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Origin of Lagrangian intermittency in drift-wave turbulence
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The Lagrangian velocity statistics of dissipative drift-wave turbulence are investigated. For large
values of the adiabaticity (or small collisionality), the probability density function of the Lagrangian
acceleration shows exponential tails, as opposed to the stretched exponential or algebraic tails, gener-
ally observed for the highly intermittent acceleration of Navier-Stokes turbulence. This exponential
distribution is shown to be a robust feature independent of the Reynolds number. For small adia-
baticity, algebraic tails are observed, suggesting the strong influence of point-vortex-like dynamics
on the acceleration. A causal connection is found between the shape of the probability density
function and the auto-correlation of the norm of the acceleration.
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Turbulence is one of the main actors in degrading
the confinement quality of magnetically confined fusion
plasmas. This so-called micro-turbulence in the edge of
plasma fusion devices, such as tokamaks is commonly ad-
mitted to be of electrostatic nature [1, 2]. A typical insta-
bility leading to this turbulent motion is the drift-wave
instability, present in plasmas with a strong magnetic
field and a temperature or pressure gradient. Turbulence
leads to an enhanced diffusivity and its average influence
can be characterized by transport coefficients which rep-
resent the mean influence of turbulent motion as an en-
hanced fluid property [3]. Reviews on the use of transport
coefficients in fusion devices are given in [4, 5]. Trans-
port coefficients allow to describe the mean transport on
the level of second order moments such as the variance
of the impurity density, kinetic energy and fluxes. The
spatial and temporal fluctuations around these variances
are however not described by such an approach, since
they are directly related to fourth-order moments. These
fourth-order moments will give a rough description of the
intermittent properties of the turbulence: is the trans-
port bursty, corresponding to non Gaussian fluctuations
or diffusive so that it could be modeled by a Gaussian
process? Indeed, if the turbulent transport is dominated
by rare but strong events, the impact on the confinement
quality will be different from the case where a Gaussian
process governs the transport. In three-dimensional fluid
turbulence it is now well established that the velocity
displays near Gaussian statistics but that the velocity
gradients and acceleration are characterized by probabil-
ity density functions (PDFs) with strongly non-Gaussian
tails [6, 7]. In two-dimensions it was shown that La-
grangian statistics can be strongly non-Gaussian even
when the Eulerian statistics are perfectly Gaussian [8].
The present investigation is dedicated to the character-
ization of Lagrangian intermittency in the close-to-two-
dimensional dynamics of electrostatic plasma turbulence.

Intermittency can be investigated through the statis-
tical properties of velocity increments δu, which can be
defined both in an Eulerian and in a Lagrangian refer-

ence frame. Lagrangian velocity increments are defined
as δu(t, τ) = u(t+τ)−u(t), where u(t) is the Lagrangian
velocity, i.e. the velocity of a passive tracer monitored on
its trajectory as a function of time. When the shape of
the PDF of the velocity increments varies as a function of
τ , the statistics are usually said to be intermittent, even
though this definition can be criticized [9]. At smallest τ
the PDFs approach the shape of the acceleration PDF,
which is generally non-Gaussian in turbulent flows.

The study of the Lagrangian dynamics of fluid tur-
bulence is now possible in controlled turbulence experi-
ments in which small solid tracer particles are followed in
the flow (e.g. [10–12]) and numerical simulations of the
Navier-Stokes equations [6]. Whereas the experimental
tracing of particles in fusion reactors introduces problems
related to the extreme conditions in controlled fusion,
tracing of particles in numerical simulations of drift-wave
turbulence is perfectly possible. In a recent study [9], we
presented detailed results on the Lagrangian statistics ob-
tained in simulations of drift-wave turbulence, within the
context of the Hasegawa-Wakatani model [13, 14]. In the
present letter we will focus on the non-Gaussianity of the
acceleration statistics. In particular we will investigate
the influence of the Reynolds number and the collision-
ality on the statistics and we will propose explanations
for the observed behavior.

