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Introduction

Protein phosphorylation belongs to the most important post-translational modifications, involved in many signal transduction pathways, and playing a significant role in mechanisms responsible for the regulation of cellular functions. The O-phosphorylation of serine, threonine, and tyrosine residues has been extensively studied since a high stability of O-phosphorylated products permitted to analyze this modification with many different techniques [START_REF] Raggiaschi | Phosphoproteome analysis[END_REF], especially with mass spectrometry [START_REF] Cohen | The origins of protein phosphorylation[END_REF][START_REF] Marks | Protein phosphorylation[END_REF].

However, other amino acid residues also undergo phosphorylation, among them basic amino acids histidine, lysine, and arginine. With the latter amino acid residues the modification results in formation of a phosphoramidate bond (P-N bond), highly unstable under acidic conditions and easily undergoing hydrolysis. Therefore, N-phosphorylated proteins are difficult to analyze, and detection of N-phosphorylated peptides using mass spectrometry creates problems due to a low abundance [ 4 ] or spontaneous gas phase dephosphorylation [START_REF] Mclachlin | Analysis of phosphorylated proteins and peptides by mass spectrometry[END_REF].

Protein N-phosphorylation, compared to O-phosphorylation, is still poorly explored in terms of products and mechanisms. A considerable interest has been focused on protein histidine phosphorylation, recognized as an important modification in prokaryotes and eukaryotes, specific histidine kinases being involved in signaling systems called the twocomponent regulatory systems [START_REF] Besant | Mammalian histidine kinases[END_REF][START_REF] Hoch | Two-component and phosphorelay signal transduction[END_REF]. Histidine was also the first synthetically Nphosphorylated basic amino acid whose chemical properties are well studied [START_REF] Attwood | Focus on phosphohistidine[END_REF]. The histidine modification, in spite of susceptibility to acid hydrolysis, could be analyzed using mass spectrometry both in peptides and proteins, using different analytical techniques such as LC-MS, ESI-MS, and MALDI-TOF MS, and different fragmentation methods, mainly CID, ETD, EDD, and ECD [START_REF] Zu | Mass spectrometric analysis of protein histidine phosphorylation[END_REF][START_REF] Wind | Analysis of CheA histidine phosphorylation and its influence on protein stability by high-resolution element and electrospray mass spectrometry[END_REF][START_REF] Kleinnijenhuis | Analysis of histidine phosphorylation using tandem MS and ion-electron reactions[END_REF][START_REF] Besant | Detection and analysis of protein histidine phosphorylation[END_REF].

Protein N-phosphorylation may also occur on arginine and lysine residues (reviewed recently by Besant et al. [START_REF] Besant | Focus on phosphoarginine and phospholysine[END_REF]). The presence of protein arginine and lysine kinases in cells has been reported [START_REF] Matthews | Nuclear protein kinases[END_REF]. While several reports concerned arginine kinases involved in cellular metabolic pathways [16,[START_REF] Uda | Evolution of the arginine kinase gene family[END_REF], N-phosphorylation of the lysine side chain has been much less investigated. Specific protein lysine kinases and the corresponding phosphatases (phosphoramidases) were found in eukaryotic cells [START_REF] Besant | Focus on phosphoarginine and phospholysine[END_REF], e.g. rat liver nuclear protein arginine kinase with an additional lysine kinase activity [START_REF] Sikorska | Isolation and purification of a new 105 kDa protein kinase from rat liver nuclei[END_REF], protein lysine kinases involved in histone H1 phosphorylation [START_REF] Matthews | Protein kinases and phospathases that act on histidine, lysine or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade[END_REF], and bovine liver protein lysine phosphatases [START_REF] Hiraishi | 3-phosphohistidine and 6-phospholysine are substrates of a 56-kDa inorganic pyrophosphatase from bovine liver[END_REF]. The involvement of lysine phosphorylation in cellular signaling or metabolic pathways, albeit possible, has not been shown yet.

