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Introduction

Let (M, g) be a compact Riemannian spin manifold, we always assume that a spin manifold comes equipped with a choice of orientation and spin structure. Assume that the metric g is flat in a neighborhood of a point p ∈ M and has no harmonic spinors. Then the Green's function G g at p for the Dirac operator D g exists. The constant term in the expansion of G g at p is an endomorphism of Σ p M called the mass endomorphism. The terminology is motivated by the analogy to the ADM mass being the constant term in the Green's function of the Yamabe operator. The non-nullity of the mass endomorphism has many interesting consequences. In particular, combining the results presented here with inequalities in [START_REF] Ammann | Mass endomorphism and spinorial Yamabe type problems[END_REF] and [START_REF] Hijazi | Première valeur propre de l'opérateur de Dirac et nombre de Yamabe[END_REF], one obtains a solution of the Yamabe problem.

Finding examples for which the mass endomorphism does not vanish is then a natural problem. In [START_REF] Hermann | Generic metrics and the mass endomorphism on spin 3-manifolds[END_REF], it is proven that for a generic metric on a manifold of dimension 3, the mass endomorphism does not vanish in a given point p. The aim of this paper is to extend this result to all dimensions at least 3, see Theorem 2.4.

Definitions and main result

The goal of this section is to give a precise statement of the main results. At first, the mass endomorphism is defined. Then, in Subsection 2.2, we define suitable sets of metrics to work with. Further, in Subsection 2.3, we explain some well known facts on the α-genus. Finally, in Subsection 2.4 we state Theorem 2.4, which is the main result of this article.

2.1. Mass endomorphism. In this section we will recall the mass endomorphism introduced in [START_REF] Ammann | Mass endomorphism and spinorial Yamabe type problems[END_REF]. Let (M, g) be a compact spin manifold of dimension n ≥ 2 and p ∈ M . Assume that the metric g is flat in a neighborhood of p and that the Dirac operator D g is invertible. The Green's function G g (p, •) = G g (•) of D g at p is defined by

D g G g = δ p Id ΣpM ,
where δ p is the Dirac distribution at p and G g is viewed as a linear map which associates to each spinor in Σ p M a smooth spinor field on M \ {p}. The distributional equation satisfied by G g should be interpreted as M G g (x)ψ 0 , D g ϕ(x) dv g (x) = ψ 0 , ϕ(p)

for any ψ 0 ∈ Σ p M and any smooth spinor field ϕ. Let ξ denote the flat metric on R n , it then holds that

G ξ ψ = - 1 ω n-1 |x| n x • ψ.
at p = 0, where ω n-1 is defined as the volume of S n-1 . The following Proposition is proved in [START_REF] Ammann | Mass endomorphism and spinorial Yamabe type problems[END_REF].

Proposition 2.1. Let (M, g) be a compact spin manifold of dimension n ≥ 2. Assume that g is flat on a neighborhood U of a point p ∈ M . Then, for ψ 0 ∈ Σ p M we have

G g (x)ψ 0 = - 1 ω n-1 |x| n x • ψ 0 + v g (x)ψ 0 ,
where the spinor field v g (x)ψ 0 satisfies D g (v g (x)ψ 0 ) = 0 in a neighborhood of p. This allows us to define the mass endomorphism.

Definition 2.2. The mass endomorphism α g : Σ p M → Σ p M for a point p ∈ U ⊂ M is defined by α g (ψ 0 ) := v g (p)ψ 0 .

In particular, we have

α g (ψ 0 ) = lim x→0 G g (x)ψ 0 + 1 ω n-1 |x| n x • ψ 0 .
The mass endomorphism is thus (up to a constant) defined as the zero order term in the asymptotic expansion of the Green's function in normal coordinates around p.

2.2.

Metrics flat around a point. Let M be a connected spin manifold, p ∈ U where U is an open subset of M . A Riemannian metric on U will be called extendible if it possesses a smooth extension to a (not necessarily flat) Riemannian metric on M .

Fix a flat extendible metric g flat on U . The set of all smooth extensions of g flat is denoted by

R U,g flat (M ) := {g | g is a metric on M such that g| U = g flat }.
Inside this set of metrics we study those with invertible Dirac operator

R inv U,g flat (M ) := {g ∈ R U,g flat (M ) | D g is invertible}.
The main subject of the article is the set

R =0 p,U,g flat (M ) := {g ∈ R inv U,g flat (M )
| the mass endomorphism at p is not 0}. Note that R inv U,g flat (M ) can be empty (see Subsection 2.3). We say that a subset where Ω spin * (pt) is the spin bordism ring and KO * (pt) is the ring of coefficients for KO-theory. In particular, the well-definedness of the map means that the α-genus α(M ) of a spin manifold M depends only on its spin bordism class, and the homomorphism property means that it is additive with respect to the disjoint union and multiplicative with respect to the product of spin manifolds. We recall that if the dimension of M is n then α(M ) ∈ KO n (pt) and as groups we have

A ⊂ R U,g flat (M ) is generic in R U,g flat (M ) if it is open in the C 1 -topology and dense in the C ∞ -topology in R U,g flat (M ).
KO n (pt) ∼ =      Z if n ≡ 0 mod 4; Z/2Z if n ≡ 1, 2 mod 8; 0 otherwise.
Let (M, g) be a compact spin manifold. The Atiyah-Singer index theorem states that the Clifford index of D g coincides with α(M ), see [START_REF] Lawson | Spin geometry[END_REF]. This implies that a manifold M with α(M ) = 0 cannot have a metric with invertible Dirac operator. If M is not connected, one can apply the argument in each connected component. Thus there are many non-connected examples M , with α(M ) = 0, but admitting no metric with invertible Dirac operator.

