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MASS ENDOMORPHISM, SURGERY AND PERTURBATIONS

BERND AMMANN, MATTIAS DAHL, ANDREAS HERMANN,
AND EMMANUEL HUMBERT

ABSTRACT. We prove that the mass endomorphism associated to the Dirac
operator on a Riemannian manifold is non-zero for generic Riemannian met-
rics. The proof involves a study of the mass endomorphism under surgery,
its behavior near metrics with harmonic spinors, and analytic perturbation
arguments.

1. INTRODUCTION

Let (M, g) be a compact Riemannian spin manifold, we always assume that a spin
manifold comes equipped with a choice of orientation and spin structure. Assume
that the metric g is flat in a neighborhood of a point p € M and has no harmonic
spinors. Then the Green’s function GY9 at p for the Dirac operator DY exists. The
constant term in the expansion of GY at p is an endomorphism of ¥, M called the
mass endomorphism. The terminology is motivated by the analogy to the ADM
mass being the constant term in the Green’s function of the Yamabe operator.
The non-nullity of the mass endomorphism has many interesting consequences. In
particular, combining the results presented here with inequalities in [E] and [@],
one obtains a solution of the Yamabe problem.

Finding examples for which the mass endomorphism does not vanish is then a
natural problem. In [E], it is proven that for a generic metric on a manifold of
dimension 3, the mass endomorphism does not vanish in a given point p. The aim
of this paper is to extend this result to all dimensions at least 3, see Theorem @

2. DEFINITIONS AND MAIN RESULT

The goal of this section is to give a precise statement of the main results. At first,
the mass endomorphism is defined. Then, in Subsection @, we define suitable sets
of metrics to work with. Further, in Subsection @, we explain some well known
facts on the a-genus. Finally, in Subsection @ we state Theorem @, which is the
main result of this article.

2.1. Mass endomorphism. In this section we will recall the mass endomorphism
introduced in [E] Let (M, g) be a compact spin manifold of dimension n > 2 and
p € M. Assume that the metric g is flat in a neighborhood of p and that the
Dirac operator DY is invertible. The Green’s function G9(p, ) = G9(-) of DY at p
is defined by

DIGY = 0, 1ds, m,

Date: September 28, 2010.
Key words and phrases. Dirac operator, mass endomorphism, surgery
MSC2010. 53C27 (primary), 57R65, 58J05, 58J60 (secondary) .

1



2 BERND AMMANN, MATTIAS DAHL, ANDREAS HERMANN, AND EMMANUEL HUMBERT

where d,, is the Dirac distribution at p and G is viewed as a linear map which asso-
ciates to each spinor in ¥, M a smooth spinor field on M \ {p}. The distributional
equation satisfied by GY9 should be interpreted as

/M<Gg (2)0, DI(x)) dv¥ (z) = (o, (1))

for any o € ¥, M and any smooth spinor field ¢. Let £ denote the flat metric on
R™, it then holds that
1

wn_1|x|"z.

G = — .

at p = 0, where w,,_; is defined as the volume of S"~!. The following Proposition
is proved in .

Proposition 2.1. Let (M,g) be a compact spin manifold of dimension n > 2.
Assume that g is flat on a neighborhood U of a point p € M. Then, for 1y € ¥, M
we have

G ()0 = ——————x - o + v7(x)Yo,
Wn—1|]
where the spinor field v9 () satisfies DI(v9(x)o) = 0 in a neighborhood of p.
This allows us to define the mass endomorphism.

Definition 2.2. The mass endomorphism a9 : ¥, M — ¥, M for a point pc U C
M is defined by

a?(¢o) == v7(p)ho.

In particular, we have
1
g — 1 g .
a?(to) = lim (G (@0 + S —Tm® wo).

The mass endomorphism is thus (up to a constant) defined as the zero order term
in the asymptotic expansion of the Green’s function in normal coordinates around

p.

2.2. Metrics flat around a point. Let M be a connected spin manifold, p € U
where U is an open subset of M. A Riemannian metric on U will be called eztendible
if it possesses a smooth extension to a (not necessarily flat) Riemannian metric on
M.

Fix a flat extendible metric gg.t on U. The set of all smooth extensions of gaat
is denoted by

RuU,gaae (M) :={g| g is a metric on M such that g|y = gaat }-
Inside this set of metrics we study those with invertible Dirac operator

D (M) = {g € Ru,g,,, (M) | D9 is invertible}.

The main subject of the article is the set

#0
RpﬁUﬁgfla:

Note that Ry, (M) can be empty (see Subsection R.J). We say that a subset
A C Ry, gp.. (M) is generic in Ry gq.,

in the C'*°-topology in Ry, g,.. (M).

(M):={g€ Ri[l]l:’qﬂat (M) | the mass endomorphism at p is not 0}.