Although lysine phosphorylation is an important protein modification, it is difficult to detect by electrospray mass spectrometry (ESI-MS). The main reason is a low abundance of the phosphopeptide ions as compared to their non-modified counterparts. Usually, formic acid or acetic acid is added to aid protonation of the analyte molecules during electrospray. Therefore, relatively rapid hydrolysis of the phosphoramidate group under acidic conditions may also complicate application of ESI-MS to the analysis of phospholysine-containing peptides.

Mass spectrometry (MS) has become an alternative to the more traditional methods, e.g. NMR, 2D gel electrophoresis, HPLC analysis, and proteolytic digestion using Edmann degradation of 32 P-labelled peptides, for analysis of phosphorylated peptides [START_REF] Yan | Protein phosphorylation: technologies for the identification of phosphoamino acids[END_REF]. ESI-MS method may be particularly useful to evaluate the phosphorylation degree in a protein molecule. In contrast to other analytical methods, MS experiments can be performed successfully even on subpicomolar amount of a mixture of proteins, as long as the analytes possess different molecular weights. Moreover, mass spectrometric fragmentation techniques may be used to characterize the modification sites with the amino acid residue resolution.

Although the most common method of fragmentation, collision-induced dissociation (CID), is very useful for the sequencing of the O-phosphorylated peptides, its application to N-phosphorylation is limited as a consequence of considerable losses of the phosphate group HPO 3 -from the phosphoramidate bond even at relatively low collision energy conditions. Therefore, the resulting CID spectra are dominated by the dephosphorylated forms of the fragments.

ECD performed on Fourier transform mass spectrometers was proven to be useful for the characterization of labile post-translational protein modification [START_REF] Syrstad | Toward a general mechanism of electron capture dissociation[END_REF], including nonenzymatic modifications of basic side chains [START_REF] Wind | Analysis of CheA histidine phosphorylation and its influence on protein stability by high-resolution element and electrospray mass spectrometry[END_REF][START_REF] Stefanowicz | Sequencing of peptide-derived Amadori products by the electron induced dissociation method[END_REF]. No fragmentation of phosphorylated histidine residues was observed during the ECD experiments [START_REF] Shi | Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry[END_REF][START_REF] Sweet | Large scale localization of protein phosphorylation by use of electron capture dissociation mass spectrometry[END_REF]. This suggests that ECD may be a useful method for analysis of peptides containing the N-phosphorylated lysine side chain, although such an analysis has not been reported to date. Recently, we used the ECD method for analysis of distribution of deuterium along the sequence of a protein molecule undergoing the hydrogen exchange under conditions of a high pressure denaturation [START_REF] Stefanowicz | Electrospray ionization mass spectrometry as a method for studying the high-pressure denaturation of proteins[END_REF]. Although fragmentation of deuterium labeled compounds using the CID method is known to indicate the migration of deuterons (hydrogen scrambling) [27], what make the analysis impractical, we found that the ECD fragmentation allows for ambiguous recognition of deuterated peptide bonds in a protein molecule. The current work presents analysis by the electrospray mass spectrometry of the lysine phosphorylation products obtained by the reaction of peptides with monopotassium phosphoramidate. Stabilities of peptides containing N-phosphorylated lysine in solution were also analyzed. The comparison between the two MS fragmentation types, CID and ECD, pointed to ECD as a better method for localization of Nphosphorylation on the lysine residue. In addition, the applicability of ECD mass spectrometry was tested to study the regioselectivity of peptide N-phosphorylation. A c c e p t e d M a n u s c r i p t Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

Materials and methods

Materials

Peptides

Three peptides, known to be the substrates or inhibitors of specific protein kinases (Table 1), were chosen for the investigation. Each peptide contained one or two lysine residues localized at different positions in the sequence. All analyzed peptides were purchased from Sigma Aldrich.

Peptide N-phosphorylation

Peptide phosphorylation was performed using a protocol previously described by Wei et al. [START_REF] Wei | Identification of phosphohistidine in proteins and purification of protein-histidine kinases[END_REF]. The phosphorylation agent, monopotassium phosphoramidate, was prepared by the classical Stokes' method [START_REF] Stokes | On diamidoorthophosphoric and diamidotrihydroxylphosphoric acids[END_REF]. In the standard procedure, a peptide and monopotassium phosphoramidate were use at the ratio 1:40 (w:w). The peptide (0.5 mg) sample was dissolved in 10 mM ammonium bicarbonate and pH of the solution was adjusted to 8 with 0.1 M NaOH. After addition of 20 mg of monopotassium phosphoramidate the mixture sample was stirred for 24 hours at room temperature (22 o C).