However, the converse holds true under the additional assumption that M is connected, see [START_REF]Surgery and harmonic spinors[END_REF]. The proof of the converse relies on a surgery construction preserving invertibility of the Dirac operator together with the Stolz's examples of manifolds with positive scalar curvature in every spin bordism class [START_REF] Stolz | Simply connected manifolds of positive scalar curvature[END_REF], special cases were proved previously in [START_REF] Maier | Generic metrics and connections on spin-and spinc -manifolds[END_REF] and [START_REF] Bär | Surgery and the Spectrum of the Dirac Operator[END_REF]. For our purposes, it is more convenient to use a slightly stronger version, presented in [START_REF] Ammann | Harmonic spinors and local deformations of the metric[END_REF]. The main result of this paper is the following: If α(M ) = 0, so that the mass endomorphism is defined for metrics in the non-empty set R inv U,g flat (M ), then a generic metric has a non-zero mass endomorphism.

Theorem 2.4. Let M be a compact connected n-dimensional spin manifold with n ≥ 3 and with vanishing α-genus. Let p ∈ M and assume that g flat is an extendible metric which is flat around p. Then there exists a neighborhood U of p for which R =0 p,U,g flat (M ) is generic in R U,g flat (M ). Theorem 2.4 will follow from Theorems 4.1 and 7.1 below.

2.5.

The relation to the ADM mass. Let (M, g) be a compact spin manifold of dimension n ≥ 3. Assume that g is flat in a neighborhood U of a point p ∈ M . The conformal Laplacian is then defined by

L g := 4(n -1) n -2 ∆ g + scal g ,
where ∆ g is the non-negative Laplacian and where scal g is the scalar curvature of the metric g. As for the Dirac operator D g , we say that a function

H g ∈ L 1 (M ) ∩ C ∞ (M \ {p}) is the Green's function for L g if L g H g = δ p
in the sense of distributions. Assume that the metric g is conformal to a metric with positive scalar curvature, then it is well known (see for instance [START_REF] Lee | The Yamabe problem[END_REF]) that the Green's function H g of L g exists, is positive everywhere and has the following expansion at p:

H g (x) = 1 4(n -1)ω n-1 d g (x, p) n-2 + A g + o(x),
where A g ∈ R and o(x) is a smooth function with o(p) = 0.

Set M = M \ {p} and g = H 4 n-2 g. Schoen [START_REF] Schoen | Conformal deformation of a Riemannian metric to constant scalar curvature[END_REF] observed that the complete non-compact manifold ( M , g) is asymptotically flat and its ADM mass is a n A g , where a n > 0 depends only on n. We recall that an asymptotically flat manifold, if interpreted as a time symmetric spacelike hypersurface of a lorentzian manifold, is obtained by considering an isolated system at a fixed time in general relativity. The ADM mass gives the total energy of this system. With this remark, the number A g is often called the mass of the compact manifold (M, g). By analogy, the operator α g (p), which is by construction the spin analog of A g , is called the "mass endomorphism" of (M, g) at p. We will also see in Subsection 2.6 that the mass endomorphism plays the same role as the number A g in a Dirac operator version of the Yamabe problem.

2.6. Conclusions of non-zero mass. In this Subsection we will summarize why we are interested in metrics with non-zero mass endomorphism.

Let (M, g) be a compact Riemannian spin manifold of dimension n ≥ 2. For a metric g in the conformal class [g] of g, let λ 1 ( g) be the eigenvalue of the Dirac operator D g with the smallest absolute value (it may be either positive or negative). We define

λ + min (M, [g]) = inf g∈[g] |λ 1 ( g)|Vol g (M ) 1/n .
For this conformal invariant λ + min (M, [g]) it was proven in [START_REF] Ammann | A spin-conformal lower bound of the first positive Dirac eigenvalue[END_REF][START_REF]A variational problem in conformal spin geometry[END_REF] and [START_REF] Ammann | A spinorial analogue of Aubin's inequality[END_REF] that

0 < λ + min (M, [g]) ≤ λ + min (S n ) = n 2 ω 1/n n .
The strict inequality

λ + min (M, [g]) < n 2 ω 1/n n (1) 
has several applications, see [START_REF]The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions[END_REF][START_REF] Ammann | A spinorial analogue of Aubin's inequality[END_REF][START_REF] Ammann | Mass endomorphism and spinorial Yamabe type problems[END_REF]]:

• Inequality (1) implies that the invariant λ + min (M, [g]) is attained by a generalized metric, that is, a metric of the form |f | 2/(n-1) g where f ∈ C 2 (M ) can have some zeros; • Inequality (1) gives a solution of a conformally invariant partial differential equation which can be read as a nonlinear eigenvalue equation for the Dirac operator, a type of Yamabe problem for the Dirac operator; • using Hijazi's inequality [START_REF] Hijazi | Première valeur propre de l'opérateur de Dirac et nombre de Yamabe[END_REF] one obtains a solution of the standard Yamabe problem which consists of finding a metric with constant scalar curvature in the conformal class of g in the case of n ≥ 3. The first two applications can be interpreted as a spin analog of the Yamabe problem for many reasons, see [START_REF] Ammann | A spin-conformal lower bound of the first positive Dirac eigenvalue[END_REF]. The third application says that a non-zero mass endomorphism can be used in the Yamabe problem instead of the positivity of the mass A g defined in Subsection 2.5. Now, let us come back to the subject of this paper. In [START_REF] Ammann | Mass endomorphism and spinorial Yamabe type problems[END_REF], we prove that a nonzero mass endomorphism implies Inequality [START_REF] Ammann | A spin-conformal lower bound of the first positive Dirac eigenvalue[END_REF]. In particular we see with Theorem 2.4 that Inequality (1) holds for generic metric in R U,g flat (M ). As a consequence, for generic metrics in R U,g flat (M ), we have all the applications stated above.

