P.-O Westlund 
  
Quadrupole Enhanced Proton Spin Relaxation for a Slow Reorienting Spin Pair

Keywords: computational Chemistry, Chemistry quadrupole enhanced proton spin relaxation, quadrupole dip, Stochastic Liouville equation
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Introduction

The fast field-cycling technique is one of the most important NMR experiment for studies of molecular dynamics and structure. It has been used measuring the field dependent proton spin-lattice relaxation rate, R 1 -NMR dispersion(NMRD) profile, for a large variety of systems [1] - [START_REF] Desienx | [END_REF]. In NMRD measurements the relaxation rates R i (ω)(i=1,2) of a spin system I are measured at the proton Larmor frequency that ranges between 10 kHz and about 40 MHz. In the strong narrowing regime, the proton(I) relaxation rates can be expressed in terms of a spectral density function of the spin-lattice interaction, which thereby determine the measured NMRD profile. When the dipole-dipole interaction is the dominant spin-lattice interaction, this dipolespectral density function is the crucial quantity, which contains all the interaction parameters and information about molecular motions.

During the last thirty years the Solomon-Bloembergen-Morgan theory [4] of water proton R 1 -NMRD profiles of paramagnetic systems have been generalised to describe different contrast agents [8]- [START_REF] Aime | Advances in Inorganic Chemsitry[END_REF] of high electron spin transition metal complexes including the slow-motion electron spin relaxation problem [5]- [7]. Several experimental studies of 1 H NMRD profiles obtained for different paramagnetic systems have been reported [START_REF] Koenig | [END_REF]- [15], and various computational methods have been developed to describe these systems [16]- [19].

There are also a large number of both theoretical and experimental NMRD studies reported on aqueous (diamagnetic) protein solutions [20]- [28]. For instance the NMRD experiment has been used to study the self association of proteins [29]- [31]. The theoretical description and characterization of the NMRD dispersion profile of protein solutions provides a challenging problem [23,24,28]. Among published NMRD studies a few observations of quadrupole dips(QD's) were reported [32]- [39]. That is, when the measured relaxation rate R 1 (ω I ) displays a marked increase at the proton Larmor frequencies matching the resonance frequencies of a quadrupole spin system.

(The "quadrupole dip" is observed in 1/R 1 (ω I ) profile). This enhanced relaxation rate of an I-spin, coupled via a spin dipole-spin dipole interaction to a quadrupole nucleus(S), is a cross relaxation phenomenon, in which the relatively fast relaxing quadrupole nucleus acts as a relaxation sink for a dipole coupled I-spin [1], [32]- [36]. The theoretical analysis presented in the literature is generally limited to the static regime. For instance, the QD's was observed and analysed in the plastic crystals phases of CFCl 3 [32], in the biaxial smectic mesophase of HpAB [33], and for amide protons or water in immobilized proteins [1], [34]- [39]. Nuclear quadrupole resonance (NQR) studies are relevant for the theory of cross relaxation, because at zero field, the spin quantisation is defined by the molecular fixed principal axes of the The aim is to determine the transition frequencies of the quadrupole spin system [33,40].

The present work focuses on reorientational effects in the proton spin lattice relaxation enhancement of protons residing in the vicinity of a deuterium nucleus( 1 H -2 H) or for amide proton in a slightly simplified spin pair 1 H -14 N with an asymmetry parameter, η=0. The spin pairs may be present in a globular macromolecule, that undergoes a slow tumbling motion. The condition for slow tumbling is expected to be more important in proteins studies which are carried out in "crowded", or more cell-like systems, as well as for membrane proteins in vesicles. The characteristic rotation diffusion correlation time τ R ≡ 1/6D R , (D R is the rotational diffusion coefficient) is then expected to range between 50-100 ns for crowded protein solutions, to about 1-2 µs for membrane proteins in giant vesicles.

The proton R 1 -NMRD profile is measured over a wide range of proton Larmor frequencies(ω I ), ranging from the low field regime ω I << ω Q where the quadrupole spin is quantized in a molecular fixed frame to the high field regime when ω I >> ω Q and the spins are quantized in the laboratory frame.

When ω I << ω Q a NQR spectrum might provide direct information about the quadrupolar frequencies of the S-system. In the high field regime the quadrupole NMR lineshape is often far too broad to be detectable. Consequently, when a NMRD profile detects a marked cross relaxation peak, it provides indirect information about the quadrupolar spin frequencies through the resonance conditions ω I = ω Q , but also about the dynamics which is revealed by the profile dispersions.