Sample preparation

For the MS experiments, the phosphorylated sample was desalted using Sep-Pak Plus C18 Cartridges (Waters Corporation, USA). The column was prepared by washing alternately with acetonitrile (POCH, Poland, HPLC grade) and deionized water. The sample was loaded directly on a Sep-Pak column and washed five times with small portions of the deionized water. The phosphorylated peptides were eluted with 60% aqueous solution of acetonitrile (1 mL).

[Fig. 1]

Methods

ESI-MS

All mass spectrometric experiments were performed on an Apex-Qe Ultra 7T instrument (Bruker Daltonics, Bremen, Germany) equipped with a dual ESI source and a heated hollow cathode dispenser. The instrument was operated in the positive ion mode and calibrated with the Tunemix™ mixture (Bruker Daltonics, Germany). The mass accuracy was better than 5 ppm. Analysis of the obtained mass spectra was carried out using a Biotools (Bruker Daltonics, Bremen, Germany) software. The instrumental parameters were as follows: scan range: 100-1600 m/z; dry gas: nitrogen; temperature: 200 o C; potential between the spray needle and the orifice: 4.2 kV.

CID

The precursor ions were selected on the quadrupole and subsequently fragmented in the hexapole collision cell. Argon was used as a collision gas. The obtained fragments were directed to the ICR mass analyzer and registered as an MS/MS spectrum. The collision energy of 20 V was applied in the hexapole collision cell. A c c e p t e d M a n u s c r i p t Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

ECD

The mass spectrometer was equipped with a heated hollow cathode dispenser which was operated at 1.7 A for the ECD experiments. The precursor ions were selected on the quadrupole and directed to the ICR cell where they were fragmented. The parameters were set as 150 ms. for the ECD pulse length and ECD bias was 0.8 V.

NMR analysis

All NMR spectra were obtained with a Bruker Avance spectrometer operating in the quadrature mode at 500.13 MHz for 1 H and 202.46 MHz for 31 P nuclei. The residual peaks of deuterated solvents were used as internal standards in the 1 H NMR method. 31 P NMR spectra were recorded at 277 K both with and without proton decoupling. The internal standard used in 31 P NMR was inorganic phosphate (Pi), showing resonance at 2.15 ppm (pH 7.8), 2.05 ppm (pH 7.5), 1.65 ppm (pH 5.0) and 0.0 ppm (pH 1.5). Additionally, chemical shifts were checked with external reference (85% H 3 PO 4 ). All samples were analyzed using the gradientenhanced 1 H-31 P Heteronuclear Multiple Bond Correlation (HMBC) method, with the HMBC experiments optimized for long range couplings by using different 3 J P-H values (1-20 Hz). The 1 H NMR spectra were obtained with and without the use of HDO suppression method. All buffer solutions used for NMR spectroscopy were based on deuterium oxide of 100%D purity (Armar Chemicals AG). 

Results and Discussion

Three model peptides were phosphorylated with monopotassium phosphoramidate and analyzed using mass spectrometry, the ESI-MS spectra confirming that the reaction yielded N-phosphorylated products. The peptides are known substrates or inhibitors of protein kinases (Table 1). All lysine-phosphorylated peptides were stable in 60% aqueous acetonitrile solution (pH 7) at the room temperature (22 o C). No degradation product was observed in the ESI-MS spectra if the samples were incubated at 4 o C for one week. On the other hand, the phosphorylated peptides were unstable under acidic conditions. At pH 2-3 (in 10% formic acid), the half-time for phosphopeptide at the room temperature was approx. 20 min. Thus, the lysine-phosphorylated peptides stability was similar to that described previously for phosphohistidine [START_REF] Kleinnijenhuis | Analysis of histidine phosphorylation using tandem MS and ion-electron reactions[END_REF].