The Hasegawa-Wakatani model can be derived from
the Braginskii two-fluid description [15], considering an
ion-fluid and an electron-fluid in the presence of a fixed
magnetic field, assuming isothermal inertia-less electrons
and cold ions. For details on the derivation of the 2D slab
version of Hasegawa-Wakatani equation, we refer e.g. to
[16]. The model assumptions yield eventually a closed
set of equations, describing the vorticity ω = ∇2φ of the
E×B motion (with φ the electrostatic potential) and the
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advection of the plasma density fluctuations n:

(

∂

∂t
− ν∇2

)

∇2φ =
[

∇2φ, φ
]

+ c(φ− n), (1)

(

∂

∂t
−D∇2

)

n = [n, φ]− u · ∇ ln(〈n〉) + c(φ− n), (2)

in which all quantities are suitably normalized as in
[17]. The model-equations closely ressemble the two-
dimensional Navier-Stokes equations combined with the
advection equation for a scalar n, representing here the
fluctuations of the plasma density around a mean profile.
Small scale damping is introduced through the Lapla-
cians, with ν and D denoting viscosity and diffusivity,
respectively. Nonlinearities are written as Poisson brack-
ets [a, b] = ∂a

∂x
∂b
∂y − ∂a

∂y
∂b
∂x . The source term in the above

equation is the mean plasma density profile 〈n〉, which is
assumed to be exponentially decaying in the x-direction
and homogeneous in the y-direction, so that equation (2)
reduces to the advection of a scalar fluctuation with re-
spect to an imposed uniform mean scalar gradient. The
electrostatic potential φ plays for the E ×B velocity the
role of a stream-function, u = ∇⊥φ, i.e., ux = −∂φ/∂y
and uy = ∂φ/∂x. The Lagrangian acceleration of tracer
particles, advected by the E ×B velocity is then

aL =
∂∇⊥φ

∂t
+[φ,∇⊥φ] = −∇p+ν∇2

u−∇⊥

∇2
[c(n− φ)] ,

(3)
where p is the pressure. The adiabaticity c is given by

c =
Tek

2

z

e2n0ηωci
, (4)

with Te the electron-temperature, kz the effective paral-
lel wavenumber, e the electron charge, n0 the reference
plasma density, η the electron resistivity and ωci the ion-
gyro-frequency. The adiabaticity is therefore determined
by the electron resistivity, which is strongest in the edge
of fusion devices, where the temperature drops. The pro-
portionality to k2z , the square of the dominant wavenum-
ber in the parallel direction, is a simplification which
allows to reduce the model towards a two-dimensional
system. Since the strong magnetic field homogenizes the
parallel dynamics, the perpendicular E×B velocity field
is close to two-dimensional. This, in combination with
the incompressibility of the E × B velocity and the as-
sumption that the parallel dynamics is governed by a
narrow spectrum peaked around a constant value kz , al-
lows to use the above set of equations for the scalars ω
and n.
The coupling term c(φ − n) permits the system to ac-

cess to a saturated turbulent state even in the absence
of external forcing. This is the main difference with
the equations describing the two-dimensional mixing of
a scalar in fluid turbulence. It is related to the presence
of the parallel current-density, which couples the two-
equations and gives rise to an electrostatic plasma insta-
bility leading to a saturated turbulent state in which the

energy is drawn from the imposed mean plasma density
profile. The collisionality of the ions and electrons plays
a key role in the model. If the collisionality tends to a
large value hence c becomes small, the equations tend
to a hydrodynamic 2D limit in which long-living vortices
are observed. It was found in [9] that the Lagrangian ac-
celeration in this case showed a very intermittent behav-
ior, reflected by probability density functions with heavy
tails. For intermediate values of c the flow is called quasi-
adiabatic. The PDFs of the acceleration in this regime
tend to exponential distributions.

