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A Stochastic Liouville approach
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Ume̊aUniversity, 901 87 UMEÅ,Sweden

July 14, 2009

Abstract

The field dependence of the proton (I) spin-lattice relaxation rate

is calculated for a dipole-dipole coupled spin pair, (I=1
2)–(S=1) where

the quadrupole nucleus (S) is 2H or 14N with asymmetry parameter

η = 0. The observed relaxation profile shows a marked enhancement
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for equal proton Larmor and quadrupole spin frequencies (i.e. ωI=

ωQ), This phenomenon is referred to as the quadrupole dip, and has

been observed for instance in 14N −1 H amide groups of immobilized

proteins.

In this work an analysis of the observed relaxation enhancement is

presented when the dipole-dipole coupling and the quadrupole inter-

action are modulated by the overall reorientational motion.

A characteristic low field dispersion is observed when 3
2τRωI ≥ 1

where τR is the rotational correlation time and ωI is the proton Larmor

frequency. At higher fields the relaxation peak exhibits a Lorenzian

like lineshape; L(ωI) = [(ωQ − ωI)2τ2R(
3
5)

2 + 1]−1 which is centred at

the quadrupole frequency. The quadrupole spin system shows a spin-

lattice T1Q and a spin-spin relaxation time T2Q which become equal

in the zero field limit. In the slow tumbling limit, the quadrupole

spin relaxation times, T1Q, T2Q are equal to 3
2τR.

1 Introduction

The fast field-cycling technique is one of the most important NMR exper-

iment for studies of molecular dynamics and structure. It has been used

2

Page 2 of 31

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
measuring the field dependent proton spin-lattice relaxation rate, R1 - NMR

dispersion(NMRD) profile, for a large variety of systems [1] - [3]. In NMRD

measurements the relaxation rates Ri(ω)(i=1,2) of a spin system I are mea-

sured at the proton Larmor frequency that ranges between 10 kHz and about

40 MHz. In the strong narrowing regime, the proton(I) relaxation rates can

be expressed in terms of a spectral density function of the spin-lattice in-

teraction, which thereby determine the measured NMRD profile. When the

dipole-dipole interaction is the dominant spin-lattice interaction, this dipole-

spectral density function is the crucial quantity, which contains all the inter-

action parameters and information about molecular motions.

During the last thirty years the Solomon-Bloembergen-Morgan theory[4]

of water proton R1-NMRD profiles of paramagnetic systems have been gener-

alised to describe different contrast agents[8]-[11] of high electron spin tran-

sition metal complexes including the slow-motion electron spin relaxation

problem[5]-[7]. Several experimental studies of 1H NMRD profiles obtained

for different paramagnetic systems have been reported [12]-[15], and vari-

ous computational methods have been developed to describe these systems

[16]-[19].

There are also a large number of both theoretical and experimental NMRD

3
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studies reported on aqueous (diamagnetic) protein solutions[20]-[28]. For

instance the NMRD experiment has been used to study the self associa-

tion of proteins[29]-[31]. The theoretical description and characterization

of the NMRD dispersion profile of protein solutions provides a challenging

problem[23, 24, 28]. Among published NMRD studies a few observations of

quadrupole dips(QD’s) were reported[32]-[39]. That is, when the measured

relaxation rate R1(ωI) displays a marked increase at the proton Larmor fre-

quencies matching the resonance frequencies of a quadrupole spin system.

(The "quadrupole dip" is observed in 1/R1(ωI) profile). This enhanced re-

laxation rate of an I-spin, coupled via a spin dipole-spin dipole interaction

to a quadrupole nucleus(S), is a cross relaxation phenomenon, in which the

relatively fast relaxing quadrupole nucleus acts as a relaxation sink for a

dipole coupled I-spin [1],[32]-[36]. The theoretical analysis presented in the

literature is generally limited to the static regime. For instance, the QD’s

was observed and analysed in the plastic crystals phases of CFCl3[32], in

the biaxial smectic mesophase of HpAB[33], and for amide protons or water

in immobilized proteins[1], [34]-[39]. Nuclear quadrupole resonance (NQR)

studies are relevant for the theory of cross relaxation, because at zero field,

the spin quantisation is defined by the molecular fixed principal axes of the

4
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electric field gradient, NQR reports directly on the quadrupole spin system.