This can be compared to the Yamabe problem: Schoen proved that the positivity of the number A g , that is the mass of (M, g) defined in Subsection 2.5, implies a solution of the standard Yamabe problem. The positive mass theorem implies that A g ≥ 0. Hence, we get a solution of the Yamabe problem as soon as A g = 0. In particular, the mass endomorphism plays the same role in the Yamabe problem for the Dirac operator as the mass in the classical Yamabe problem. 2.7. Further remarks. We here discuss extensions of the results in this paper. At first we ask what can be done without the condition of flatness in a neighborhood of p. For an arbitrary metric on M one possible extension of our setup is a relative version of the mass endomorphism.

To briefly sketch this relative version, assume that there is a manifold (M ′ , g ′ ) and assume that a point p ′ has a neighborhood which is orientation preserving isometric to a neighborhood of p in (M, g). Using this isometry the difference between the Green's function G g p of D g on M and the Green's function

G g ′ p ′ of D g ′ on M ′ is a well-defined smooth spinor in a neighborhood of p ∼ = p ′ . Then the relative mass endomorphism is defined as G p (p)-G p ′ (p ′ ) ∈ End(Σ p M ) ∼ = End(Σ p ′ M ′ ).
The methods of the present work can be modified such that this mass endomorphism is non-zero for generic metrics g on M which are locally isometric to a fixed metric g ′ on M ′ around p and p ′ . Now we discuss whether the condition α(M ) = 0 is necessary. If the manifold M has a non-trivial index, then R inv U,g flat (M ) is empty. Nevertheless an extension is possible. For this R inv U,g flat (M ) has to be replaced by the space of metrics for which the kernel of the Dirac operator has minimal dimension. For such metrics there are various choices of "Green's functions" for which the mass endomorphism is generically non-zero, for example if one defines it as being the integral kernel of the operator (D + π) -1π where π is the projection to the kernel.

In [START_REF] Ammann | Eigenvalues of the mass endomorphism are generically simple[END_REF] we plan to present another method to prove a variant of Theorem 5.1 with slightly different conditions and a different potential for generalization. This other proof uses methods from spectral theory, and explains that the convergence to infinity of the mass endomorphism actually can be understood as a pole of a meromorphic function.

2.8. Overview of the paper. We here give a short overview of the paper. In Section 3 we introduce notation and collect basic facts concerning spinors and Dirac operators. In Section 4 we explain how to find one metric with non-zero mass endomorphism on a given manifold, this uses the results of the following two sections. In Section 5 we show that under certain assumptions the mass endomorphism tends to infinity when the Riemannian metric varies and approaches a metric with harmonic spinors. In Section 6 we show that the property of non-zero mass endomorphism can be preserved under surgery on the underlying manifold. Finally, in Section 7 we use analytic perturbation techniques to show that the existence of one metric with non-zero mass endomorphism implies that a generic metric has this property.

Notations and preliminaries

3.1. Notation and some basic facts. In this article we use the following notations for balls and spheres:

B k (R) := {x ∈ R k | x < R}, B k := B k (1), S k (R) := {x ∈ R k | x = R}, S k := S k (1).
As background for basic facts on spinors and Dirac operators we refer to [START_REF] Lawson | Spin geometry[END_REF] and [START_REF] Friedrich | Dirac Operators in Riemannian Geometry[END_REF]. For the convenience of the reader we summarize a few definitions and facts. On a compact Riemannian spin manifold (M, g) one defines the Dirac operator D g acting on sections of the spinor bundle. The Dirac operator is essentially selfadjoint and extends to a self-adjoint operator H 1 → L 2 where H 1 is the space of L 2 -spinors whose first derivative is L 2 as well, and L 2 is the space of square integrable spinors. A smooth spinor is called harmonic, if it is in the kernel of the Dirac operator D g . Any L 2 -spinor satisfying D g ϕ = 0 in the weak sense, is already smooth, thus it is a harmonic spinor. If the kernel of D g is trivial, then the Dirac operator is invertible with a bounded inverse L 2 → H 1 . The inverse has an integral kernel called the Green's function of D g . The Green's function of D g was already used in Subsection 2.1 to define the mass endomorphism.

3.2.

Comparing spinors for different metrics. Let g and h be Riemannian metrics on the spin manifold M . The goal of this section is to recall how spinors on (M, g) are identified with spinors on (M, h) using the method of Bourguignon and Gauduchon [START_REF] Bourguignon | Spineurs, opérateurs de Dirac et variations de métriques[END_REF], see also [START_REF]Surgery and harmonic spinors[END_REF].

Given the metrics g and h there exists a unique bundle endomorphism

a g h of T M which satisfies g(X, Y ) = h(a g h X, Y ) for all X, Y ∈ T M . It is g-self-adjoint and pos- itive definite. Define b g h := (a g h ) -1/2
, where (a g h ) 1/2 is the unique positive pointwise square root of a g h . The map b g h maps g-orthonormal frames to h-orthonormal frames and defines an SO(n)-equivariant bundle morphism b g h : SO(M, g) → SO(M, h) of the principal bundles of orthonormal frames. The map b g h lifts to a Spin(n)equivariant bundle morphism β g h : Spin(M, g) → Spin(M, h) of the corresponding spin structures. From this we obtain a homomorphism of vector bundles

β g h : Σ g M → Σ h M (2)
which is a fiberwise isometry with respect to the inner products on Σ g M and Σ h M . We let the Dirac operator D h act on sections of Σ g M by defining