M) if it is open in the C'-topology and dense
p
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2.3. The a-genus. The a-genus is a ring homomorphism « : Qipm(pt) — KO.(pt)

where Q3P (pt) is the spin bordism ring and KO, (pt) is the ring of coefficients for
KO-theory. In particular, the well-definedness of the map means that the a-genus
a(M) of a spin manifold M depends only on its spin bordism class, and the homo-
morphism property means that it is additive with respect to the disjoint union and
multiplicative with respect to the product of spin manifolds. We recall that if the
dimension of M is n then a(M) € KO, (pt) and as groups we have

7 ifn=0 mod 4;
KOy,(pt) =2 <2/2Z ifn=1,2 modS§;
0 otherwise.

Let (M, g) be a compact spin manifold. The Atiyah-Singer index theorem states
that the Clifford index of DY coincides with (M), see [[[f]. This implies that a
manifold M with a(M) # 0 cannot have a metric with invertible Dirac operator.
If M is not connected, one can apply the argument in each connected component.
Thus there are many non-connected examples M, with a(M) = 0, but admitting
no metric with invertible Dirac operator.

However, the converse holds true under the additional assumption that M is con-
nected, see [H] The proof of the converse relies on a surgery construction preserving
invertibility of the Dirac operator together with the Stolz’s examples of manifolds
with positive scalar curvature in every spin bordism class [E], special cases were
proved previously in [B] and [E] For our purposes, it is more convenient to use a
slightly stronger version, presented in [f].

Theorem 2.3. Let M be a connected compact spin manifold and let p € M. Let
U be an open subset of M, p € U # M, and let gaay be a flat extendible metric on
U. Then REY (M) # 0 if and only if a(M) = 0.

U,gsiat

Using real analyticity one obtains that RiUr"Vgﬂat (M) is open and dense in Ry, g, (M).

2.4. Main result. The main result of this paper is the following: If o(M) = 0, so
that the mass endomorphism is defined for metrics in the non-empty set Ry (M),
then a generic metric has a non-zero mass endomorphism.

Theorem 2.4. Let M be a compact connected n-dimensional spin manifold with
n > 3 and with vanishing a-genus. Let p € M and assume that gaat is an extendible
metric which is flat around p. Then there exists a neighborhood U of p for which
R7Y (M) is generic in Ry,gq,, (M).

p,U,gflat

Theorem @ will follow from Theorems EI and @ below.

2.5. The relation to the ADM mass. Let (M, g) be a compact spin manifold
of dimension n > 3. Assume that g is flat in a neighborhood U of a point p € M.
The conformal Laplacian is then defined by

4(n—1)

L9 =
n—2

A9 + scal?,

where AY is the non-negative Laplacian and where scal? is the scalar curvature
of the metric g. As for the Dirac operator DY, we say that a function HY €
LY (M) N C>=(M \ {p}) is the Green’s function for L9 if

LYHY =5,
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in the sense of distributions. Assume that the metric g is conformal to a metric
with positive scalar curvature, then it is well known (see for instance [@]) that
the Green’s function HY of LY exists, is positive everywhere and has the following
expansion at p:

1
4(n — 1wy d9(z, p)"—2
where A9 € R and o(z) is a smooth function with o(p) = 0.

Set M = M \ {p} and g = H72g. Schoen [Lg] observed that the complete
non-compact manifold (M ,g) is asymptotically flat and its ADM mass is a, A9,
where a, > 0 depends only on n. We recall that an asymptotically flat manifold, if
interpreted as a time symmetric spacelike hypersurface of a lorentzian manifold, is
obtained by considering an isolated system at a fixed time in general relativity.
The ADM mass gives the total energy of this system. With this remark, the
number AY is often called the mass of the compact manifold (M, g). By analogy,
the operator a9(p), which is by construction the spin analog of A9, is called the
”mass endomorphism” of (M, g) at p. We will also see in Subsection @ that the
mass endomorphism plays the same role as the number AY in a Dirac operator
version of the Yamabe problem.

HY(z) = + A% + o(z),

2.6. Conclusions of non-zero mass. In this Subsection we will summarize why
we are interested in metrics with non-zero mass endomorphism.

Let (M, g) be a compact Riemannian spin manifold of dimension n > 2. For a
metric g in the conformal class [g] of g, let A;(g) be the eigenvalue of the Dirac
operator DY with the smallest absolute value (it may be either positive or negative).
We define

)\Jr

min

(M. g = inf 3 (@) Vol (M)

For this conformal invariant At (M, [g]) it was proven in [fl, ] and [f that

min

min min n

0 < X (M, [g]) < Nfy, (87) = i/

The strict inequality
)\+

min

n
(M, [g)) < Fwi/" 1)
has several applications, see [E, E, E]

e Inequality ([[) implies that the invariant A}, (M, [g]) is attained by a gen-

eralized metric, that is, a metric of the form |f|?/("~Vg where f € C?(M)
can have some zeros;

e Inequality (m) gives a solution of a conformally invariant partial differential
equation which can be read as a nonlinear eigenvalue equation for the Dirac
operator, a type of Yamabe problem for the Dirac operator;

e using Hijazi’s inequality [@] one obtains a solution of the standard Yamabe
problem which consists of finding a metric with constant scalar curvature
in the conformal class of g in the case of n > 3.