A theoretical complication arises in the description of NMRD profiles for slow reorientations and when slow-motion conditions occur, that is, when the

strong narrowing condition( ω Q τ R 1) is violated. When ω Q τ R ≥ 1 the QD's
may be observed, while the quadrupole spin relaxation cannot be described within the Redfield/perturbation theory. Then it is most convenient to use the stochastic Liouville (SLE) formalism in the analysis of NMR/EPR slowmotion spectra. The SLE was developed by Kubo [41] and for the analysis of EPR line shapes it was further applied by Freed [START_REF] Freed | Electron Spin Relaxation in Liquids[END_REF]. Actually, the SLE developed for paramagnetic systems describes the cross relaxation between protons and an electron spin system. This theory is applicable for the cross relaxation in reorienting spin pairs; (I = 1/2) -(S = 1, 3 2 , 2, 5 2 , ..)-pairs by replacing the electron spin system (S) by the quadrupole spin system(S) [5,[START_REF] Westlund | [END_REF][START_REF] Westlund | Dynamics of Solutions and Fluid Mixtures by NMR[END_REF].

6 In a previous paper [START_REF] Westlund | [END_REF] we outlined how the QD's may be analysed within this SLE formalism for a I= 1 2 -S=1 coupled spin pair. This work extends the analysis and it reveals previously not known dynamic features of the relaxation profile.

• The NMRD profile displays a low field dispersion( cf. Figs. 1 and2 )

when 3 2 τ R ω I ≥ 1
• The enhancement peak can be approximated by the Lorenzian line-

shape; [(ω I -ω Q ) 2 ( 3 5 τ R ) 2 + 1] -1 which indicates a second characteristic correlation time 3 5 τ R .
• In the zero field regime, the spin-spin and the spin-lattice relaxation times of the quadrupole spin system become identical and for slow tumbling systems they are equal to 3 2 τ R .

The latter observation has also been reported for paramagnetic systems (S=1) [START_REF] Lynden-Bell | [END_REF]17,18] and it was also recently analysed in detail [19]. When η = 0 the quadrupole spin degeneracy is lifted resulting in three quadrupole frequencies,i.e.

ω Q1 = ω Q (1 + η/3) ,ω Q2 = ω Q (1 -η/3) and ω Q3 = 2ω Q η/3)[40]
. This makes the calculation more demanding, and instead leads to three dips in the static limit. For instance, the peptide bond display two transition frequencies at about 2. view the lattice comprises both a quadrupole spin system and the molecular reorientation diffusion degrees of freedom. The relaxation of the composite lattice, a spin S=1 system and the reorientational degrees of freedom, is rather complex in the presence of a strong quadrupole interaction, ω Q ≈ 1/τ R . The quadrupole spin relaxation can not be described by using second order time dependent perturbation theory. Furthermore, it is not possible to treat the quadrupole spin relaxation separately from the reorientation motion. Instead, the lattice dynamics comprises both the reorientation and the quadrupole spin relaxation.

The field dependent proton spin-lattice relaxation R 1 (ω I ) which defines the NMRD profile is given by [5,6,[START_REF] Westlund | [END_REF]:

R 1 (ω I ) = 30( µ 0 4π ) 2 h2 γ 2 I γ 2 S 1 (2S + 1)r 6 IS × p=±1,0 q=±1,0 ×     2 1 1 1 -p p -1         2 1 1 1 -q q -1     × ∞ 0 tr L {S 1 † p D 2 * 0,1-p [Ω LM (τ )]e iL L τ S 1 q D 2 0,1-q [Ω LM (0)]) 1 8π 2 }e -iω I τ dτ . ( 1 
)
In Eq.( 1) [START_REF] Brink | Angular Momentum[END_REF] and the physical 

    2 1 1 1 -p p -1     is a 3-j symbol
∞ 0 tr L {S 1 † p D 2 * 0,1-p [Ω LM (τ )]e iL L τ S 1 q D 2 0,1-q [Ω LM (0)])σ T }e -iω I τ dτ . ( 2 
)
The time-dependence of this dipole-dipole correlation function is governed by the Liouville super operator,

L L L L = L Z + L Q (Ω) + iD R Γ Ω , (3) 
which is decomposed into a Zeeman term (L Z ), the stochastic time dependent quadrupole interaction (L Q (Ω)) and the reorientational diffusion Markov op-

erator D R Γ Ω with D R = 1/6τ R .
The Liouville super operators of Zeeman and the cylindrical symmetric quadrupole interaction are generated by the corresponding hamiltonian:

H Z + H Q (t) = ω 0 S 1 0 + V 0 n (-1) n S n D (2) 0-n [(Ω(t)]. (4) 
The field gradient is V 0 = χπ ( 3 2 ) and the quadrupole coupling constant is χ ≡ eQVzz h . The quadrupole frequency is given by ω The spherical spin tensor operators are defined according to:

Q = (3/2)V 0 = 3 2 πχ.
S (2) 0 = 1 (6) [3S 2 z -S(S + 1)] S (2) 
±1 = ∓ 1 2 [S z S ± + S ± S z ] S (2) ±2 = 1 2 S 2 ± . (5) 
In Eq(5) S

m is a standard second rank spin operator and D

(2)

0-n [(Ω(t)]
is a second rank Wigner rotation matrix element [START_REF] Brink | Angular Momentum[END_REF] with stochastic time dependent Euler angles(Ω(t)) specifying the orientation of the principal frame of the quadrupole tensor.