D h g := (β g h ) -1 D h β g h .
In [START_REF] Bourguignon | Spineurs, opérateurs de Dirac et variations de métriques[END_REF]Thm. 20] an expression for D h g is computed in terms of a local g-orthonormal frame {e i } n i=1 . The result is

D h g ϕ = n i=1 e i • ∇ g b g h (ei) ϕ + 1 2 n i=1 e i • ((b g h ) -1 ∇ h b g h (ei) b g h -∇ g b g h (ei) ) • ϕ, (3) 
where for any vector field X the operator (b g h ) -1 ∇ h X b g h -∇ g X is g-antisymmetric and therefore considered as an element of the Clifford algebra. It follows that

D h g ϕ = D g ϕ + A h g (∇ g ϕ) + B h g (ϕ), (4) 
where A h g and B h g are pointwise vector bundle maps whose pointwise norms are bounded by C|h -g| g and C(|h -g| g + |∇ g (hg)| g ) respectively.

Finding one metric with non-vanishing mass endomorphism

The goal of this section is to prove the following Theorem.

Theorem 4.1. Let M be a compact connected spin manifold of dimension n ≥ 3 and let p ∈ M . Assume that α(M ) = 0. Then there exists a neighborhood U of p and a flat metric g flat on U such that R =0 p,U,g flat (M ) is non-empty.

Proof. We start by proving the theorem when the manifold is a torus. Consider the torus T n equipped with the Lie group spin structure for which the standard flat metric g 0 has a space of parallel spinors of maximal dimension. Choose p ∈ T n and let U be a small open neighborhood of p. Further, let g flat be the restriction of g 0 to U .

Since n ≥ 3 we have that α(T n ) = 0 so by [START_REF]Surgery and harmonic spinors[END_REF] there is a metric g 1 on T n with invertible Dirac operator. The construction of g 1 is done through a sequence of surgeries which starts with the disjoint union of T n and some other manifolds, and ends with the torus T n . These surgeries can be arranged so that they do not change the open set U in the initial T n , so the resulting metric satisfies g 1 = g 0 on U , or g 1 ∈ R inv U,g flat (T n ). Define the family of metrics g t := tg 1 + (1t)g 0 . Since the eigenvalues of D gt depend analytically on t it follows that D gt is invertible except for isolated values of t, it follows that g t ∈ R inv U,g flat (T n ) except for isolated values of t. Choose a sequence t k → 0 for which g t k ∈ R inv U,g flat (T n ), we can then apply Theorem 5.1 below to the sequence g t k converging to g 0 and conclude that g t k ∈ R =0 p,U,g flat (T n ) for k large enough. In particular R =0 p,U,g flat (T n ) is not empty, and we choose a metric h 0 from this set. Now let M be a manifold of dimension n as in the theorem. Since α(M ) = 0 we know that there is a metric g on M with invertible Dirac operator. We consider the disjoint union

M 0 = T n ⊔ (-T n ) ⊔ M.
Here -T n denotes T n with the opposite orientation, so that T n ⊔ (-T n ) is a spin boundary and M 0 is spin bordant to M . Since M is connected it follows that M can be obtained from M 0 by a sequence of surgeries of codimension 2 and higher, see [START_REF]Surgery and harmonic spinors[END_REF]Proposition 4.3]. Again, these surgeries can be arranged to miss the open set U in the first T n . We equip M 0 with the Riemannian metric

h 0 ⊔ h 0 ⊔ g ∈ R =0
p,U,g flat (T n ⊔ (-T n ) ⊔ M ) and when we use Theorem 6.1 below for the sequence of surgeries we end up with a metric g ′ ∈ R =0 p,U,g flat (M ). Finally, the point p ∈ M we end up with after the sequence of surgeries might of course not be equal to the point p in the assumptions of the theorem. If we set this right by a diffeomorphism we have proved that R =0 p,U,g flat (M ) is non-empty.

Note that this proof does not work in dimension 2. Indeed, we strongly use that the α-genus of the torus T n vanishes. This fact is only true in dimension n ≥ 3. If the flat torus T 2 is equipped with the Lie group spin structure with two parallel spinors, then α(T 2 ) = 1. By the way, it is proven in [START_REF] Ammann | Mass endomorphism and spinorial Yamabe type problems[END_REF] that the mass endomorphism always vanishes in dimension 2.

Mass endomorphism of metrics close to a metric with harmonic spinors

Finding examples of metrics with non-zero mass endomorphism seems to be a difficult issue. The only explicit examples we have until now are the projective spaces RP n , n ≡ 3 mod 4, equipped with its standard metric, see [START_REF] Ammann | Mass endomorphism and spinorial Yamabe type problems[END_REF]. The goal of this section is to show that metrics g ∈ R inv U,g flat (M ) sufficiently close to a metric h ∈ R p,U,g flat \ R inv U,g flat (M ) will under some additional assumptions provide such examples. This is the object of Theorem 5.1 below, which in our mind has an interest independently of the application to Theorem 2.4.

Theorem 5.1. Let U be a neighborhood of p ∈ M . Assume that h ∈ R U,g flat (M ) has ker D h = {0}. Further assume that the evaluation map of harmonic spinors at p,

ker D h ∋ ψ → ψ(p) ∈ Σ h p M, is injective. Set m := dim ker D h Let g k ∈ R inv U,g flat (M ), k = 1, 2, .
. . , be a family of metrics on M converging to h in the C 1 -topology.

Then the mass endomorphism α g k at p has at least m eigenvalues tending to ∞ as k → ∞. In particular, g k ∈ R =0 p,U,g flat (M ) for large k. The proof of this theorem is inspired by the work of Beig and O' Murchadha [START_REF] Beig | Trapped surfaces due to concentration of gravitational radiation[END_REF]. In the hypothesis of Theorem 5.1, the injectivity of the evaluation map ker D h ∋ ψ → ψ(p) ∈ Σ h p M, is quite restrictive: it is fulfilled for instance when the space of harmonic spinors is 1-dimensional if p is not a zero of the harmonic spinor. In Theorem 4.1 we applied the result to the flat torus T n .