The first two applications can be interpreted as a spin analog of the Yamabe
problem for many reasons, see [] The third application says that a non-zero mass
endomorphism can be used in the Yamabe problem instead of the positivity of the
mass AY defined in Subsection @
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Now, let us come back to the subject of this paper. In [E], we prove that a non-
zero mass endomorphism implies Inequality (EI) In particular we see with Theorem
P-4 that Inequality ([[) holds for generic metric in Ry 4., (M). As a consequence,
for generic metrics in Ry, gq,, (M), we have all the applications stated above.

This can be compared to the Yamabe problem: Schoen proved that the positivity
of the number A9, that is the mass of (M, g) defined in Subsection E, implies a
solution of the standard Yamabe problem. The positive mass theorem implies that
A9 > 0. Hence, we get a solution of the Yamabe problem as soon as A9 # 0. In
particular, the mass endomorphism plays the same role in the Yamabe problem for
the Dirac operator as the mass in the classical Yamabe problem.

2.7. Further remarks. We here discuss extensions of the results in this paper. At
first we ask what can be done without the condition of flatness in a neighborhood
of p. For an arbitrary metric on M one possible extension of our setup is a relative
version of the mass endomorphism.

To briefly sketch this relative version, assume that there is a manifold (M’, g')
and assume that a point p’ has a neighborhood which is orientation preserving
isometric to a neighborhood of p in (M,g). Using this isometry the difference
between the Green’s function G of D9 on M and the Green’s function GZi of DY’
on M’ is a well-defined smooth spinor in a neighborhood of p = p’. Then the relative
mass endomorphism is defined as G, (p) -G, (p') € End(X, M) = End(X,, M’). The
methods of the present work can be modified such that this mass endomorphism is
non-zero for generic metrics g on M which are locally isometric to a fixed metric
g’ on M’ around p and p’.

Now we discuss whether the condition a(M) = 0 is necessary. If the manifold
M has a non-trivial index, then R (M) is empty. Nevertheless an extension

U,gsiat
is possible. For this RiUn,‘;ﬂat (M) has to be replaced by the space of metrics for
which the kernel of the Dirac operator has minimal dimension. For such metrics
there are various choices of “Green’s functions” for which the mass endomorphism
is generically non-zero, for example if one defines it as being the integral kernel of
the operator (D + m)~! — 7 where 7 is the projection to the kernel.

In [l we plan to present another method to prove a variant of Theorem [.]]
with slightly different conditions and a different potential for generalization. This
other proof uses methods from spectral theory, and explains that the convergence
to infinity of the mass endomorphism actually can be understood as a pole of a

meromorphic function.

2.8. Overview of the paper. We here give a short overview of the paper. In Sec-
tion P we introduce notation and collect basic facts concerning spinors and Dirac
operators. In Section @we explain how to find one metric with non-zero mass endo-
morphism on a given manifold, this uses the results of the following two sections. In
Section E we show that under certain assumptions the mass endomorphism tends to
infinity when the Riemannian metric varies and approaches a metric with harmonic
spinors. In Section E we show that the property of non-zero mass endomorphism
can be preserved under surgery on the underlying manifold. Finally, in Section ﬂ
we use analytic perturbation techniques to show that the existence of one metric
with non-zero mass endomorphism implies that a generic metric has this property.
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3. NOTATIONS AND PRELIMINARIES

3.1. Notation and some basic facts. In this article we use the following no-
tations for balls and spheres: B¥(R) := {x € RF||z| < R}, B¥ := B¥(1),
SE(R) = {w € R | [lz] = R}, S* == S*(1).

As background for basic facts on spinors and Dirac operators we refer to [@] and
[L2]. For the convenience of the reader we summarize a few definitions and facts.
On a compact Riemannian spin manifold (M, g) one defines the Dirac operator
D9 acting on sections of the spinor bundle. The Dirac operator is essentially self-
adjoint and extends to a self-adjoint operator H! — L2 where H'® is the space
of L?-spinors whose first derivative is L? as well, and L? is the space of square
integrable spinors. A smooth spinor is called harmonic, if it is in the kernel of the
Dirac operator D9. Any L2-spinor satisfying D9¢ = 0 in the weak sense, is already
smooth, thus it is a harmonic spinor. If the kernel of D9 is trivial, then the Dirac
operator is invertible with a bounded inverse L? — H'. The inverse has an integral
kernel called the Green’s function of DY9. The Green’s function of D9 was already
used in Subsection P.1] to define the mass endomorphism.

3.2. Comparing spinors for different metrics. Let g and h be Riemannian
metrics on the spin manifold M. The goal of this section is to recall how spinors
on (M, g) are identified with spinors on (M, h) using the method of Bourguignon
and Gauduchon [[LT], see also [f].