The aim is to determine the transition frequencies of the quadrupole spin

system[33, 40].

The present work focuses on reorientational effects in the proton spin

lattice relaxation enhancement of protons residing in the vicinity of a deu-

terium nucleus(1H -2H) or for amide proton in a slightly simplified spin pair

1H -14N with an asymmetry parameter, η=0. The spin pairs may be present

in a globular macromolecule, that undergoes a slow tumbling motion. The

condition for slow tumbling is expected to be more important in proteins

studies which are carried out in "crowded", or more cell-like systems, as well

as for membrane proteins in vesicles. The characteristic rotation diffusion

correlation time τR ≡ 1/6DR, (DR is the rotational diffusion coefficient) is

then expected to range between 50-100 ns for crowded protein solutions, to

about 1-2 µs for membrane proteins in giant vesicles.

The proton R1-NMRD profile is measured over a wide range of proton

Larmor frequencies(ωI), ranging from the low field regime ωI << ωQ where

the quadrupole spin is quantized in a molecular fixed frame to the high field

regime when ωI >> ωQ and the spins are quantized in the laboratory frame.

When ωI << ωQ a NQR spectrum might provide direct information about

5
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the quadrupolar frequencies of the S-system. In the high field regime the

quadrupole NMR lineshape is often far too broad to be detectable. Con-

sequently, when a NMRD profile detects a marked cross relaxation peak, it

provides indirect information about the quadrupolar spin frequencies through

the resonance conditions ωI = ωQ, but also about the dynamics which is re-

vealed by the profile dispersions.

A theoretical complication arises in the description of NMRD profiles for

slow reorientations and when slow-motion conditions occur, that is, when the

strong narrowing condition( ωQτR � 1) is violated. When ωQτR ≥ 1 the QD’s

may be observed, while the quadrupole spin relaxation cannot be described

within the Redfield/perturbation theory. Then it is most convenient to use

the stochastic Liouville (SLE) formalism in the analysis of NMR/EPR slow-

motion spectra. The SLE was developed by Kubo[41] and for the analysis

of EPR line shapes it was further applied by Freed[42]. Actually, the SLE

developed for paramagnetic systems describes the cross relaxation between

protons and an electron spin system. This theory is applicable for the cross

relaxation in reorienting spin pairs; (I = 1/2) − (S = 1, 3
2
, 2, 5

2
, ..)-pairs by

replacing the electron spin system (S) by the quadrupole spin system(S)

[5, 43, 44].
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In a previous paper[43] we outlined how the QD’s may be analysed within

this SLE formalism for a I=1
2
— S=1 coupled spin pair. This work extends

the analysis and it reveals previously not known dynamic features of the

relaxation profile.

• The NMRD profile displays a low field dispersion( cf. Figs.1 and 2 )

when 3
2
τRωI ≥ 1

• The enhancement peak can be approximated by the Lorenzian line-

shape; [(ωI −ωQ)2(35τR)
2 +1]−1 which indicates a second characteristic

correlation time 3
5
τR.

• In the zero field regime, the spin-spin and the spin-lattice relaxation

times of the quadrupole spin system become identical and for slow

tumbling systems they are equal to 3
2
τR.

The latter observation has also been reported for paramagnetic systems

(S=1)[45, 17, 18] and it was also recently analysed in detail[19].

7
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2 The Stochastic Liouville (SLE) Relaxation

Theory

Consider a proton spin ( I=1/2) which is dipole-dipole coupled to a quadrupole

spin with spin quantum number S=1 (assuming an axial symmetry η = 0).

When η 6= 0 the quadrupole spin degeneracy is lifted resulting in three

quadrupole frequencies,i.e. ωQ1 = ωQ(1 + η/3) ,ωQ2 = ωQ(1 − η/3) and

ωQ3 = 2ωQη/3)[40]. This makes the calculation more demanding, and in-

stead leads to three dips in the static limit. For instance, the peptide bond

display two transition frequencies at about 2.4 and 2.8 MHz which yield

an asymmetry parameter η = 0.23. For deuterium in most compounds the

asymmetry parameters is very small or 0. The axial symmetry considerably

simplifies the numerical calculations as well as the influence of the quadrupole

spin relaxation rate at high fields and the resonance conditions of the NMRD

at low fields. However, the effects of rotational dynamics on the quadrupole

spin relaxation and the NMRD profile are well demonstrated in the symmet-

ric case(i.e. η = 0).