The possibility of arginine side-chain phosphorylation under the conditions employed was excluded by various NMR and ESI-MS experiments (not shown in Materials and methods). We performed the NMR-controlled pH-dependent phosphorylation experiments at conditions similar to those described in this paper. Our results clearly showed that the 31 P NMR spectrum of arginine-phosphoramidate post-reaction mixture contains no phosphoarginine resonance (singlet resonance) at pH range from 4.0 to 9.0. The traces of phosphoarginine product were found only for reaction mixtures incubated at pH 10 and above (we analyzed the 3-12 pH range), whereas experiments conducted for lysine proved that phospholysine (triplet resonance) reacts with phosphoramidate ions at the 5-12 pH range. A similar conclusion was also obtained on the basis of our ESI-MS experiments. Therefore, the chemical phosphorylation employing monopotassium phosphoramidate in pH 8 take place exclusively at amino groups, even if arginine residues are present in the peptide chain. 

Peptide sequence Biological activity References

R K R S R A E selective substrate of protein kinase G (PKG) with a strong preference for PKG I over PKG II [START_REF] Hall | Phosphorylation-dependent inhibition of protein phosphatase-1 by G-substrate[END_REF] R K R A R K E an inhibitor of the cGMP-dependent protein kinase [START_REF] Glass | Differential responses of cyclic GMP-dependent and cyclic AMP-dependent protein kinases to synthetic peptide inhibitors[END_REF] P L S R T L S V A A K K a part of a glycogen synthase sequence; an effective substrate of CaM kinase II and protein kinase C (PKC) [START_REF] House | Protein kinase C contains a pseudosubstrate prototope in its regulatory domain[END_REF][START_REF] Alexander | A method for measuring protein kinase C activity in permeabilized T lymphocytes by using peptide substrates. Evidence for multiple pathways of kinase activation[END_REF] The ESI-MS spectra (Figure 2a) of the phosphorylated RK P RSRAE peptide, recorded in the positive ion mode, present the main peak at m/z 491.755 corresponding to the monophosphorylated compound ([M P +2H] 2+ ). In this spectrum, the abundant peak of the phosphorylated peptide is accompanied by its unphosphorylated form. There are additional peaks at m/z: 502.746, 510.734, 513.738, and 521.725 that correspond to 2+ ions of the phosphopeptide containing metal cations: ([M P +H+Na] 2+ , ([M P +H+K] 2+ , ([M P +2Na] 2+ , and ([M P +K+Na] 2+ , respectively. Interestingly, no metal adducts were apparent in the unphosphorylated peptide spectrum. This may suggest that the presence of the phosphoramidate group increases the affinity of the peptide towards the metal ions. The latter effect is observed also in the ESI-MS spectra of the other analyzed model peptides. The most abundant peak at 491.7 m/z, corresponding to the [M P +2H] 2+ ion, was chosen as a precursor for the fragmentation both by CID and ECD. Figure 2b presents the CID spectrum of the products obtained by phosphorylation of the RKRSRAE peptide. The number of identified fragments is not sufficient to establish the phosphorylation site. This may be due to the extensive neutral losses of HPO 3 (80 Da) and water molecule (18 Da). The most abundant peak corresponds to the loss of 98 Da. Although phosphoramidates can not directly eliminate H 3 PO 4 molecules because of merely three oxygen atoms being available in the amidate, a concerted loss of one H 3 PO 4 molecule from N-phosphorylated peptides can not be excluded. Recently Kleinnijenhus et al. [START_REF] Kleinnijenhuis | Analysis of histidine phosphorylation using tandem MS and ion-electron reactions[END_REF] observed also that collisional activation of the histidine-phosphorylated peptide results in the extensive loss of H 3 PO 4 . The authors proved the origin of the lost water to be an Asp residue adjacent to the phosphorylated His residue. Therefore, although the phosphorylated lysine residue in RK P RSRAE is surrounded by arginine residues, the eliminated water molecule may derive from the Ser 4 or Glu 7 residues.