Given the metrics g and h there exists a unique bundle endomorphism aj of T'M
which satisfies g(X,Y) = h(a] X,Y) forall X, Y € TM. It is g-self-adjoint and pos-
itive definite. Define b7 := (a)~1/2, where (af)!/? is the unique positive pointwise
square root of aj. The map b maps g-orthonormal frames to h-orthonormal frames
and defines an SO(n)-equivariant bundle morphism b7 : SO(M,g) — SO(M,h)
of the principal bundles of orthonormal frames. The map bj lifts to a Spin(n)-
equivariant bundle morphism 37 : Spin(M, g) — Spin(M, h) of the corresponding
spin structures. From this we obtain a homomorphism of vector bundles

Bl NIM — XM (2)

which is a fiberwise isometry with respect to the inner products on X9 M and " M.
We let the Dirac operator D" act on sections of £9M by defining

hi= (B) D" By

In [@, Thm. 20] an expression for Dg is computed in terms of a local g-orthonormal
frame {e;}? ;. The result is

50 Z € - bg a¥ +35 Z € - bg 1ng (e:) b vgi(el)) ) (3)

where for any vector field X the operator (b)~1V4b) — V% is g-antisymmetric
and therefore considered as an element of the Clifford algebra. It follows that

Do = D9+ AY(V99) + Bl (), (4)

where AZ and Bg are pointwise vector bundle maps whose pointwise norms are
bounded by C|h — g|, and C(|h — gl + |VI(h — g)|4) respectively.
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4. FINDING ONE METRIC WITH NON-VANISHING MASS ENDOMORPHISM

The goal of this section is to prove the following Theorem.

Theorem 4.1. Let M be a compact connected spin manifold of dimension n > 3

and let p € M. Assume that a(M) = 0. Then there exists a neighborhood U of p
#£0

T Ugnas (M) s non-empty.

and a flat metric gaag on U such that R
Proof. We start by proving the theorem when the manifold is a torus. Consider
the torus T™ equipped with the Lie group spin structure for which the standard
flat metric go has a space of parallel spinors of maximal dimension. Choose p € T™
and let U be a small open neighborhood of p. Further, let ga.s be the restriction
of gg to U.

Since n > 3 we have that a(T™) = 0 so by [H] there is a metric g; on T with
invertible Dirac operator. The construction of g; is done through a sequence of
surgeries which starts with the disjoint union of 7™ and some other manifolds, and
ends with the torus T™. These surgeries can be arranged so that they do not change
the open set U in the initial 7™, so the resulting metric satisfies g1 = g9 on U, or
g € Ry, (1)

Define the family of metrics g; := tg1 + (1 — t)go. Since the eigenvalues of D9t
depend analytically on t it follows that D9t is invertible except for isolated values of
t, it follows that g; € RiUr"Vgﬂat (T™) except for isolated values of t. Choose a sequence
try — 0 for which g, € i[I]]:IQflat (T™), we can then apply Theorem @ below to the

sequence gy, converging to go and conclude that g¢;, € RZ% it (T™) for k large
#0

enough. In particular R}, (T™) is not empty, and we choose a metric hg from
this set.

Now let M be a manifold of dimension n as in the theorem. Since a(M) =0 we
know that there is a metric ¢ on M with invertible Dirac operator. We consider

the disjoint union
My=T"u(-T™")U M.

Here —T™ denotes T™ with the opposite orientation, so that 7™ U (=T") is a
spin boundary and My is spin bordant to M. Since M is connected it follows
that M can be obtained from M, by a sequence of surgeries of codimension 2
and higher, see [E, Proposition 4.3]. Again, these surgeries can be arranged to
miss the open set U in the first T". We equip My with the Riemannian metric

hoUhoUg € Rz%ﬂﬂat (T™ LI (=T™) U M) and when we use Theorem [.1] below for

the sequence of surgeries we end up with a metric ¢’ € Rf?] otne (M).
Finally, the point p € M we end up with after the sequence of surgeries might
of course not be equal to the point p in the assumptions of the theorem. If we set

this right by a diffeomorphism we have proved that ’Rf% otne (M) is non-empty. O

Note that this proof does not work in dimension 2. Indeed, we strongly use that
the a-genus of the torus 7™ vanishes. This fact is only true in dimension n > 3.
If the flat torus 72 is equipped with the Lie group spin structure with two parallel
spinors, then a(T2) = 1. By the way, it is proven in [ that the mass endomorphism
always vanishes in dimension 2.
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5. MASS ENDOMORPHISM OF METRICS CLOSE TO A METRIC WITH HARMONIC
SPINORS

Finding examples of metrics with non-zero mass endomorphism seems to be a
difficult issue. The only explicit examples we have until now are the projective
spaces RP", n = 3 mod 4, equipped with its standard metric, see [E] The goal
of this section is to show that metrics g € RiUn,ngm (M) sufficiently close to a metric
h € Ry Ugnw \ R, (M) will under some additional assumptions provide such
examples. This is the object of Theorem below, which in our mind has an
interest independently of the application to Theorem @

Theorem 5.1. Let U be a neighborhood of p € M. Assume that h € Ry, gq,, (M)
has ker D" = {0}. Further assume that the evaluation map of harmonic spinors at
b,

ker D" 5 4 > 4h(p) € S M,

is injective. Set m := dim ker D" Let g, € Ri[}]:.]qﬂat (M), k=1,2,..., be a family of
metrics on M converging to h in the C*-topology.
Then the mass endomorphism a9 at p has at least m eigenvalues tending to oo

, 0
as k — oo. In particular, g € RzU,gﬂm (M) for large k.