The relaxation path of the I-system is due to a nuclear spin(I)-quadrupole

spin(S) dipole-dipole coupling. Thus, from the proton spin system point of

8
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view the lattice comprises both a quadrupole spin system and the molecular

reorientation diffusion degrees of freedom. The relaxation of the composite

lattice, a spin S=1 system and the reorientational degrees of freedom, is

rather complex in the presence of a strong quadrupole interaction, ωQ ≈

1/τR. The quadrupole spin relaxation can not be described by using second

order time dependent perturbation theory. Furthermore, it is not possible

to treat the quadrupole spin relaxation separately from the reorientation

motion. Instead, the lattice dynamics comprises both the reorientation and

the quadrupole spin relaxation.

The field dependent proton spin-lattice relaxation R1(ωI) which defines

the NMRD profile is given by[5, 6, 43]:

R1(ωI) = 30(
µ0
4π

)2h̄2γ2Iγ
2
S

1

(2S + 1)r6IS
×
∑

p=±1,0

∑

q=±1,0

×









2 1 1

1− p p −1

















2 1 1

1− q q −1









×
∫ ∞

0

trL{S1†
p D

2∗
0,1−p[ΩLM(τ)]eiLLτS1

qD
2
0,1−q[ΩLM(0)])

1

8π2
}e− iωIτdτ . (1)

In Eq.(1)









2 1 1

1− p p −1









is a 3-j symbol[46] and the physical
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constants γI , γS and µ0 are the proton nuclear magnetogyric ratio,

the quadrupole nuclear magnetogyric ratio, and the permeability of

space, respectively; rIS is the I-S interspin distance. The quantities

DL
n,m[ΩLM(t)] are Wigner rotation matrix elements of rank L; and

they are functions of the Euler angles Ω(t) relating the laboratory

fixed frame(L) to the molecular fixed frame (M). S1
σ is a standard

spherical nuclear spin operator of rank 1 whereas h̄ is the Planck

constant divided by 2π, ωIis the proton Larmor frequency and τ

refers to the time difference of the time correlation function

It is presupposed that the principal frame of the quadrupole interaction

coincides with the dipole-dipole rIS vector. This simplification can be lifted,

changing only the absolute level of the relaxation enhancement at low field

region [47]. The relaxation rate R1 is described by a 3 × 3 spectral density

matrix defined as the Fourier-Laplace transform of the complex reorientation

and quadrupole spin correlation function. The theory allows for a correlation

between the reorientational motion and quadrupole spin relaxation. Conse-

quently, it is not generally permissible to decompose the complex dipole-

dipole correlation functions into a product of a quadrupole spin-spin or a

spin-lattice correlation function and a reorientation correlation function. An

10
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element of the composite dipole-dipole spectral density matrix is exemplified

by:

∫ ∞

0

trL{S1†
p D

2∗
0,1−p[ΩLM(τ)]eiLLτS1

qD
2
0,1−q[ΩLM(0)])σT}e− iωIτdτ . (2)

The time-dependence of this dipole-dipole correlation function is governed

by the Liouville super operator, LL

LL = LZ + LQ(Ω) + iDRΓΩ, (3)

which is decomposed into a Zeeman term (LZ), the stochastic time dependent

quadrupole interaction (LQ(Ω)) and the reorientational diffusion Markov op-

erator DRΓΩ with DR = 1/6τR. The Liouville super operators of Zeeman

and the cylindrical symmetric quadrupole interaction are generated by the

corresponding hamiltonian:

HZ +HQ(t) = ω0S
1
0 + V0

∑

n

(−1)nSnD(2)
0−n[(Ω(t)]. (4)

The field gradient is V0 = χπ
√

(3
2
) and the quadrupole coupling constant is

χ ≡ eQVzz
h

. The quadrupole frequency is given by ωQ =
√

(3/2)V0 =
3
2
πχ.
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The spherical spin tensor operators are defined according to:

S
(2)
0 =

1
√

(6)
[3S2

z − S(S + 1)]

S
(2)
±1 = ∓1

2
[SzS± + S±Sz]

S
(2)
±2 =

1

2
S2
±. (5)

In Eq(5) S
(2)
m is a standard second rank spin operator and D

(2)
0−n[(Ω(t)]

is a second rank Wigner rotation matrix element[46] with stochastic time

dependent Euler angles(Ω(t)) specifying the orientation of the principal frame

of the quadrupole tensor.