The SLE Description of Lattice Dynamics

In order to determine the spectral density of Eqs.(1,2) one needs to solve the SLE of motion, which determines the time dependence of the lattice density matrix σ(t, Ω): 

d dt σ(t, Ω) = -iL L (Ω)σ(t, Ω). ( 6 
σ(0, Ω) = i[L L (Ω) -1ω]σ(ω, Ω), (7) 
where σ(ω, Ω) = ∞ 0 σ(t, Ω)e iωt dt. The lattice density operator σ(ω, Ω) satisfies the equation,

σ(ω, Ω) = [iL Z -iω1 + iL Q (Ω) -D∇ 2 Ω ] -1 σ(Ω, 0) = [M] -1 σ(Ω, 0). (8) 
In slowly reorienting spin systems the spin density operator is thus a function of both spin operators and Wigner rotation matrix elements [START_REF] Lynden-Bell | [END_REF]. The The dipole-dipole spectral density of Eq.( 1) is a submatrix of [M] -1 whereas the quadrupole lineshape function (cf.Eq.( 12)) and the spin-lattice spectral density function(cf. Eq.( 13)) are single matrix elements. The problem of solving the SLE in the time domain (Eq.( 6) has been transformed to inverting a infinite Liouville matrix in the frequency domain(Eq.( 8)). The details of this procedure are given elsewhere( ref. [START_REF] Westlund | Dynamics of Solutions and Fluid Mixtures by NMR[END_REF]) and in more general terms in ref. [5].

The irreducible spherical spin operators are given by [START_REF] Brink | Angular Momentum[END_REF][START_REF] Blum | Density Matrix Theory and Applications[END_REF],

|Σ, σ) = √ 2Σ + 1 (-1) S-σ-m     S S Σ m + σ -m -σ     |S, σ + m >< S, m|, (9) 
where the rank of the operators are Σ = 0, 1, ..2S and the components σ = -Σ. -Σ + 1...Σ -1, Σ and the ket-bra electron spin operator |S, m >< S, n| is formed as an outer product of spin eigenfunctions of S 1 0 and S 2 .

The molecular orientation space is spanned by the symmetric top functions |LM ) which are eigenfunctions to the Markov operator Γ Ω :

|LM ) = 2L + 1 8π 2 D L 0,M (Ω). ( 10 
)
14 

R = 3R 1 (ω I ) 4γ 2 I γ 2 S R -6 τ R , (11) 
which is dimensionless and only depends on the dimensionless products ω I τ R ,

ω Q τ R and ω S τ R . The marked relaxation peak is observable when ω Q τ R ≥ 1
and the reduced relaxation rate R=1 when the dipole-dipole correlation time is equal τ R . The quadrupole coupling constant χ = 3.596 MHz is chosen to match the quadrupole frequency of the QD's of a H -14 N pair [START_REF] Kimmich | NMR Tomography Diffusometry Relaxometry[END_REF]35,36].

The quadrupole frequency for 14 N with η=0 is then 2.7 MHz whereas for deuterium it is 0.15 MHz and χ= 0.2M Hz.

In Fig. (1) the reduced relaxation rate of Eq [START_REF] Aime | Advances in Inorganic Chemsitry[END_REF] is displayed for a sym- 

1 (ω I ) 2 ( 3 2 τ R ) 2 +1
. It should be remembered that for both Fig. 1 and Fig. 2 the low field dispersion changes to ω I τ R ≥ 1 if the quadrupole coupling constant is made small enough to satisfy the strong narrowing conditions (ω Q τ R << 1).