Proof. For the proof we choose a non-zero ψ ∈ ker D h . Set ψ p := ψ(p) ∈ Σ h p M , by assumption we have ψ p = 0. We will show that α g k (ψ p ) tends to infinity.

Let G k be the Green's function of D g k associated to ψ p , that is G k is a distributional solution of D g k G k = δ p ψ p . In coordinates around p we write (compare Proposition 2.1)

G k = -η x ω n-1 r n • ψ p + v g k (ψ p ). ( 5 
)
Here η is a cutoff function which is equal to 1 near p and has support in U . We shorten notation by writing v k for the spinor field v g k (ψ p ).

Step 1. We show that there are

p k ∈ M for which |v k (p k )| → ∞. Let the smooth function Ω : M \ {p} → (0, 1] satisfy Ω(x) = r(x) if x ∈ B p (ε), 1 if x ∈ M \ B p (2ε) .
Note that Ω does not depend on k. We have

0 < |ψ p | 2 = M G k , D g k ψ dv g k = M 1 Ω n-1 Ω n-1 G k , D g k ψ dv g k ≤ M 1 Ω n-1 dv g k Ω n-1 G k ∞ D g k ψ ∞ .
As the integral is bounded and the last factor tends to zero as k → ∞, we conclude that lim

k→∞ Ω n-1 G k ∞ = ∞.
Let p k be points for which

|Ω n-1 (p k )G k (p k )| = Ω n-1 G k ∞ .
Then

Ω n-1 (p k )G k (p k ) = Ω n-1 (p k ) -η x ω n-1 r n • ψ 0 (p k ) + Ω n-1 (p k )v k (p k ),
here the first term on the right hand side is bounded so the second term must tend to infinity.

Since |Ω n-1 (p k )v k (p k )| ≤ |v k (p k )| we conclude that |v k (p k )| → ∞ as k → ∞, and
Step 1 is proven.

To the spinor v k which is a section of Σ g k M the map β g k h described in (2) associates a section w k := β g k h v k in the spinor bundle Σ h M . We decompose this section as andw ⊥ k is orthogonal to ker D h . We choose p large enough so that

w k = a k ϕ k + w ⊥ k where ϕ k ∈ ker D h is normalized to have ϕ k L p (Σ h M) = 1 , a k ∈ R,
H p 1 (Σ h M ) embeds into C 0 (Σ h M ).
Step 2. We show that |a k | → ∞. For a contradiction assume that the sequence

|a k | is bounded. From (5) it follows that D g k v k = gradη • x ωn-1r n • ψ p . This together with the properties of β g k h gives w ⊥ k H p 1 ≤ C D h w ⊥ k L p = C D h w k L p = C (β g k h ) -1 D h β g k h v k L p = C D h g k v k L p ≤ C D g k v k L p + C A h g k (∇ g k v k ) + B h g k (v k ) L p ≤ C gradη • x ω n-1 r n • ψ p L p + Cε k w k H p 1 , (6) 
here the first term is bounded and ε k → 0 by our assumption that g k → h in the C 1 -topology. By assumption we also have

w k H p 1 ≤ a k ϕ k H p 1 + w ⊥ k H p 1 ≤ C + w ⊥ k H p 1 . Together this gives w ⊥ k H p 1 ≤ C + Cε k + Cε k w ⊥ k H p 1 , so w ⊥ k H p
1 is bounded. We conclude that w ⊥ k C 0 is bounded, and the assumption that |a k | is bounded then tells us that w k C 0 = v k C 0 is bounded. This contradicts Step 1, so we have proved Step 2.

Step 3.

Conclusion. Set ω k := a -1 k w k and ω ⊥ k := a -1 k w ⊥ k so that ω k = ϕ k + ω ⊥ k .
Then (6) tells us that

ω ⊥ k H p 1 ≤ Ca -1 k gradη • x ω n-1 r n • ψ 0 L p + Cε k ω k H p 1 ,
where the first term now tends to zero. Since the ϕ k are in ker D h and they are normalized in L p (Σ h M ) it follows that they are bounded in H p 1 (Σ h M ). From this we get

ω k H p 1 ≤ ϕ k H p 1 + ω ⊥ k H p 1 ≤ C + ω ⊥ k H p 1 . It follows that ω ⊥ k H p 1 ≤ o(1) + Cε k ω ⊥ k H p 1 so ω ⊥ k H p 1 → 0 and ω ⊥ k C 0 → 0. Finally we have |α g k (ψ p )| = |v k (p)| = |w k (p)| = a k |ω k (p)| ≥ a k (|ϕ k (p)| -|ω ⊥ k (p)|) = a k (|ϕ k (p)| + o(1)).
By our assumption that the evaluation map of harmonic spinors at p is injective we know that |ϕ k (p)| cannot tend to zero, so from Step 2 we conclude that |α g k (ψ p )| → ∞. This finishes the proof of Step 3 and the Theorem.