2.1 The SLE Description of Lattice Dynamics

In order to determine the spectral density of Eqs.(1,2) one needs to solve the

SLE of motion, which determines the time dependence of the lattice density

matrix σ(t,Ω):

d

dt
σ(t,Ω) = −iLL(Ω)σ(t,Ω). (6)

However, Eq.(1) expresses the NMRD profile in terms of the dipole-dipole

spectral density matrix. It is therefore more convenient to solve the Fourier-

12
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Laplace transformed equation of motion reading,

σ(0,Ω) = i[LL(Ω)− 1ω]σ̃(ω,Ω), (7)

where σ̃(ω,Ω) =
∫∞
0
σ(t,Ω)eiωtdt. The lattice density operator σ̃(ω,Ω) sat-

isfies the equation,

σ̃(ω,Ω) = [iLZ − iω1 + iLQ(Ω)−D∇2
Ω ]−1 σ(Ω, 0)

= [M]−1σ(Ω, 0). (8)

In slowly reorienting spin systems the spin density operator is thus a func-

tion of both spin operators and Wigner rotation matrix elements[45]. The

SLE(cf.Eq.8) can be solved by introducing a complete basis set of opera-

tors which span the composite spin and orientational Liouville space. The

inverse of the Liouville matrix, [M]−1 thus contains all information about

the observables of the spin systems and it is obtained by introducing a set

of basis operators spanning the composite Liouville space. This set of ba-

sis operators can, for instance, be formed as the direct product of spherical

irreducible spin operators(|Σ, σ)) and eigenfunctions(|L,M)) of the Markov

diffusion operator ΓΩ, thus forming the infinite basis set {|Σ, σ)⊗ |L,M)}.

13
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The dipole-dipole spectral density of Eq.(1) is a submatrix of [M]−1

whereas the quadrupole lineshape function (cf.Eq.(12)) and the spin-lattice

spectral density function(cf. Eq.(13)) are single matrix elements. The prob-

lem of solving the SLE in the time domain (Eq.(6) has been transformed to

inverting a infinite Liouville matrix in the frequency domain(Eq.(8)). The

details of this procedure are given elsewhere( ref.[44]) and in more general

terms in ref.[5].

The irreducible spherical spin operators are given by[46, 48],

|Σ, σ) =
√
2Σ + 1

∑

(−1)S−σ−m









S S Σ

m+ σ −m −σ









|S, σ +m >< S,m|,

(9)

where the rank of the operators are Σ = 0, 1, ..2S and the components σ =

−Σ.−Σ+1...Σ− 1,Σ and the ket-bra electron spin operator |S,m >< S, n|

is formed as an outer product of spin eigenfunctions of S1
0 and S2 .

The molecular orientation space is spanned by the symmetric top func-

tions |LM) which are eigenfunctions to the Markov operator ΓΩ:

|LM) =

√

2L+ 1

8π2
DL

0,M(Ω). (10)
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3 Results and Discussions

Before proceeding to the relaxation profiles, it is appropriate to define a

reduced relaxation rate,

R =
3R1(ωI)

4γ2Iγ
2
SR
−6τR

, (11)

which is dimensionless and only depends on the dimensionless products ωIτR,

ωQτR and ωSτR. The marked relaxation peak is observable when ωQτR ≥ 1

and the reduced relaxation rate R=1 when the dipole-dipole correlation time

is equal τR. The quadrupole coupling constant χ = 3.596 MHz is chosen to

match the quadrupole frequency of the QD’s of a H −14 N pair[2, 35, 36].

The quadrupole frequency for 14N with η=0 is then 2.7 MHz whereas for

deuterium it is 0.15 MHz and χ= 0.2MHz.

In Fig.(1) the reduced relaxation rate of Eq(11) is displayed for a sym-

metric 1H−14N pair attached to a slow(isotropic) tumbling macromolecules.

