Ligand-receptor interactions are customarily described by equations that apply to solutes. Yet, most receptors are present in cell membranes so that sufficiently lipophilic ligands could reach the receptor by a two-dimensional approach within the membrane. As summarized in this review, this may affect the ligand-receptor interaction in many ways. Biophysicians calculated that, compared to a threedimensional approach from the liquid phase, such approach could alter the time the ligands need to find a receptor. Biochemists found that ligand incorporation in lipid bilayers modifies their conformation. This, along with the depth at which the ligands reside in the bilayer, will affect the probability of successful receptor interaction. Novel mechanisms were also introduced, including "exosite" binding and ligand translocation between the receptor's -helical transmembrane domains.

Pharmacologists focused attention at ligand concentrations in membrane, their adsorption and release rates and the effects thereof on ligand potency and residence time at the receptor.

A c c e p t e d M a n u s c r i p t

Ligand-receptor interactions are customarily described by equations that apply to solutes, i.e. molecules that are homogeneously distributed in a solvent and free to move therein. Yet, neurotransmitter receptors, channel-associated receptors and most of the hormone receptors are integral components of the cell plasma membrane. This not only creates an in-homogeneity in the receptor distribution but, above all, it may profoundly affect the molecular and kinetic characteristics of their interaction with ligands provided that these are sufficiently lipophilic. Over the past forty years, experts belonging to disciplines like biophysics, biochemistry, pharmacology and biology and chemistry have contributed to a better knowledge of how membranes may affect ligand-receptor (as well as substrate-enzyme) interactions at the molecular level. The ambition of this review is to integrate the outcomes of these studies in a single comprehensive monograph and, by doing so, to stimulate interdisciplinary cross-talks on this far from obsolete topic.

Diffusion !

Diffusion plays an eminent role in biology. From the microscopic viewpoint, it reflects Brownian motion; i.e. random walks of molecules in solution resulting from their continuous collisions with molecules of the solvent such as water. After statistical treatment, the behavior of a large set of such random walks can be formulated by the classical equations of macroscopic diffusion first introduced by Adolf Fick in 1855. In vivo as well as well as in appropriate surrogate in vitro experimental systems, such soluble molecules (solutes) will occasionally collide with the obstructions like cell membranes and the extracellular matrix. In the early mathematical treatments, cell membranes were considered to constitute perfectly reflective barriers so that solutes should bounce-off immediately after such a collision. Such calculations revealed that, after this first collision, it is most likely for solutes to collide with that surface more than once again before drifting away to the bulk of the solution [START_REF] Berg | Physics of chemoreception[END_REF].

Most receptors for natural messengers like hormones and neurotransmitters are embedded in the cell plasma membrane and their interaction with these messengers or related ligands is customarily described by equations that apply to the interaction between two solutes, i.e. molecules that are homogeneously distributed in and free to move in solution. Yet, because of the comparatively enormous size of cells and even of isolated membrane fragments thereof, it is only the diffusion of the ligand molecules that needs to be taken into account. Moreover, since most of the receptors only cover a minute fraction of total surface of a cell plasma membrane, a direct hit between a free ligand and such receptor is probably a rare event. In their pioneering calculations on the influence of surfaces on heterogeneous reactions, [START_REF] Berg | Physics of chemoreception[END_REF] concluded that is most likely for the A c c e p t e d M a n u s c r i p t ligand to make a few encounters with non-specific areas of the membrane (which was considered to represent a reflective surface) before it interacts with an embedded receptor target or drifts away (Figure 1, left panel). Because of this initial tendency of the ligand to remain in close proximity of the membrane surface, it has a higher probability to hit a receptor within a given time-span as compared to the situation in where both ligand and isolated receptor molecules are homogeneously distributed and freely diffusing in solution [START_REF] Berg | Physics of chemoreception[END_REF]. In other words, merely based on their physical characteristics, membranes are already able to boost the rate of ligand-receptor encounters.

Of note is that, in those as well as in many ensuing calculations, receptors were represented as traps/"perfect sinks": i.e. somewhat similar to the holes in a snooker table, each hit with a receptor should result in the immediate and irreversible disappearance of the ligand molecule in question.