The spectrum in Figure 2b is dominated by ions corresponding to the elimination of HPO 3 and water molecule, whereas the abundances of the backbone fragments are relatively low, with many unidentified fragments observed. The CID spectrum is difficult to analyze and the localization of the peptide phosphorylation site is complicated.

A different fragmentation pattern was observed in the spectrum obtained following the ECD fragmentation of RK P RSRAE (Figure 2c). In contrast to CID, the ECD fragmentation of the [M P +2H] 2+ ion retains the phosphorylation of the majority of fragments containing Lys 2 . On the other hand, in the obtained c n -and z n • -series of ions phosphorylated and unphosphorylated species are observed, indicating that even the ECD fragmentation causes certain level of dephosphorylation. In spite of a higher abundance of the fragments containing phospholysine and domination of the corresponding peaks in the spectrum, a partial dephosphorylation and the lack of certain ions make the spectrum interpretation difficult. The ECD fragmentation pattern suggests, that the phosphoramidate group is located mainly on the lysine side chain, although a partial phosphorylation of the N-terminal amino group cannot be excluded.

[Fig. 3]

The analyzed peptide of the RKRARKE sequence encompasses two lysine residues -Lys 2 and Lys 6 . Although the peptide may be expected to yield a doubly phosphorylated product, following the reaction with an excess of the phosphorylating agent, the ESI-MS spectrum (presented in Figure 3a) shows that the predominant peak corresponds to a singly phosphorylated product. To simplify interpretation of the spectrum, the ESI-MS analysis was performed using 2% formic acid as a solvent allowing to avoid metal ions coordination to the phosphopeptide, observed at higher pH values. Although the phosphoramidate bond is known to hydrolyze quickly under acidic conditions, we found the phosphopeptides to be stable for the time sufficient to perform the MS experiment (t 1/2 ~ 30 min at room temperature).

The mass spectrum (Figure 3a) does not show any peaks coming from the metal-ion adducts. The main peaks result from the ionization of the unphosphorylated, (m/z 472.303 (+2)), monophosphorylated (m/z 512.287 (+2)), and diphosphorylated (m/z 552.270 (+2)) peptide. The unphosphorylated peptide ion dominates (m/z 315.20) in its triply protonated form. The intensity of the diphosphorylated peptide ions (represented by m/z 552.27 (+2) and 369.24 (+3)) is low. The latter phenomenon may be a result of either the phosphorylation procedure used being capable to modify only one lysine residue in RKRARKE or of the neutralization of the molecule's overall charge by the phosphorylation which makes the ionization more difficult.

The ECD experiment allowed to localize the phosphorylation site in doubly and triply charged precursor ions (Figure 3b and3c, respectively) of the monophosphopeptide. The ECD analysis performed on the doubly charged ion ([M P +2H] 2+ , Figure 3 b) is represented predominantly by three series of fragment ions: a longer series of singly phosphorylated ions z n

•P c n P , and shorter series of nonphosphorylated c n and z n ions. The mass peaks, corresponding to the species containing the phosphoramidate group, are characterized by a higher abundance.

The ECD fragmentation, performed on the triply charged, singly phosphorylated peptide ion ([M P +3H] 3+ ) (Figure 3c), resulted in a better sequence coverage. The c n -and z n • series are almost complete and the number of identified phosphorylated fragment ions is sufficient to sequence the peptide and to localize the phosphorylation site. The presence of a series of peaks in the spectrum, corresponding to z 2

•P , z 3 •P , z 4

•P ,and z 5

•P , suggests that the phosphorylation site is located on Lys 6 , whereas the presence of peaks corresponding to c 3 P , c 4 P , and c 5 P , indicates that the phosphoramidate may be also present on Lys 2 . Thus, the ECD fragmentation spectrum indicates both lysine residues to undergo N-phosphorylation. The peptide's chemical modification does not appear regioselective, albeit the phosphorylation levels of Lys 2 and Lys 6 are different and the relative intensity of fragment ions suggests the modification of Lys 6 to be preferred.