The characteristic NMRD profiles are calculated for four reorientation cor-

relation times: τR = 50, 100, 150 and 200 ns. The NMRD profiles have a

characteristic low field dispersion determined by ωIτR
3
2
≥ 1 and a marked

increase in proton relaxation determined by the resonance condition ωI = ωQ.

Fig.2a-2c, the reduced relaxation rate is displayed for a dipole-dipole cou-

15
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pled proton-deuterium pair, 1H— 2H (η = 0.0), attached to a slow(isotropic)

tumbling macromolecules. The R1-NMRD profiles are calculated for three

reorientation correlation times: τR = a) 1.4µs, b) 2.0µs, c) 3.0µs, displaying

NMRD profiles similar to Fig.1 but where the relaxation peak has moved

to lower frequencies (0.15 MHz) . Fig.2c2 shows the low field dispersions

1
(ωI)2(

3
2 τR)

2+1
. It should be remembered that for both Fig.1 and Fig.2 the low

field dispersion changes to ωIτR ≥ 1 if the quadrupole coupling constant is

made small enough to satisfy the strong narrowing conditions (ωQτR << 1).

In Fig.(2c3) the characteristic enhanced relaxation peak is described by a

Lorenzian lineshape function L(ωI) = X
(ωQ−ωI)2(τc)2+1

. The effective correla-

tion time τc is determined by the relaxation times of the spin correlation

function and the reorientation correlation time; 1
τc

= 1
τR

+ 1
3/2τR

= 1
3/5τR

.

However, when ωQτR � 1 the approximate Lorenzian peak disappears and

the lineshape becomes more complicated (not shown) displaying two or three

maxima (still with η = 0).
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3.1 The Lineshape Function I(ω) and the Spin-Lattice

Relaxation C̃0(ω) of the Quadrupole Spin S=1

The quadrupole line shape function at zero magnetic field as well as the NMR

line shape function at high fields is obtained from the frequency dependence

of one Liouville matrix element reading:

I(ω) ≡
∫ ∞

0

< S1,†
1 (t)S1

1(0) > e−iωtdt

S(S + 1)

2S + 1
Re(1, 1|(00|[M]−1|1, 1)|00). (12)

Here we use the notation introduced in Eqs(9) and (10) where

(1,1|(00| refer to the basis set; (Σ, σ|(L,M |∗ with |1,1)|00) as its

complex conjugate, in analogy with the ket-bra notation. The

Fourier-Laplace transform of the quadrupole spin-lattice correlation function

C0(t) is given by the lattice density matrix element σ(ω,Ω) propor-

tional to |1, 0)0, 0) and obtained as the Liouville matrix element

(1, 0|(00|[M]−1|1, 0)|00),

C̃0(ω) ≡
∫ ∞

0

< S1,†
0 (t)S1

0(0) > e−iωtdt =

S(S + 1)

2S + 1
Re(1, 0|(00|[M]−1|1, 0)|00). (13)
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Fig.(3) displays the 14N line shapes calculated for three correlation times:

τR= 50, 100, 200 ns, at a static field of 5 T with χ= 3.596MHz and η = 0.0.

The spectra are very broadened and display a typical slow-motion character.

The corresponding lineshapes at the low static magnetic field of B0=0.1 T

are displayed in Fig (4).

The NQR lineshape function I(ω) at zero field has been obtained in a

closed form by using a low-field operator representation derived by Lynden-

Bell[45]. The lineshape function was obtained for an electron spin system

S=1, with an axially symmetric zero field splitting tensor:

I(ω) =
(ω2

Q/3− ω2)τ 2R + 1− i2τRω
ω(ω2

Q − ω2)τ 2R + 1)− i2τR(ω2 − ωQ/3)
. (14)

The 14N line shapes were calculated using Eq.(12), displayed at low field

(0.1 T) and for three correlation times τR = 50, 100 and 200 ns corresponding

to NMRD profiles displaying a quadrupole dip. In this case when HQ �

HZeeman and slow tumbling ( ωQτR >> 1) Eq(14) display a single Lorenzian

line shape at ωQ = 3
2
χπ with half width at half height equal to 4DR or

T2Q = 3
2
τR[45]. This observation has recently been reported by Sharp[17]

and Fries and Belorizky[18].