One remaining open question is whether this intermit-
tent behavior is a Reynolds number effect. Indeed in
three-dimensional Navier-Stokes turbulence [12, 18] the
flatness of the acceleration PDF increases as a function of
the Reynolds number for the Reynolds numbers currently
available. In the present investigation this Reynolds-
number dependence is analyzed by exploiting the results
of a set of direct numerical simulations of the Hasegawa-
Wakatani model for varying Reynolds number.

Another issue is the relation between the time-
correlation of the norm of the acceleration and the
manifestation of intermittency as proposed by Mordant
et al. [19]. The present study will allow to assess this
relation for the different regimes.

Equations (1,2) were solved in a double-periodic do-
main of size 642 using a fully dealiased pseudo-spectral
method at a resolution of 10242 gridpoints, starting from
Gaussian random initial conditions. In the saturated,
fully developed turbulent flow 104 particles were injected,
equally spaced, and their velocity and acceleration were
monitored during a large number of large-scale turn-over
times (∼ 400Te). The eddy turn-over time Te obtained

in the different regimes, defined as 1/
√
W where W is

the RMS vorticity, is of the same order of magnitude,
∼ 0.4. Details on the simulations of equations (1,2) can
be found in [9] and on the Lagrangian part of the study
in [20] in which a similar investigation was performed
for Navier-Stokes turbulence. The adiabaticity is varied
between c = 0.01 and c = 2, to obtain different flow
regimes. Visualizations of the vorticity-field for two flow
regimes are shown in Figure 1.

In Figure 2, the PDFs of the Lagrangian acceleration
are shown for different values of c. It is observed that
the PDF evolves from a close to exponential shape for
large c to an algebraic shape for c = 0.01. To check if
this is merely an effect of the Reynolds number, we per-
formed simulations at different Reynolds numbers, which
is here defined as Rλ = λ U/ν, with U the RMS velocity
and λ = U/W , an intrinsic scale of the turbulence. This
Reynolds number was varied by a factor 6. The Prandtl
number was kept unity. The results are shown in Figure
3, where it is observed that the Reynolds number only
slightly influences the shape of the PDFs. Therefore we
need to find an alternative explanation for the difference
in shapes of the accelerations for the two different flow
regimes. The exponential distributions can be explained
as follows: it was argued in [21] that an exponential dis-
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FIG. 1: Visualisations of the vorticity field for two different
values of the adiabaticity. Left: c = 0.01, right: c = 0.7.
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FIG. 2: PDFs of the Lagrangian acceleration (x-component)
for different values of c. PDFs are normalized by σaLX

, the
RMS value of the acceleration. Graphs for different c are
shifted vertically for clarity.

tribution for the pressure gradient PDF can be obtained
from random Gaussian (non-intermittent) velocity fields
by simply solving a Poisson-equation to obtain the pres-
sure and subsequently computing the gradient, without
considering the nonlinear dynamics of the Navier-Stokes
equations. It can be seen from equation (3) that the
pressure gradient is directly related to the Lagrangian
acceleration. The shape of the PDFs for the cases for
moderate and large c simply shows that the flow is not
intermittent from a Lagrangian point of view, but gov-
erned by a Gaussian-like diffusion process.

More puzzling are the algebraic tails, found for small
c. In the inset of Figure 3 we show that the tails show
a close to algebraic behavior of the form p(a) ∼ 1/aβ

with β of the order 2. It is interesting to note that the
shape of the PDFs obtained in the hydrodynamic case
closely ressembles the results obtained for point-vortices.
Indeed, in reference [22] the point vortex model, intro-
duced by Onsager [23] and Townsend [24], was used to
study the influence of point-vortices on the Lagrangian
acceleration of passive tracers. In their work the acceler-
ation PDF was to leading order given by p(a) ∼ 1/a5/3.
In this light the results for the quasi-hydrodynamic flow
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FIG. 3: PDFs of Lagrangian acceleration at different
Reynolds numbers for c = 0.01 (top) and c = 0.7 (bottom).
In the inset of the top figure, the power-law behavior of the
tails of the PDF is demonstrated in double-logarithmic rep-
resentation.

seem to be at least partially explained by the presence of
vortical structures as observed in Figure 1. The exponent
of the power-law tails of the acceleration PDF is close to
the value −5/3 as in the point-vortex study. Even better
agreement might be obtained by comparing with vortex-
interaction models using vortices with a finite extension
[25] (such as the Burger’s vortex).