The third model peptide, PLSRTLSVAAKK, contains a sequence of two lysine residues located at the C-terminus (Lys 11 and Lys 12 ). The positions of lysine moieties might be expected to influence the N-phosphorylation regioselectivity. The ESI-MS spectrum presents the peak masses derived from the monophosphorylated PLSRTLSVAAKK peptide, with the measurement done in 2% formic acid, to aid the peptide protonation. Because of a relatively rapid hydrolysis of the phosphoramidate, the mass experiment was performed without delay just after addition of the acid.

In the ESI-MS spectrum (Figure 4a), only peaks corresponding to the singly phosphorylated peptide are observed, with the abundances of unphosphorylated and diphosphorylated peaks being low. The main peak in the spectrum at m/z 675.883 represents a doubly charged, singly phosphorylated peptide [M P +2H] 2+ . Two other forms, singly and triply charged, are apparent at m/z 1350.754 and 450.923, respectively. It is of note that the phosphorylated peptide is relatively resistant towards hydrolysis and does not loose the phosphoramidate group in 2% formic acid even after 20 min.

[Fig. 4]

To check the resistance of the modification in phosphorylated PLSRTLSVAAKK, the sample was incubated with 10% formic acid. The ESI-MS spectra, recorded after 2, 10, and 20 min (Figure 4b), show evolution with time pointing to an apparent slow dephosphorylation of the peptides. While the singly phosphorylated form is still predominant after 2 min, the following 20 min incubation period results in an increase of the peaks corresponding to the unphosphorylated species. We also examined the stability of the phosphorylated lysine residues in the phosphopeptide solution (60% aqueous acetonitrile) stored at -20 o C. Surprisingly, the ESI-MS spectrum, recorded for the lysine-phosphorylated peptides tested, remains unchanged even after a six-month incubation period (Figure 4c), indicating that phospholysine containing peptides can be stored at low temperature and neutral pH.

[Fig. 5]

To check whether the peptide was N-phosphorylated regioselectively the fragmentation was performed using CID and ECD methods (Figure 5a and5b). The doubly A c c e p t e d M a n u s c r i p t Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. charged, singly phosphorylated ion (M P +2H) 2+ of the PLSRTLSVAAKK peptide was chosen (m/z 675.883) for the fragmentations. The CID spectrum shows, beside a majority of all ions derived from the unphosphorylated form, only two peaks corresponding to the phosphorylated peptide fragments and several unidentified peaks. Although the number of fragment ions is sufficient for the peptide sequencing, it is difficult to establish the phosphorylation site. The ECD spectrum provides much more information. The resulting c n -and z n • -fragment ions cover the peptide sequence in 100%. Furthermore, there are four identified fragment ions, bearing the phosphoramidate moiety. The intensity of certain ions belonging to the z n •P series was very low and, therefore, the corresponding peaks were not pointed in Figure 5b. The presence of the phosphorylated c 2 P ion proves that Lys 11 is phosphorylated, at least partially. On the other hand, the occurrence of the z 1

•P phosphorylated ion can be explained only assuming a partial phosphorylation of Lys 12 . Thus, the analysis of the ECD spectrum reveals that both Lys 11 and Lys 12 moieties are phosphorylated to some extent. Fragmentation of the PLSRTLSVAAKK peptide phosphorylation products, performed by the ECD method, results in a better sequence coverage and significantly higher retention of the phosphoramidate group, as compared to the CID method. On the other hand, the fragmentation behavior of the lysine-phosphorylated peptide reflects a high labiality of the phosphoramidate moieties. Even with the ECD technique, significant phosphate-related losses are observed. This observation correlates well with the recently reported electron-based dissociation (ECD and ETD) of phosphorylated histidine in polypeptides [START_REF] Wind | Analysis of CheA histidine phosphorylation and its influence on protein stability by high-resolution element and electrospray mass spectrometry[END_REF]. Our results demonstrate that although in the process of electron-based dissociation the phosphorylated lysine residue shows a lability similar to that of the phosphorylated histidine residue, it may be sequenced using ECD. On the other hand, the dephosphorylation level observed during the ECD fragmentation is surprisingly high. The electron-based fragmentation methods are believed to be extremely selective with respect to peptide bonds [START_REF] Kelleher | Localization of labile posttranslational modifications by electron capture dissociation: The case of gammacarboxyglutamic acid[END_REF], and consequently the ECD should not influence the modifications of peptides. Our results suggest a relatively low stability of the phosphoramidate bond in the gas phase, compared to other known posttranslational modifications.