Surgery and non-zero mass endomorphism

Let M be obtained from M by surgery of codimension at least 2. We assume that p ∈ M is not hit by the surgery, so we have p ∈ M . As before R =0 p,U,g flat (M ) denotes the metrics with invertible Dirac operator on M which coincide with the flat metric g flat on U and whose mass endomorphism at p is not zero. The goal of this section is to prove that R =0 p,U,g flat (M ) = ∅ implies R =0 p,U,g flat ( M ) = ∅. We start with a manifold M of dimension n and a point p ∈ M . We will perform a surgery of dimension k ∈ {0, • • • n -2} on M . For this construction, we follow the beginning of Section 3 in [START_REF]Surgery and harmonic spinors[END_REF] and use the same notation. So, we assume that we have an embedding i : S k → M with a trivialization of the normal bundle of S := i(S k ) in M , which thus can be identified with S k × R n-k . The normal exponential map then defines an embedding of a neighborhood of the zero section of the normal bundle of S, in other words for small R > 0 the normal exponential map defines a diffeomorphism f from S k × B n-k (R) to an open neighborhood of S, and f is an

extension of S k × {0} → S k i → M . Furthermore, for sufficiently small R > 0, the distance from f (x, y) to S = f (S k × {0}) is |y|.
As before we assume that U is an open neighborhood of p, on which a flat extendible metric g flat exists. We assume further that p ∈ S, and by possibly restricting U to a smaller open set, we can also assume that U ∩ S = ∅. Thus for small R > 0 one obtains

U ∩ f (S k × B n-k (R)) = ∅.
As in Section 1 of [START_REF]Surgery and harmonic spinors[END_REF] we define

M = M \ f (S k × B n-k (R)) ∪ B k+1 × S n-k-1 /∼,
where ∼ identifies the boundary of B k+1 × S n-k-1 with f (S k × S n-k-1 (R)) via the map (x, y) → f (x, Ry). Our constructions are carried out such that U is both a subset of M and M .

The main result of this section is the following Theorem.

Theorem 6.1. If R =0 p,U,g flat (M ) = ∅, then R =0 p,U,g flat ( M ) = ∅. Proof.
We assume the requirements for p, U , f and k stated at the beginning of this section, and let g ∈ R =0

p,U,g flat (M ). The goal is to construct a metric g ∈ R =0

p,U,g flat ( M ) following the constructions in [START_REF]Surgery and harmonic spinors[END_REF]. Theorem 1.2 in [START_REF]Surgery and harmonic spinors[END_REF] allows us to construct a metric g ′ on M with invertible Dirac operator. We recall the scheme of the proof of this theorem. in the beginning of Section 3 of [START_REF]Surgery and harmonic spinors[END_REF] we define open neighborhoods U S (r) by

U S (r) := f (S k × B n-k (r))
for small r. Then we construct a family of metrics (g ρ ) ρ satisfying g ρ = g on M \ U S (R max ) for some small number R max . This family of metrics is constructed in two steps. First, we use Proposition 3.2 in [START_REF]Surgery and harmonic spinors[END_REF] to assume that g has a product form in a neighborhood of S. Then, we do the construction of Section 3.2 in [START_REF]Surgery and harmonic spinors[END_REF] to get g ρ . Once these metrics (g ρ ) are constructed, we proceed by contradiction. We take a sequence (ρ k ) k∈N tending to 0 and we assume that ker (D gρ k ) = 0 for all k, that is ∀k ∈ N, there exists a harmonic spinor ψ k = 0 on ( M , g ρ k ).

By showing that lim k→∞ ψ k converges in a weak sense to a non-zero limit spinor in ker D g , we will obtain a contradiction. So the metric g ′ := g ρ satisfies the requirements of Theorem 1.2 in [START_REF]Surgery and harmonic spinors[END_REF] as soon as ρ is small enough. This proof actually allows us to require an additional property for the metrics g δ , and make weaker assumptions on the spinors ψ k .

• The number R max in the proof can be chosen arbitrarily small. So set δ = R max and choose ρ := ρ(δ) small enough so that g δ = g ρ has an invertible Dirac operator. We obtain in this way a family of metrics (g δ ) δ∈(0,δ0) for some δ 0 > 0 such that all D g δ are invertible and such that g δ = g on M \ U S (δ). • Let now (δ k ) k∈N be a sequence of positive numbers going to 0. We make the following assumption: ∀k ∈ N, there exists a spinor ψ k on ( M , g δ k ) and a sequence λ k converging to 0 such that

D g δ k ψ k = λ k ψ k .
Working with these spinors instead of the ones given by assumption [START_REF] Ammann | A spinorial analogue of Aubin's inequality[END_REF], the same contradiction is obtained. This proves that there is a uniform spectral gap for (g δ ) δ∈(0,δ0/2) , or in other words that there exists a constant

C 0 > 0 independent of δ ∈ (0, δ 0 /2) such that SpecD g δ ∩ [-C 0 , C 0 ] = ∅. (8) 
Now, we prove that the metric g := g δ for δ small enough satisfies the requirements of Theorem 6.1. It is already clear that D g δ is invertible for δ small enough, and that g δ is flat on U for δ small enough. It remains to show that α g δ p = 0 for δ small enough. For this purpose we show that α g δ p → α g p as δ → 0. Since we assume α g p = 0 this gives the desired result. So let us prove this fact. First, choose ψ 0 ∈ Σ g p (M ) = Σ g δ p (M ). To simplify the notation, set γ := G g ψ 0 and γ δ := G g δ ψ 0 . The proof will be complete if we prove that lim

δ→0 γ(p) -γ δ (p) = 0. (9) 
Note that the spinor γγ δ , defined on M \ ({p} ∪ U S (δ)), is smooth and extends smoothly to p. Indeed, it is equal on U to v g p (x)ψ 0v g δ p (x)ψ 0 (with the notations of Proposition 2.1 and Definition 2.2). Let η δ ∈ C ∞ ( M ), 0 ≤ η δ ≤ 1 be a cutoff function such that η δ = 1 on M \ U S (3δ) and η δ = 0 on U S (2δ). Since on supp(η δ ) ⊂ M \ U S (2δ) = M \ U S (2δ) we have g δ = g we may assume that

|dη δ | g = |dη δ | g δ ≤ 2 δ . (10) 
From Equation ( 8), we have

C 2 0 ≤ M |D g δ ϕ δ | 2 g δ dv g δ M |ϕ δ | 2
g δ dv g δ for all smooth non-zero spinors ϕ δ on ( M , g δ ). We evaluate this quotient for ϕ δ := η δ γγ δ . Note that ϕ δ is well defined on ( M , g δ ) and smooth since γ is well defined on supp(η δ ). Since γ and γ δ are harmonic, we have Dϕ δ = dη δ • γ, and since g δ = g on supp(η δ ), we get from Equation ( 10) that