The proof of this theorem is inspired by the work of Beig and O’ Murchadha [@]
In the hypothesis of Theorem @, the injectivity of the evaluation map ker D" 3
P = P(p) € EZM , is quite restrictive: it is fulfilled for instance when the space
of harmonic spinors is 1-dimensional if p is not a zero of the harmonic spinor. In
Theorem we applied the result to the flat torus 7.

Proof. For the proof we choose a non-zero 1 € ker D*. Set Yp == 1Y(p) € EZM, by
assumption we have ¢, # 0. We will show that a9 (1,,) tends to infinity.

Let G be the Green’s function of D9 associated to 1, that is Gy, is a distri-
butional solution of

DGy, = 0pthp.
In coordinates around p we write (compare Proposition )
x
G = _nwnflrn “thp + 0% (¢p). (5)

Here 7 is a cutoff function which is equal to 1 near p and has support in U. We
shorten notation by writing vy, for the spinor field v9% (¢,,).

Step 1. We show that there are pp € M for which |vg(px)| — oo. Let the
smooth function Q : M \ {p} — (0, 1] satisfy

Q) = r(z) if x € Bp(e),
IR if £ € M\ By(2) .

Note that Q does not depend on k. We have

0 < y? = / (G, D¥2p) dv
M

1
:/ (LG, DI o
YRV

1 L
< [ g A9 Gl D
M



MASS ENDOMORPHISM, SURGERY AND PERTURBATIONS 9

As the integral is bounded and the last factor tends to zero as k — oo, we conclude
that

lim [|Q" G| = 00
k—o0
Let pr be points for which

19" (o) Gr(pi)| = 9" Gl oo
Then

Q" (pr)Gr(pr) = Q" (pr) (77

x

- %) (ok) + " (o) (),

Wp—1T"

here the first term on the right hand side is bounded so the second term must tend
to infinity. Since |Q" ! (px)vk(pr)| < |vk(pr)| we conclude that |vg(pr)| — oo as
k — oo, and Step 1 is proven.

To the spinor v, which is a section of ¥9* M the map 37* described in (E)
associates a section wy = ﬁzk v, in the spinor bundle M. We decompose this
section as

1
Wg = apPr + Wi

where ¢, € ker D" is normalized to have lekllrsrary = 1, ax € R, and wik is
orthogonal to ker D". We choose p large enough so that HY(X"M) embeds into
CO(xhM).

Step 2. We show that |ax| — co. For a contradiction assume that the sequence
|ak| is bounded. From (f]) it follows that D9 v, = gradn- —Z— -1,. This together

Wr—1T™

with the properties of 7% gives
[wi |gr < C| D wi; ||
= C||D"wy||Lr
= C(B7*)~ D" Byt vy || 1o
= C||D" vg| e (6)
< C||D% vy + C|lAL (V9 0r) + BY (vr)]|Le

< C||gradn - “Uplle + Cepllw e,

Wp—1T"
here the first term is bounded and £ — 0 by our assumption that g — h in the
C'-topology. By assumption we also have

lwill s < llarerllar + lwi [l
< C+ lwg llmg-
Together this gives
[wi ||z < C + Cep + Cepl|wi || v,

S0) ||w,J€‘HHf is bounded. We conclude that ||wi||co is bounded, and the assump-
tion that |ag| is bounded then tells us that ||wg|co = ||vk|/co is bounded. This
contradicts Step 1, so we have proved Step 2.

Step 3. Conclusion. Set wy := a;lwk and w,i- = a,;l

wfg so that

L
WE = Yr + wi -
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Then () tells us that

lwis [z < Cay*|lgradn - “ollLe + Cerllwnl ar,

Wp—1T"
where the first term now tends to zero. Since the (j, are in ker D* and they are
normalized in LP(X"M) it follows that they are bounded in HY (X" M). From this
we get

ookl sz < llepmll ey + lleoi |y
< C+ |lwillaz-

It follows that
lwi Ml < 0(1) + Cepllwp || o

SO szi'HHf — 0 and ||wit||co — 0. Finally we have

la? (¥p)| = |uk(p)|
= |wk(p)]
= ak|wi(p)]
> ax(|ok (p)] — |wi ()
= ak(ler(p)] + o(1)).

By our assumption that the evaluation map of harmonic spinors at p is injective we
know that |k (p)| cannot tend to zero, so from Step 2 we conclude that |a9% (¢,)| —
0o. This finishes the proof of Step 3 and the Theorem.

O

6. SURGERY AND NON-ZERO MASS ENDOMORPHISM

Let M be obtained from M by surgery of codimension at least 2. We assume
that p € M is not hit by the surgery, so we have p € M. As before RZ,(()J, it (M)
denotes the metrics with invertible Dirac operator on M which coincide with the
flat metric ggat on U and whose mass endomorphism at p is not zero. The goal of
this section is to prove that Rﬁ?], gaa (M) # 0 implies RZ;?L . (]/\/[\ ) # 0.