NMR analysis was performed on unphosphorylated and phosphorylated peptides, RKRARKE and PLSRTLSVAAKK, to confirm correctness of the ECD-MS analysis. The 1 H NMR chemical shift of the RKRARKE lysine -CH 2 moiety found in the non-phosphorylated peptide spectrum is approximately 2.93 ppm. The 1 H NMR spectrum of the phosphorylated, compared with non-phosphorylated, RKRARKE peptide shows clearly a new multiplet resonance at 3.08 ppm, strongly correlated with that of -CH 2 of the phosphorylated lysine moiety. The observed downfield shift of the -CH 2 moiety of the phosphorylated form (0.15 -0.25 ppm) is typical of phosphorylated/non-phosphorylated aliphatic amino acid side chain systems [START_REF] Pogliani | Conformational study of phosphoserine in aqueous solutions. II -1H n.m.r. results[END_REF][START_REF] Raeck | A 2D NMR method to study peptide phosphorylation[END_REF]. The 31 P NMR spectrum of the phosphorylated peptide shows a resonance at approx. 7.0 ppm.

The 1 H NMR spectrum of phosphorylated peptide PLSRTLSVAAKK contains a multiplet resonance at 3.06 ppm, corresponding to the phospholysine -CH 2 moiety, and the resonances of the non-phosphorylated lysine -CH 2 moiety visible at 2.90 ppm, with relative integrals of 1:1, respectively. The 31 P NMR spectrum of the phosphorylated peptide clearly shows a new triplet resonance at 7.6 ppm ( 3 J P-H = 6.8 Hz, Figure 6), with the coupling constants in the range typical of the three-bond P-H couplings [START_REF] Isab | 13C, 15N and 31P NMR studies of the disproportination of cyanogold(I) complexes: [R3PAu13C15N[END_REF][START_REF] Lindon | 1H, 13C and 31P n.m.r. spectra and molecular conformation of myo-inositol 1,4,5-triphosphate[END_REF]. It is of note that the latter resonance appears to correspond to a single form of phospholysine, as with protondecoupling applied. The 31 P NMR spectrum shows a single, narrow (half-width 2.67 Hz), symmetrical singlet resonance at 7.6 ppm, Figure 6. The previously mentioned triplet form of the resonance in the 31 P NMR spectrum results apparently from the heteronuclear coupling of phosphate phosphorus with two magnetically equivalent hydrogen atoms of the -CH 2 methylene group of the N-phosphorylated lysine moiety of the PLSRTLSVAAKK peptide. The gradient-enhanced 1 H-31 P Heteronuclear Multiple Bond Correlation (HMBC, see Figure 6c) proved the above mentioned P-coupled methylene hydrogen atoms to show 1 H NMR shifts of ca. 3.1 ppm, in agreement with the 1 H NMR spectrum of the phosphorylated PLSRTLSVAAKK peptide. In view of the analysis of COSY and 1 H-13 C HSQC spectra of the phosphorylated peptide, as well as the data on several homopeptide derivatives [START_REF] Varga-Defterdarovi | Synthesis and intramolecular reactions of Tyr-Gly and Tyr-Gly-Gly related 6-Oglucopyranose esters[END_REF], the -CH proton of the lysine moiety with a free carboxylic group (Lys 12 , -CH = 3.74 ppm) should not have the phosphate group at the side chain. Consequently, the other lysine moiety (Lys 11 , - CH = 3.80 ppm) must have the phosphoramidate group in the -CH 2 region. In view of the analysis of the NMR data, the presence of the O-phosphoserine moiety in the analyzed peptides is not apparent. The three-bond coupling between serine CH 2 and phosphorus would result in a two doublets resonance pattern. Moreover, the 1 H-31 P HMBC spectra indicate the phosphoserine-, and also thiophosphoserine-CH 2 , group to show 1 H chemical shifts in the 3.6 -4.2 ppm range [START_REF] Pogliani | Conformational study of phosphoserine in aqueous solutions. II -1H n.m.r. results[END_REF][START_REF] Raeck | A 2D NMR method to study peptide phosphorylation[END_REF][START_REF] Ruman | Thiophosphorylation of free amino acids and enzyme protein by thiophosphoramidate ions[END_REF]. Furthermore, the observed resonances do not belong to the phosphorylated arginine or glutamate moieties, as would be expected with those singlet resonances in 31 P NMR. Finally, the triplet resonances could not originate from the phosphorylated N-terminal end of a peptide, as a doublet 31 P NMR resonance would have to result due to the proximity of the -CH moiety.