M |D g δ ϕ δ | 2 g δ dv g δ = M |dη| 2 g |γ| 2 g dv g ≤ 4 δ 2 sup x∈US(3δ0) |γ(x)| 2 Vol g (U S (3δ) \ U S (2δ)) .
We have that Vol g (U S (3δ) \ U S (2δ)) ≤ Cδ n-k where we used the convention (used throughout this proof) that C is a positive constant independent of δ. Since k ≤ n -2, this leads to

M |D g δ ϕ δ | 2 g δ dv g δ ≤ C.
Since η δ = 1 on M \ U S (3δ) and since g δ = g on this set, it follows that

M\US (3δ) |ϕ δ | 2 g δ dv g δ ≤ C. (11) 
Now, we proceed as in step 2 of the proof of Theorem 1.2 in [START_REF]Surgery and harmonic spinors[END_REF]. Let Z > 0 be a large integer. By [START_REF] Bourguignon | Spineurs, opérateurs de Dirac et variations de métriques[END_REF] the set {ϕ δ } δ>0 is bounded in L 2 (M \ U S (1/Z)). By Lemma 2.2 in [START_REF]Surgery and harmonic spinors[END_REF] it follows that {ϕ δ } δ>0 is bounded in C 1,α (M \ U S (2/Z)) for all α. We apply Ascoli's Theorem and conclude there is a subsequence (ϕ δ k ) of {ϕ δ } δ>0 which converges in C 1 (M \ U S (2/Z)) to a spinor Φ 0 . Similarly we construct further and further subsequences of (ϕ δ k ) converging to Φ i in C 1 (M \ U S (2/(Z + i))). Taking a diagonal subsequence of these subsequences, we obtain a subsequence (ϕ δ k ) which converges in C 1 loc (M \ S) to a spinor Φ. As ϕ δ is D g -harmonic on (M \ U S (3δ)) the C 1 loc (M \ S)-convergence implies that D g Φ = 0 on M \ S. With [START_REF] Bourguignon | Spineurs, opérateurs de Dirac et variations de métriques[END_REF] we conclude that Φ ∈ L 2 (M ). Thus Φ is L 2 and smooth on M \ S. The equation D g Φ = 0 holds on M \ S. We now apply Lemmas 2.1 and 2.4 of [START_REF]Surgery and harmonic spinors[END_REF] and conclude that Φ is smooth on (M, g) and DΦ = 0 on M . Since ker D 0 = 0, we get that Φ ≡ 0 and in particular Φ(p) = 0. This implies Equation (9).

From existence to genericity

The goal of this section is to prove the following Theorem.

Theorem 7.1. Let M be a compact spin manifold of dimension n, n ≥ 3, let p ∈ M and let U be a neighborhood of p. If R =0 p,U,g flat (M ) is non-empty then it is generic in R U,g flat (M ).

7.1. Continuity of the mass endomorphism. The goal of this subsection is to prove that the mass endomorphism depends continuously on g in the C 1 -topology.

Proposition 7.2. Equip R inv U,g flat (M ) with the C 1 -norm. Then the map R inv U,g flat (M ) ∋ g → α g ∈ End(Σ p M ) is continuous. It follows that R =0 p,U,g flat (M ) is open in R inv U,g flat (M ) and thus in R U,g flat (M ).
Proof. Let (g k ) k∈N be a family of metrics in R inv U,g flat (M ) such that g k → g in the C 1 -topology. For each k the operator

D g k g = (β g g k ) -1 D g k β g
g k is invertible. We define P k := D g k g -D g . Further, let G g k and G g be the Green's functions of D g k and D g . We define

Q k := (β g g k ) -1 G g k β g g k -G g . Let ψ ∈ Σ p M .
Using the equation ( 5) for G g k and for G g and using the fact that g k | U = g| U = g flat we find that

Q k ψ = (β g g k ) -1 v g k β g g k ψ -v g ψ. Therefore Q k ψ has a smooth continuation to all of M . The equation D g k G g k = D g G g = δ p Id ΣpM then tells us that Q k = -(D g k g ) -1 P k G g . (G g ψ)(
x) becomes singular as x → p. However we may take a smooth function η which is equal to 1 near p and has support in U and since 4) it follows that the sequence (D g k g ) k∈N converges to D g with respect to the norm of bounded linear operators from C 1 (Σ g M ) to C 0 (Σ g M ). Therefore P k G g ψ C 0 → 0 as k → ∞. Then it follows from [15, Thm. IV-1.16] that ((D g k g ) -1 ) k∈N converges to (D g ) -1 with respect to the norm of bounded linear oper-

g k | U = g| U = g flat we obtain P k (ηG g ψ) = D g (ηG g ψ) -D g (ηG g ψ) = 0. It follows that P k G g ψ = P k (1 -η)G g ψ, where (1 -η)G g ψ is smooth on all of M . From (
ators from C 0 (Σ g M ) to C 1 (Σ g M ). Therefore Q k ψ C 1 → 0 as k → ∞. Evaluating Q k at p yields α g k -α g .
Thus the statement of the Proposition follows.