In practice, cell membranes are able to undergo electrostatic and hydrophobic interactions with solutes. In many instances, small ligand molecules and even peptides become absorbed to the membrane-solution interface and in the case of highly hydrophobic ligands, they can even become completely embedded within the membrane [START_REF] Sargent | Conformation and orientation of regulatory peptides on lipid membranes. Key to the molecular mechanism of receptor selection[END_REF][START_REF] Herbette | Possible molecular basis for the pharmacokinetics and pharmacodynamics of three membrane-active drugs: propranolol, nimodipine and amiodarone[END_REF]. Hence, the behavior of membranes is quite distinct from that of perfectly reflective barriers. Based thereon, [START_REF] Adam | Reduction of dimensionality in biological diffusion processes[END_REF] first introduced the idea that the rate by which a membrane-associated traps reacts with a dissolved ligand can be enhanced if the ligand first absorbs to the surface of the membrane and then laterally diffuses to this "trap". This "reduction of dimensionality" theory implies that, rather than approaching the receptor by pure three-dimensional (3D) diffusion, the ligand should first be directed by 3D diffusion to a "non-specific" region of the membrane surface followed by its adsorption and further two-dimensional (2D) diffusion at the surface of or even within the membrane to the receptor (Figure 1, right panel). These considerations obviously imply that the ligands in question should be able to perform their final approach to the receptor by a 2D route, i.e. without the need for temporarily leaving the lipid bilayer to reach the receptor from within the aqueous phase.

Conclusive evidence for 2D surface diffusion to a receptor target has been provided by patch clamp experiments with dihydropyridine (DHP) derivatives on cultured rat myocardial cells and neonatal rat or adult guinea pig ventricular cells. It was indeed shown that, when added to medium outside the patch, some of these ligands are anyhow able to affect single calcium channels within the patch [START_REF] Kokubun | Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells[END_REF]Reuter, 1984, Brown et al., 1984). Since the receptors make part of calcium channels that are physically isolated from the bulk solvent (i.e. because of their presence within the patch), the DHP's have to reach these receptors through the lipid bilayer instead of an aqueous 3D approach.

A c c e p t e d M a n u s c r i p t Moreover, and in agreement with a thermodynamically highly unfavorable "flip-flop" of amphiphilic molecules between both leaflets of the plasma membrane, ionized DHP's only interacted with the calcium channel when applied from one side of the membrane [START_REF] Bangalore | L-type calcium channels: asymmetrical intramembrane binding domain revealed by variable length, permanently charged 1,4dihydropyridines[END_REF].

The major outcome of Adam and Delbrück's calculations was indeed that, on average, such mixed 3D-2D approach should allow the ligand to reach the receptor by a shorter route than in the case of an exclusive 3D approach. Based on the consideration that this increases the efficiency multimolecular reaction processes at low concentration, [START_REF] Eigen | Diffusion control in biochemical reactions[END_REF] went even one step further by suggesting that "reduction of dimensionality" is a nature's trick to overcome the barrier of diffusion control. This could explain the prevalence of membrane-bound enzymes in living systems.

Subsequent calculations were done with the aim to find out under which conditions "reduction of dimensionality" has the most favorable impact on the collision rate between a ligand/substrate and its membrane-associated receptor/enzyme. In this respect, the most important parameters to be taken into consideration were the ligand concentration in solution, the receptor concentration (i.e. amount of receptors per unit of membrane surface area), the distribution pattern of the receptors (such as homogenous dispersion vs. their accumulation in discrete areas such as lipid rafts), the 3D and 2D diffusion rate constants of the ligand (denoted by D 3 in cm 3 .s -1 and D 2 in cm 2 .s -1 , respectively), the ligand's affinity for non-specific/non-target sites at the membrane and occasionally also the corresponding non-specific adsorption and release rate constants of the ligand. In general, the capture rate (i.e. steady-state flux of adsorbed ligands to the receptors/traps) via the combined 3D-2D pathway was found to increase upon increasing the ligand's affinity for non-specific sites at the membrane (given by the equilibrium dissociation constant K eq , in moles.l -1 of aqueous solution) and the surface diffusion coefficient D 2 . In this respect, it is noteworthy that the ligand does not need to possess overly high affinity for the membrane to favor the combined 3D-2D approach [START_REF] Berg | Physics of chemoreception[END_REF][START_REF] Wang | Reaction rate enhancement by surface diffusion of adsorbates[END_REF]. For example, the relatively low affinity of ACTH 1-24 for nonspecific sites at the membrane (K eq of 40 µM) was calculated to be already strong enough to increase the speed/likelihood of this ligand to find a receptor upon switching its route from a 3D random diffusion in solution to a 2D search within the plane of the membrane [START_REF] Sargent | Conformation and orientation of regulatory peptides on lipid membranes. Key to the molecular mechanism of receptor selection[END_REF].