In the zero field limit and slow tumbling, the quadrupole spin-lattice
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correlation function decays also with a single exponential T1Q = 3

2
τR which

reads,

< S1,†
0 (t)S1

0(0) >=
2

9
(1 + 2cos(ωQt))e

−t/T1Q . (15)

This form of the correlation function is also discussed by Fries and Belorizky

for a paramagnetic spin system with electron spin quantum number S=1[18].

The Fourier-Laplace transform of Eq.(15) is,

C̃0(ω) ≡
∫ ∞

0

< S1,†
0 (t)S1

0(0) > e−iωtdt =
2T1Q
9

(
1

1 + 9
4
(ωτR)2

+
1

1 + 9
4
((ω + ωQ)τR)2

+
1

1 + 9
4
((ω − ωQ)τR)2

), (16)

and give the same shape as Eq.(14) when ωQτR → ∞ and T1Q =→ 3τR
2
. In

Fig.(5a) C̃0(ω)) of Eq(13) is displayed for the resonance condition ωI = ωQ

and τR = 100 ns ,whereas in 5b-d the magnetic field is 0.1 T and the correla-

tion time has increased to 200 ns. It is evident that with an increasing

reorientation correlation time, C̃0(ω) in Fig. 5.c approaches the

result predicted by Eq. (16), which is displayed in Fig. 5d. Conse-

quently, Eq.15 is only valid in in the zero field limit and ωQτR →∞

with T1Q = 3
2
τR

In the low (zero) field regime and slow motion the spin-spin relaxation
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time T2Q thus becomes identical with the "spin-lattice" relaxation time T1Q

given by 3
2
τR.

4 Final Remarks

The Stochastic Liouville approach was applied for calculating the quadrupole

enhanced proton spin relaxation profiles, which display the characteristic

peak or the quadrupole dip ( if the frequency dependent relaxation time is

plotted). The quadrupole spin systems studied are 14N(η = 0) and2H(η = 0)

For proton in the vicinity of the quadrupole nuclei, the R1-NMRD profiles

show two interesting features related to the reorientation dynamics. Firstly,

a low field dispersions at ωI3/2τR = 1 and and a Lorenzian shaped relax-

ation peak with a characteristic relaxation time τc = 3/5τR. At very slow

reorientation this simple lineshape disappear and a more complicated line-

shape appears. In the limit of large quadrupole interaction compared with

the Zeeman and slow motion ωQτR >> 1 the quadrupole spin system have a

spin-lattice, T1Q, and a spin-spin relaxation time, T2Q, which both approach

3
2
τR and the line shape function of Eq(14) predict the same relaxation as

given by Eq(16).
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Figure 1: The reduced proton spin lattice relaxation rate as a function of
proton Larmor frequency (MHz) displayed for 1H14N coupled pair(S=1, η =
0.0) with a quadrupole coupling constant of χ= 3.596MHz and reorientation
correlation times τR = a)50, b) 100, c) 150 d) 200 ns
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Figure 2: The reduced proton spin lattice relaxation rate is displayed as a
function of proton Larmor frequency (MHz) for a 1H2H coupled pair(S=1,
η = 0.0). The deuterium quadrupole coupling constant is χ= 0.2MHz and
reorientation correlation times are τR = a)1.4 µs, b) 2.0 µs, c)3.0 µs In c2)
the "dip" lineshape is approximated with a Lorenzian X

(ωI−ωQ)2( 35 τR)2+1
with

X=0.255. In c3) the dispersion function 1
(ωI−ωQ)2( 32 τR)2+1

is shown
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Figure 3: The 14N lineshapes at 5 T and with χ= 3.596MHz and η = 0.0 is
displayed for the correlation times τR = a)50, b) 100 c) 200 ns
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Figure 4: The 14N lineshapes at 0.1 T and with χ= 3.596MHz and η = 0.0
is displayed for the correlation times τR = a) 50, b) 100 c) 200 ns
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Figure 5: C̃0(ω) are displayed for N-14 and quadrupole interaction χ= 3.596
MHz in a) B0=0.8769 T, τR =100 ns and b) 0.01 for τR =200 ns, and in (c)
and (d) τR =250 where Eq (16)is displayed in d)
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