It remains to be explained why this is not the case for
the quasi-adiabatic case. As observed in Figure 1, in this
case the drift-waves also seem to organize into vortical
structures. However the life-time of these structures is
shorter [26]. The parallel dynamics are thus responsible
for the change in life-time of the vortices. For higher adi-
abaticity, electrostatic fluctuations are rapidly smoothed
out through the parallel current. Vortices do then not
exist long enough to influence the acceleration statistics
intermittently. In this sense the long-time correlations
seem to be essential to obtain the algebraic tails in the
acceleration PDF. The centripetal component of the ac-
celeration is constant in a purely circular orbit, and this
is captured by the autocorrelation of the norm of the
acceleration, which can therefore be directly related to
the lifetime of the vortical structures. This is checked in
Figure 4. For all curves time is normalized by the time
at which the autocorrelation of the x-component of the
acceleration is minimum. This time-scale can be qual-
itatively related to the time-scale of the average circu-
lar motion of fluid-particles. The autocorrelation of the
acceleration components displays a behavior similar to
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what is observed in three-dimensional Navier-Stokes tur-
bulence, with a rapid decrease and a negative dip. This
dip becomes less pronounced for lower values of c. It
is observed that in the cases in which a closer to expo-
nential decay of the acceleration PDFs is observed, the
auto-correlation of the norm decorrelates faster than in
the cases in which the PDFs are algebraically decaying.
Indeed the time correlations of the norm become longer
for small adiabaticities. This constitutes a proof of the
direct relation between the time-correlation of the norm
of the acceleration and Lagrangian intermittency as pro-
posed in [19]. A way to numerically check the assump-
tion of the role played by time-correlations of the norm of
the acceleration within a point-vortex model would be to
vary the lifetime of the vortices. If short enough lifetimes
are imposed, exponential tails are probably obtained.
The main conclusion of the present work is that the

electrostatic turbulence studied here is not intermittent
once the adiabaticity is large enough. This corresponds
to the case in which the parallel structures have a short
enough wavelength (or high parallel wavenumber) and/or

small collisionality. Intermittency due to electrostatic
vortex structures is therefore expected to be stronger
near the edge of fusion plasmas, where the collisional-
ity becomes more important.

In the present study the transition between longliving
structures and short lived wavy structures takes place
somewhere in between c = 0.1 and c = 0.7. In reality
the parallel spectrum is broadband and we assumed its
peak around a certain frequency to obtain the simpli-
fied two-dimensional model. If the full three-dimensional
model is considered, the dynamics will probably be a mix-
ture between the different cases, dominated by a certain
peak-wavenumber. Also the conclusions of this study re-
late to the dynamics captured within the present model,
i.e. homogeneous electrostatic turbulence fed by a strong
plasma-density gradient.

For larger adiabaticity (c > 0.7), which is expected to
correspond to a situation further away from the edge or
for colder plasmas, the statistics of this kind of turbulence
are close to what would be expected from a Gaussian sys-
tem. This study suggests that with respect to transport
coefficients, microturbulence can be modeled by a Gaus-
sian diffusion process with some additional rare point-
vortices if the adiabaticity is small enough (c < 0.7).
This does not imply that plasma turbulence is not inter-
mittent, only that its origin is not due to the mechanism
contained in the present slab-geometry if the adiabatic-
ity is large enough. It could be interesting to carry out
a similar study in a more complete geometry, such as in
the study by Holland et al. [27]. In their work, dynamic
regimes containing long-living vortices were observed, di-
rectly related to the large-scale zonal flows. However no
fully developed turbulent state was considered. Studying
the turbulent Lagrangian dynamics in such a geometry
constitutes an interesting perspective.
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