We start with a manifold M of dimension n and a point p € M. We will perform
a surgery of dimension k € {0,---n—2} on M. For this construction, we follow the
beginning of Section 3 in [ﬂ] and use the same notation. So, we assume that we have
an embedding i : S*¥ — M with a trivialization of the normal bundle of S := i(S*)
in M, which thus can be identified with S* x R*~%. The normal exponential map
then defines an embedding of a neighborhood of the zero section of the normal
bundle of S, in other words for small R > 0 the normal exponential map defines a

diffeomorphism f from S¥ x B"~*(R) to an open neighborhood of S, and f is an

extension of S¥ x {0} — S* % M. Furthermore, for sufficiently small R > 0, the
distance from f(z,y) to S = f(S* x {0}) is |y|.

As before we assume that U is an open neighborhood of p, on which a flat
extendible metric gg.¢ exists. We assume further that p ¢ S, and by possibly
restricting U to a smaller open set, we can also assume that U NS = (. Thus for
small R > 0 one obtains

Un f(S* x Bn—F(R)) = 0.
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As in Section 1 of [{] we define

M = (M\ (8" x BPF(R)) U (BFFT x §77F71) /)

where ~ identifies the boundary of B+l x S"~k=1 with f(S* x S"~*~1(R)) via
the map (z,y) — f(z, Ry). Our constructions are carried out such that U is both
a subset of M and M.

The main result of this section is the following Theorem.
(M) # 0, then RZS, (M) # 0.

D,U,gs1at

Theorem 6.1. If R7Y

.U, gflat

Proof. We assume the requirements for p, U, f and k stated at the beginning of

this section, and let g € R7C (M). The goal is to construct a metric g €

P,U,gnat
Rf:,OU, gne (M) following the constructions in .

Theorem 1.2 in [ff] allows us to construct a metric g’ on M with invertible Dirac
operator. We recall the scheme of the proof of this theorem. As in the beginning
of Section 3 of [] we define open neighborhoods Us(r) by

Us(r) := f(8" x B"7%(r))

for small r. Then we construct a family of metrics (g,), satisfying g, = g on
M\ Us(Rpax) for some small number Ry,ax. This family of metrics is constructed
in two steps. First, we use Proposition 3.2 in [E] to assume that g has a product
form in a neighborhood of S. Then, we do the construction of Section 3.2 in [ﬂ] to
get g,. Once these metrics (g,) are constructed, we proceed by contradiction. We
take a sequence (pi)ren tending to 0 and we assume that ker (D%% ) # 0 for all k,
that is

Vk € N, there exists a harmonic spinor ¢y # 0 on (]\/4\, Gpr)- (7)

By showing that limj_ - ¥ converges in a weak sense to a non-zero limit spinor
in ker D9, we will obtain a contradiction. So the metric gA’ = g, satisfies the
requirements of Theorem 1.2 in [ﬂ] as soon as p is small enough.

This proof actually allows us to require an additional property for the metrics
gs, and make weaker assumptions on the spinors .

e The number Ry .« in the proof can be chosen arbitrarily small. So set § =
Riax and choose p := p(d) small enough so that g5 = g, has an invertible
Dirac operator. We obtain in this way a family of metrics (gs)se(o,s,) for
some &g > 0 such that all D9 are invertible and such that gs = g on
M\ Us(9).

e Let now (0)ren be a sequence of positive numbers going to 0. We make
the following assumption:

Vk € N, there exists a spinor ¢, on (J/\/[\, gs,) and a sequence
A converging to 0 such that D9k, = A\pv.

Working with these spinors instead of the ones given by assumption (ﬂ),
the same contradiction is obtained. This proves that there is a uniform
spectral gap for (gs5)se(0,5,/2), OF in other words that there exists a constant
Co > 0 independent of § € (0, d0/2) such that

SpecD% N [*Co, Co] = (Z) (8)
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Now, we prove that the metric g := g5 for § small enough satisfies the require-
ments of Theorem . It is already clear that DY is invertible for ¢ small enough,
and that gs is flat on U for § small enough. It remains to show that ag? # 0 for &
small enough. For this purpose we show that a® — o as § — 0. Since we assume
af # 0 this gives the desired result.