In Fig. (2c 3 ) the characteristic enhanced relaxation peak is described by a Lorenzian lineshape function

L(ω I ) = X (ω Q -ω I ) 2 (τc) 2 +1
. The effective correlation time τ c is determined by the relaxation times of the spin correlation function and the reorientation correlation time;

1 τc = 1 τ R + 1 3/2τ R = 1 3/5τ R .
However, when ω Q τ R 1 the approximate Lorenzian peak disappears and the lineshape becomes more complicated (not shown) displaying two or three maxima (still with η = 0). The quadrupole line shape function at zero magnetic field as well as the NMR line shape function at high fields is obtained from the frequency dependence of one Liouville matrix element reading:

I(ω) ≡ ∞ 0 < S 1, † 1 (t)S 1 1 (0) > e -iωt dt S(S + 1) 2S + 1 Re(1, 1|(00|[M] -1 |1, 1)|00). (12) 
Here we use the notation introduced in Eqs( 9) and ( 10) where

(1,1|(00| refer to the basis set; (Σ, σ|(L, M | * with |1,1)|00) as its complex conjugate, in analogy with the ket-bra notation. The Fourier-Laplace transform of the quadrupole spin-lattice correlation function C 0 (t) is given by the lattice density matrix element σ(ω, Ω) proportional to |1, 0)0, 0) and obtained as the Liouville matrix element The spectra are very broadened and display a typical slow-motion character.

(1, 0|(00|[M] -1 |1, 0)|00), C0 (ω) ≡ ∞ 0 < S 1, † 0 (t)S 1 0 (0) > e -iωt dt = S(S + 1) 2S + 1 Re(1, 0|(00|[M] -1 |1, 0)|00). (13 
The corresponding lineshapes at the low static magnetic field of B 0 =0.1 T are displayed in Fig ( 4).

The NQR lineshape function I(ω) at zero field has been obtained in a closed form by using a low-field operator representation derived by Lynden-Bell [START_REF] Lynden-Bell | [END_REF]. The lineshape function was obtained for an electron spin system S=1, with an axially symmetric zero field splitting tensor:

I(ω) = (ω 2 Q /3 -ω 2 )τ 2 R + 1 -i2τ R ω ω(ω 2 Q -ω 2 )τ 2 R + 1) -i2τ R (ω 2 -ω Q /3) . ( 14 
)
The 14 N line shapes were calculated using Eq.( 12), displayed at low field (0.1 T) and for three correlation times τ R = 50, 100 and 200 ns corresponding to NMRD profiles displaying a quadrupole dip. In this case when H Q H Zeeman and slow tumbling ( ω Q τ R >> 1) Eq( 14) display a single Lorenzian line shape at ω Q = 3 2 χπ with half width at half height equal to 4D R or [START_REF] Lynden-Bell | [END_REF]. This observation has recently been reported by Sharp [17] and Fries and Belorizky [18].

T 2Q = 3 2 τ R
In the zero field limit and slow tumbling, the quadrupole spin-lattice 18 

T 1Q = 3 2 τ R which reads, < S 1, † 0 (t)S 1 0 (0) >= 2 9 (1 + 2cos(ω Q t))e -t/T 1Q . ( 15 
)
This form of the correlation function is also discussed by Fries and Belorizky for a paramagnetic spin system with electron spin quantum number S=1 [18].

The Fourier-Laplace transform of Eq.( 15) is,

C0 (ω) ≡ ∞ 0 < S 1, † 0 (t)S 1 0 (0) > e -iωt dt = 2T 1Q 9 ( 1 1 + 9 4 (ωτ R ) 2 + 1 1 + 9 4 ((ω + ω Q )τ R ) 2 + 1 1 + 9 4 ((ω -ω Q )τ R ) 2 ), (16) 
and give the same shape as Eq.( 14) when ω Q τ R → ∞ and T 1Q =→ 3τ R 2 . In 16), which is displayed in Fig. 5d. Consequently, Eq.15 is only valid in in the zero field limit and ω

Q τ R → ∞ with T 1Q = 3 2 τ R
In the low (zero) field regime and slow motion the spin-spin relaxation 19 given by 3 2 τ R .

Final Remarks

The Stochastic Liouville approach was applied for calculating the quadrupole enhanced proton spin relaxation profiles, which display the characteristic peak or the quadrupole dip ( if the frequency dependent relaxation time is plotted). The quadrupole spin systems studied are 14 N (η = 0) and 2 H(η = 0)

For proton in the vicinity of the quadrupole nuclei, the R 1 -NMRD profiles show two interesting features related to the reorientation dynamics. Firstly, a low field dispersions at ω I 3/2τ R = 1 and and a Lorenzian shaped relaxation peak with a characteristic relaxation time τ c = 3/5τ R . At very slow reorientation this simple lineshape disappear and a more complicated lineshape appears. In the limit of large quadrupole interaction compared with the Zeeman and slow motion ω Q τ R >> 1 the quadrupole spin system have a spin-lattice, T 1Q , and a spin-spin relaxation time, T 2Q , which both approach 3 2 τ R and the line shape function of Eq [START_REF] Bertini | [END_REF] predict the same relaxation as given by Eq (16).
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