanches may start to overlap because of their finite duration. Hence they can no
longer be properly identified as in the quasi-static limit.

So, a first problem when going away from the AQS limit is to define valid ob-
servables which allow one to characterize the existence of an underlying avalanche
process, i.e. of correlations between local rearrangement events. A protocol has thus
been designed to characterize avalanches in 2D athermal systems, from measurements
of transverse diffusion (Lemaitre and Caroli, 2009). The principle starts from the ob-
servations that in AQS simulations, the transverse diffusion constant presents strong
size dependence (Lemaitre and Caroli, 2007,Maloney and Robbins, 2008). This depen-
dence can then be attributed to the organization of Eshelby flips along roughly linear
patterns (Lemaitre and Caroli, 2009), so that the diffusion constant can be expressed
as a function of a typical avalanche size.

This observations has led to propose that the avalanche size should depend on the
strain-rate as ℓ ∝ 1/γ̇1/d in dimension d (Lemaitre and Caroli, 2009). As γ̇ decreases,
the avalanche size should saturate at a length-scale ∝ L below some critical strain-rate
γc ∝ 1/Ld, an in any usual cross-over. This suggestion is based on an interpretation of
the avalanche size as being limited by the screening of Eshelby elastic signals by the
background noise due resulting from all the flips in the system.

These scalings are consistent with the rough scaling of the average stress drop as
〈σ〉 ∝ 1/L found in (Maloney and Lemaitre, 2004b, Maloney and Lemaitre, 2006),
but of course, these estimates remain rough, and it not ruled out that more precise
measurements would provide slightly different exponents consistent with the values
of β found in (Lerner and Procaccia, 2009). What should remain, however, is that
avalanches are present at all physically accessible strain rates, even when they overlap
in time, even when they cannot be accessible via the identification of separated events.

Steps towards a phenomenology of plasticity. The observation of avalanches,
and their properties in the quasi-static limit and at finite strain rates provides clear
benchmarks for future theories of plasticity. Yet, as usual in studies of amorphous
systems, we can observe and characterize the avalanche process; we can conclude that
some form of correlation exist between flip events; but the underlying mechanisms
which promote these correlations remain quite difficult to identify. In fact, several
processes must concur to make the avalanching behavior possible.

First, the flip-flip interaction must be mediated in some way. Here, the medium is
elastic and this is know to produce long-ranged effects. The Eshelby mechanism (Es-
helby, 1957,Argon, 1979,Bulatov and Argon, 1994b,Bulatov and Argon, 1994c,Bulatov
and Argon, 1994d) must play a central role, namely, each flip alters the stress in its
surroundings, which may push a nearby region passed its instability threshold, hence
trigger a secondary instability. The existence of this mechanism is supported by the
observation of single flips in AQS simulations (Maloney and Lemaitre, 2004a,Tanguy
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et al., 2006), by the measurement of the stress decay in space (Maloney and Lemaitre,
2006), and by direct visualisation of flips events at finite strain rates (Lemaitre and
Caroli, 2009). There are also now direct observations that a primary zone flip can
push a nearby one closer to instability (Lemaitre and Caroli, 2007,Lemaitre and Car-
oli, 2009), thus showing that the Eshelby mechanism is fully at work.

But we must note also that when a system is sheared from an carefully annealed,
isotropic, state zone flips tend to be isolated instead of organizing as avalanches (Tan-
guy et al., 2006). There is no reason why there should be any fundamental difference
between the basic mechanisms which are at work during the loading phase or in steady
state. Therefore, the difference between the early stage response and the steady-state
flow must indicate that the state of material evolves under loading (Lerner and Pro-
caccia, 2009), in a way which increases the density of near-threshold, soft, zones, in
consistence with the idea that strain progressively results in advection of the zones
towards their instability thresholds (Lemaitre and Caroli, 2007). In steady state, the
density of near-threshold regions is high, and the domino effect due to the Eshelby
stress redistribution operates efficiently. In early loading, the density of near-threshold
regions would be lower if the system is carefully annealed, thus permitting to identify
more easily isolated events.

Like in a game of dominoes, the Eshelby mechanism makes the avalanching process
possible. But it can intervene only if the density of near-threshold regions is high
enough, which must be a property of the material structure. The question thus comes
back up again to be able to characterize the regions or “zones” where elementary shear
transformation may occur. Could we identify them a priori? What would be their
density? Do they correlate with some property of the local structure–stress, density,
moduli? Up to now, the particle based studies that have addressed these questions
have resulted rather disappointing results. First of all, it appears that the regions in
which the localized plastic events take place are not, in general, under particularly
high stress. More precisely, the probability of observing a yield event in a region under
high stress is also higher, but this is balanced by the fact that the number of such
regions is small. A good correlation, on the other hand, has been established between
yield events and regions with low values of elastic moduli (Tsamados et al., 2009). This
suggests that the heterogeneity of local elastic constants should be taken into account
in more coarse-grained models. Unfortunately, the local elasticity is already a rather
complex property, and attempts to directly relate the probability of yielding to the
local atomic structure have not been very successful, although a correlation with the
shape of the Voronoi volume was observed in polymer glasses (Papakonstantopoulos
et al., 2008). In systems with strongly directional bonding such as amorphous silicon,
a correlation could also be established between the density of bonding defects and the
local plastic activity (Talati et al., 2009). One must acknowledge that a link is still
missing that would allow a better control of plastic properties directly from the design
of the microscopic structure.

0.4 Perspectives

We close this review by emphasizing a few key issues which, in our opinion, have to
be addressed in order to build a consistent theory of amorphous solids under strain,
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including the heterogeneous, fluctuating aspects. Most of these points have been dis-
cussed in detail in the previous sections.

The present consensus on the existence and importance of ”zones” and ”flips” as
the essential building blocks of the plastic activity makes it strongly desirable to have
a better understanding of these zones from the standpoint of the local microstructure.
Many more atomistic simulations, involving efficient sampling techniques allowing for
longer simulation runs (Rodney and Schuh, 2009b), and using various types of inter-
atomic potentials, will be needed to achieve such an understanding. It might even be
the case that a predictive search for microstructural characteristics of flipping zones
is illusory, and that the local plastic activity is a result from so many factors that it
is essentially unpredictable.

Even if the flips are not associated with well defined zones at the structural level, the
essential features of the current models of elasto-plastic behavior are in fact statistical
in nature. It is therefore essential to develop tools that allow one to quantify in an
unbiased, statistical manner the plastic activity, so that a comparison between models,
numerical simulations and experiments is possible. Such a strategy has proven very
successful in the field of glassy systems and supercooled liquids at rest, and should be
extended to the case of low temperature, driven amorphous systems. In particular, a
statistical description of dynamical heterogeneities in strained systems, a quantification
of avalanche distributions (in energy and size), and of the relevant correlation lengths,
is still missing. The influence of temperature and strain rate on this quantities should
also be a subject of interest.

Finally, we made in the introduction a distinction between the heterogeneities asso-
ciated with statistical fluctuations of a globally homogeneous strain, and the ”macro-
scopic”, long lived heterogeneities described as strain localization. The description
of the latter situation has made some progress recently, with the realization that a
mechanism involving the diffusion of some auxiliary state variable (fluidity, effective
temperature, free volume) was in general needed to produce such heterogeneities. This
auxiliary variable could even be related to some of the statistical aspects mentioned
above. However, all these approaches are still oversimplified (scalar stress variable, ab-
sence of convection...) so that direct comparison with a realistic experimental setups
is difficult.
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