[Fig. 6]

It is of note that while in view of the NMR results the reaction appears rather regiospecific, the ECD spectra suggest modification of both Lys 11 and Lys 12 . In our opinion, the discrepancy results from different characteristics of the two methods, with the former providing quantitative results, but not always are able to detect minor constituents, and the latter allowing a higher sensitivity, but not necessarily a quantitative evaluation.

Conclusions

Comparative mass spectrometric analyses are presented, accompanied by 1 H NMR and 31 P NMR studies, of model peptides unphosphorylated and N-phosphorylated on lysine residue(s). Although the modified peptides, monitored by MS, proved labile under acidic conditions in accord with the well known phosphoramidate acid-lability, neutral solutions of the peptides could be stored for a long time at -20 ˚C without loosing the phosphoramide group.

Two fragmentation methods, ECD and CID, were compared as tools for the analysis of the N-phosphorylation products. The results pointed to the ECD fragmentation as an advantageous method, allowing a significant reduction of the neutral losses related to the phosphoramidate moiety and permitting, in most cases, the localization of phosphorylation sites. On the other hand, the lysine-phosphorylated peptides are relatively unstable in vacuum and localization of the phosphorylation site, even using the ECD method, should be done with caution. 
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Figure 1 .

 1 Figure 1. Scheme of the peptide phosphorylation on the -amino group of lysine.

Figure 2 .

 2 Figure 2. ESI-MS spectra of the phosphorylated RK P RSRAE peptide. a) ESI-MS spectrum recorded in positive ion mode, b) CID fragmentation spectrum (precursor ion m/z 491.7), c) ECD fragmentation spectrum (precursor ion m/z 491.7). K* -represents possible phosphorylation on the lysine -amino group. The fragmentation pattern is shown in each spectrum. c n -and z n -fragmentation ions with the index P present the phosphorylated fragment of the peptide.

Figure 3 .

 3 Figure 3. ESI-MS spectrum of RK P RARK P E. a) mass spectrum of the phosphorylation products of RKRARKE, b) ECD fragmentation spectrum (precursor ion m/z 512.3, ((M P +2H) 2+ ), c) ECD fragmentation spectrum (precursor ion m/z 341.9, ((M P +3H) 3+ )). K*possible phosphorylated lysine residue.

Figure 4 .

 4 Figure 4. ESI-MS spectra of the products of phosphorylation of the PLSRTLSVAAKK peptide. a) ESI-MS spectrum in positive ion mode in 2% formic acid. b) ESI-MS spectra in 10% formic acid after: A -2 min, B -10 min, C -20 min. c) ESI-MS spectrum of the phosphorylated peptide sample after 6-month storage at -20 o C.

Figure 5 .

 5 Figure 5. Fragmentation spectra of the phosphorylated PLSRTLSVAAKK peptide. a) CID fragmentation spectrum (precursor ion m/z 675.9; (M P +2H) 2+ )), b) ECD fragmentation spectrum (precursor ion m/z 675.9; (M P +2H) 2+ )). K* -possible phosphorylated lysine residue.

Figure 6 . 31 P

 631 Figure 6. 31 P NMR spectrum (A), 31 P NMR spectrum with proton decoupling (B), and 1 H-31 P HMBC spectrum (C) of the PLSRTLSVAAKK peptide K P moiety.

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1

 1 Model peptides used in experiments and their biological activity.
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