So let us prove this fact. First, choose ¢ € X9(M) = X95(M). To simplify the
notation, set v := G9Yy and 75 := G91. The proof will be complete if we prove
that

lim y(p) —7s(p) = 0. 9)

Note that the spinor v — ~s, deﬁned on M\ ({p} U Ug(0)), is smooth and extends

)
smoothly to p. Indeed, it is equal on U to v (x)yg — vgé ()1 (with the notations

of Proposition @ and Definition ) Let 5 € C°°(M 0 <ns <1 be a cut-
off function such that s = 1 on M \ Us(39) and ns = 0 on Ug(25). Since on
supp(ns) C M\ Ug(26) = M \ Us(20) we have g5 = g we may assume that

dnsly = ldnsly, < 2. (10)

From Equation (F), we have

Jiz 1D% s 5 dve
iz s, dvee

for all smooth non-zero spinors s on (M ,9s5). We evaluate this quotient for s :=

Ca <

157 —7vs- Note that ¢; is well defined on (Z/W\ , g5) and smooth since v is well defined
on supp(ns). Since v and ;5 are harmonic, we have Dps = dns -, and since gs = g
on supp(7s), we get from Equation ([L0) that

[0l = [ janlz 2
M M

4
<= sup (|y(2)]?) Vol! (Us(36) \ Us(29)).
0% 2eUs(360)
We have that Vol? (Us(36) \ Us(26)) < C6"~* where we used the convention (used
throughout this proof) that C' is a positive constant independent of §. Since k& <
n — 2, this leads to

/ﬁ|Dg5<p5|!2]5dvg5 <C.

Since 5 = 1 on M \ Us(36) and since gs = ¢ on this set, it follows that

/ |<p5|§6dvg5 <C. (11)
M\Us (35)

Now, we proceed as in step 2 of the proof of Theorem 1.2 in [E] Let Z >0bea
large integer. By ([L1)) the set {ps}s>0 is bounded in L?(M \ Us(1/Z)). By Lemma
2.2 in [ it follows that {¢s}s>0 is bounded in C*(M \ Us(2/Z)) for all a. We
apply Ascoli’s Theorem and conclude there is a subsequence (s, ) of {@s}s>0 which
converges in C'(M \ Us(2/Z)) to a spinor ®q. Similarly we construct further and
further subsequences of (s, ) converging to ®; in C'(M \ Us(2/(Z +1))). Taking a
diagonal subsequence of these subsequences, we obtain a subsequence (s, ) which
converges in CL (M \ S) to a spinor ®. As s is D9-harmonic on (M \ Ug(39)) the
CL (M \ S)-convergence implies that DI® = 0 on M \ S. With ([L1]) we conclude

loc



MASS ENDOMORPHISM, SURGERY AND PERTURBATIONS 13

that ® € L?(M). Thus ® is L? and smooth on M \ S. The equation DI® = 0
holds on M \ S. We now apply Lemmas 2.1 and 2.4 of [E] and conclude that & is
smooth on (M, g) and D® = 0 on M. Since ker Dy = 0, we get that & = 0 and in
particular ®(p) = 0. This implies Equation @) O

7. FROM EXISTENCE TO GENERICITY
The goal of this section is to prove the following Theorem.

Theorem 7.1. Let M be a compact spin manifold of dimension n, n > 3, let
p € M and let U be a neighborhood of p. If ’Rf% otne (M) is non-empty then it is
generic in Ry, gq,, (M).

7.1. Continuity of the mass endomorphism. The goal of this subsection is to
prove that the mass endomorphism depends continuously on ¢ in the C'-topology.

Proposition 7.2. Equip R}R‘;ﬂm (M) with the C*-norm. Then the map

R (M) > g+ a? € End(X,M)

y9flat

15 continuous.

It follows that Ri% M) is open in R (M) and thus in Ry, g, (M).

,9flat ( U, gt1at

Proof. Let (gk)ren be a family of metrics in R}R‘;ﬂm (M) such that g — ¢ in the
C'-topology. For each k the operator

Dy = (5,)7 Do 5,
is invertible. We define
Py == D3+ — D9.
Further, let G9% and GY be the Green’s functions of D9 and D9. We define
Qr = (B)' GBI — G
Let 7 € ¥,M. Using the equation (E) for G9 and for GY and using the fact that
gklu = 9lu = gaar we find that

Qv = (B3,) ™ v By & — vy,

Therefore QY has a smooth continuation to all of M. The equation D9 G9% =
D9GY = ,1ds, pr then tells us that

Qr = —(DJ*) "' PGY.

(G99)(x) becomes singular as x — p. However we may take a smooth function 7
which is equal to 1 near p and has support in U and since gily = glu = gat we
obtain
Pe(nG94) = DI(nG¢) — D! (nGe) = 0.

It follows that P,G9% = Pi(1 — )G9, where (1 — n)G9%) is smooth on all of
M. From () it follows that the sequence (Dg*)ken converges to DY with respect
to the norm of bounded linear operators from C'(39M) to C°(X9M). There-
fore || PLG9%|lco — 0 as k — oo. Then it follows from [[§, Thm. IV-1.16] that
((D%)~")ren converges to (D9)~" with respect to the norm of bounded linear oper-
ators from CY(X9M) to CH(29M). Therefore ||Qrtp||cr — 0 as k — oo. Evaluating
Qr at p yields a9 — a9. Thus the statement of the Proposition follows. (I
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7.2. Real-analytic families of metrics. Let ¢ > 0. We say that a family
(9t)te(—e,c) of Riemannian metrics is real analytic if there exist sections Ay of the
bundle of symmetric bilinear forms on M, k € N, such that for all ¢t € (—e,¢) and
for all r € N we have ||g; — chvzo t*hi|lcr — 0 as N — oo. Let r, s € N. A family
(P;)te(~e,e) of bounded linear operators C"(X9M) — C*(X9M) is called real an-
alytic if there exist bounded linear operators Dy: C"(X9IM) — C*(X9IM), k € N,
such that for all ¢ we have | P, — chvzo t*Dy|| — 0 as N — oo, where |.|| denotes
the norm of bounded linear operators C"(X9M) — C*(ZIM).