7.2. Real-analytic families of metrics. Let ε > 0. We say that a family (g t ) t∈(-ε,ε) of Riemannian metrics is real analytic if there exist sections h k of the bundle of symmetric bilinear forms on M , k ∈ N, such that for all t ∈ (-ε, ε) and for all r ∈ N we have g

t -N k=0 t k h k C r → 0 as N → ∞. Let r, s ∈ N. A family (P t ) t∈(-ε,ε) of bounded linear operators C r (Σ g M ) → C s (Σ g M ) is called real an- alytic if there exist bounded linear operators D k : C r (Σ g M ) → C s (Σ g M ), k ∈ N,
such that for all t we have P t -N k=0 t k D k → 0 as N → ∞, where . denotes the norm of bounded linear operators C r (Σ g M ) → C s (Σ g M ).

Lemma 7.3. Let M be closed and let (g t ) t∈(-ε,ε) be a real analytic family of Riemannian metrics in R inv U,g flat (M ). Then there exists δ ∈ (0, ε] such that (D gt g ) t∈(-δ,δ) is a real analytic family of bounded linear operators C 1 (Σ g M ) → C 0 (Σ g M ).

Proof. Let g t -N k=0 t k h k C r → 0 as N → ∞ for all r ∈ N and for all t ∈ (-ε, ε). As in section 3.2 we define endomorphisms a g gt and a

g h k , k ∈ N, of T M such that for all X, Y in T M we have g(a g gt X, Y ) = g t (X, Y ), g(a g h k X, Y ) = h k (X, Y ). Note that a g h k also exists if h k is not positive definite. Let |.
| be the norm on Σ g M induced by the inner product and let {e i } n i=1 be a local g-orthonormal frame. Since

(g t ) t∈(-ε,ε) is real analytic it follows that sup X∈T M, |X|=1 |a g gt X - N k=0 t k a g h k X| = sup X∈T M, |X|=1 | n i=1 g(a g gt X, e i )e i - n i=1 N k=0 t k g(a g h k X, e i )e i | → 0, N → ∞
for all t ∈ (-ε, ε). In local coordinates one finds that for each x ∈ M there exists δ(x) ∈ (0, ε], such that for all X ∈ T x M with |X| = 1 the vector (a g gt ) 1/2 X is given by a power series which converges for all t ∈ (-δ(x), δ(x)). Since M is compact there exists δ ∈ (0, ε] such that the convergence holds for all X ∈ T M , |X| = 1 and all t ∈ (-δ, δ). Then after possibly decreasing δ a little further also b g gt X for t ∈ (-δ, δ) is given by a power series which converges uniformly in X ∈ T M , |X| = 1. Furthermore for any vector fields X, Y the vector field ∇ gt X Y is also given by a convergent power series as can be seen in local coordinates. The assertion now follows from the formula (3) for D gt g .

Proposition 7.4. If (g t ) t∈(-ε,ε) is a real-analytic family of metrics in R inv U,g flat (M ), then α gt is also real-analytic.

Proof. It is sufficient to show that the family of operators (β g gt ) -1 G gt β g gt is real analytic. There exists δ ∈ (0, ε] such that the family of operators (D gt g ) t∈(-δ,δ) is real analytic. It follows from [15, VII- §1.1] that the family of operators ((D gt g ) -1 ) t∈(-δ,δ) is also real analytic, possibly for some smaller δ. As above we define P t := D gt g -D g , Q t := (β g gt ) -1 G gt β g gt -G g and we obtain Q t = -(D gt g ) -1 P t G g . This completes the proof since the right hand side is real analytic.

Consider a real analytic family (g t ) t∈(a,b) of Riemannian metrics on M . By unique continuation we immediately see: If there is a t 0 ∈ (a, b) with α gt 0 = 0, then the set S := {t ∈ (a, b) | α gt = 0} is a discrete subset of (a, b).

Two metrics in the same connected component of R inv U,g flat (M ) can be joined by a piecewise real-analytic path of metrics. It follows that if a connected component of R inv U,g flat contains at least one metric with non-zero mass endomorphism, then the metrics with non-zero mass endomorphism are dense in this component. In order to obtain Theorem 7.1, we still have to discuss families (g t ) t∈(a,b) where D gt is not invertible for some t. As the mass endomorphism is not defined for these t, we complexify the parameter t and pass around the metric with non invertible D gt in the imaginary direction. This is discussed in the following subsection. 7.3. Analytic continuation in the imaginary direction. Again let (g t ) t∈(a,b) be a real-analytic family of metrics. We assume g t ∈ R U,g flat (M ) for any t ∈ (a, b), but we do not assume that all D gt are invertible. Because of the real-analyticity of D gt g , the family can be extended to a complex-analytic family of operators defined for t in an open subset U ⊃ (a, b) of C. In this complexification the operators D gt g will no longer be self-adjoint, instead we have (D gt g ) * = D g t g . As the set of invertible operators is open, we can assume without loss of generality that D gt g is invertible on U \ (a, b). In other words we assume that T := {t ∈ U | D gt g is not invertible} is contained in (a, b).

The arguments from above also yield that t → α gt is a holomorphic function on U \ T . As U \ T is connected, unique continuation implies the following Proposition. We will show in [START_REF] Ammann | Eigenvalues of the mass endomorphism are generically simple[END_REF] that the mass endomorphism is actually meromorphic on U . The order of the poles in T is essentially the highest vanishing order of the eigenvalues passing zero. These considerations also yield an alternative proof of Theorem 5.1, and thus indirectly the other statements of the article.
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 75 If the mass endomorphism α gt 0 is non-zero for any t 0 ∈ (a, b)\T , then {t ∈ (a, b) \ T | α gt = 0} is dense in (a, b).
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