Lemma 7.3. Let M be closed and let (g¢)ie(—c.e) be a real analytic family of Rie-
mannian metrics in Ry, (M). Then there exists § € (0,¢] such that (D )se(—s,5)
is a real analytic family of bounded linear operators C1(XIM) — CO(LIM).

Proof. Let ||gr — Zg:o tfhillcr — 0 as N — oo for all » € N and for all t € (—¢,¢).
As in section we define endomorphisms a§, and azk, k € N, of TM such that
for all X, Y in TM we have

9(a§, X,Y) = g(X,Y), gla] X,Y) = hp(X,Y).

Note that aj also exists if /1 is not positive definite. Let |.| be the norm on 39 M
induced by the inner product and let {e;}7; be a local g-orthonormal frame. Since
(9t)te(—e,e) is real analytic it follows that

N
sup lad, X — ZtkaZkX|

XETM, |X|=1 =0
n n N
k
= sup | g g(ath, e;)e; — E E t g(a*sz, e)e;| >0, N — oo
XETM, | X|=1 - i=1 k=0

for all t € (—¢,¢). In local coordinates one finds that for each x € M there exists
d(xz) € (0,¢], such that for all X € T,,M with |X| = 1 the vector (agt)l/QX is given
by a power series which converges for all ¢t € (—d(x),d(x)). Since M is compact
there exists ¢ € (0,¢] such that the convergence holds for all X € TM, |X| =1
and all ¢t € (—0,0). Then after possibly decreasing ¢ a little further also bJ, X
for t € (—4,4) is given by a power series which converges uniformly in X € TM,
|X| = 1. Furthermore for any vector fields X, Y the vector field VY is also given
by a convergent power series as can be seen in local coordinates. The assertion now
follows from the formula () for Dg. O

Proposition 7.4. If (gt)ic(—c,¢) is a real-analytic family of metrics in i[I]]:]qflat (M),
then a9t is also real-analytic.

Proof. 1t is sufficient to show that the family of operators (ﬁgt)’ngfﬂggt is real
analytic. There exists § € (0, ¢] such that the family of operators (DJ*);c(—s,s) is real
analytic. It follows from , VII-§1.1] that the family of operators ((Dgf)*l)te(_(g,é)
is also real analytic, possibly for some smaller . As above we define
P, :=D% — DY, Q;:=(B3)'G"BI — G
and we obtain
Qi =—(DI) ' PGY.
This completes the proof since the right hand side is real analytic. O
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Consider a real analytic family (g¢)ie(q,p) of Riemannian metrics on M. By
unique continuation we immediately see: If there is a tg € (a,b) with a9t # 0, then
the set

S:={t e (a,b)|a% =0}
is a discrete subset of (a, b).

Two metrics in the same connected component of iUn";ﬂat (M) can be joined by
a piecewise real-analytic path of metrics. It follows that if a connected component
of RiUn,‘;ﬂat contains at least one metric with non-zero mass endomorphism, then the
metrics with non-zero mass endomorphism are dense in this component. In order
to obtain Theorem EI, we still have to discuss families (gt)te(ayb) where D9t is not
invertible for some ¢. As the mass endomorphism is not defined for these ¢, we
complexify the parameter ¢ and pass around the metric with non invertible D9t in

the imaginary direction. This is discussed in the following subsection.

7.3. Analytic continuation in the imaginary direction. Again let (g:):c(a,b)
be a real-analytic family of metrics. We assume g, € Ry, gq,, (M) for any ¢ € (a,b),
but we do not assume that all D9t are invertible. Because of the real-analyticity of
D3+, the family can be extended to a complex-analytic family of operators defined
for ¢ in an open subset U D (a,b) of C. In this complexification the operators Dy
will no longer be self-adjoint, instead we have (DJ*)* = DgF.

As the set of invertible operators is open, we can assume without loss of generality
that DYt is invertible on U \ (a,b). In other words we assume that

T :={t € U|DJ" is not invertible}
is contained in (a, b).
The arguments from above also yield that ¢ — a9¢ is a holomorphic function on
U\T. As U\T is connected, unique continuation implies the following Proposition.

Proposition 7.5. If the mass endomorphism a9 is non-zero for anyty € (a,b)\T,
then
{t e (a,0)\T]a% # 0}
is dense in (a,b).
We will show in [@] that the mass endomorphism is actually meromorphic on
U. The order of the poles in T is essentially the highest vanishing order of the

eigenvalues passing zero. These considerations also yield an alternative proof of
Theorem , and thus indirectly the other statements of the article.
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