Moreover, a two-step searching was also found to yield a rate advantage in the case of low bulk ligand and receptor target concentrations [START_REF] Adam | Reduction of dimensionality in biological diffusion processes[END_REF][START_REF] Berg | Physics of chemoreception[END_REF][START_REF] Rhodes | Kinetics of binding of membrane-active drugs to receptor sites. Diffusion-limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site[END_REF][START_REF] Mccloskey | Rates of Membrane-associated Reactions: Reduction of Dimensionality Revisited[END_REF][START_REF] Wang | Reaction rate enhancement by surface diffusion of adsorbates[END_REF]. For example, because of the very low DHP receptor density in cardiac sarcolemmal membranes (i.e. 1 site/µm 2 ), [START_REF] Rhodes | Kinetics of binding of membrane-active drugs to receptor sites. Diffusion-limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site[END_REF] calculated that mean time for ligand-receptor collisions via 3D-2D combination should be about 1000 A c c e p t e d M a n u s c r i p t times shorter than mean time for collisions via the 3D pathway only.

Diffusion ?

Yet, because of differences in the models and in the restrictive assumptions, the calculations did not always yield the same outcome [START_REF] Wang | Reaction rate enhancement by surface diffusion of adsorbates[END_REF]. This led some to proclaim that there is no strict guarantee for a ligand to find a membrane-associated receptor more quickly with the aid of surface diffusion, even when D 2 is nearly as high as D 3 and when the ligand possesses moderate affinity for the membranes [START_REF] Mccloskey | Rates of Membrane-associated Reactions: Reduction of Dimensionality Revisited[END_REF]. In this respect, 2D diffusion rates of small molecules may vary widely: from 1000 x less than the 3D rate for a fluorescently labelled -adrenoceptor antagonist in membranes to as high as the 3D rate for molecules which diffuse in the central (most disorganized) part of artificial membranes [START_REF] Mccloskey | Rates of Membrane-associated Reactions: Reduction of Dimensionality Revisited[END_REF]). An additional caveat with most of these models is that they only paid attention to diffusion-limited ligand-receptor interactions and that, to facilitate calculations, the receptors were regarded to act as irreversibly absorbing perfect sinks. A distinctive feature of a perfect sink is that, even in steady state, it induces a local depletion of soluble ligand molecules around itself [START_REF] Axelrod | Reduction-of-dimensionality kinetics at reaction-limited cell surface receptors[END_REF]). Yet, this assumption does not fit with experimental findings indicating that receptors usually bind their ligands in a reversible fashion, releasing them unaltered back into solution. This implies that local depletion zones rarely exist under steady state conditions and, hence, that "perfect sink" models do not accurately describe real-world situations [START_REF] Wang | Reaction rate enhancement by surface diffusion of adsorbates[END_REF]).

An even more important conceptual turning point was provided by [START_REF] Rhodes | Kinetics of binding of membrane-active drugs to receptor sites. Diffusion-limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site[END_REF]. These authors noticed that experimental DHP-receptor association rates were far lower than the ones calculated on basis of diffusion only. It was therefore concluded that the binding of such ligands is reaction limited (reflecting the small probability of a diffusive ligand-receptor encounter to result in successful binding) rather than merely diffusion limited. Subsequent to these observations, [START_REF] Axelrod | Reduction-of-dimensionality kinetics at reaction-limited cell surface receptors[END_REF] explored the outcomes of a model in where collision with a ligand only rarely leads to binding and in where receptors do not create significant local depletion zones of the ligand. Quite similar to the outcomes of the previous calculations based on "perfect sink" models, it was shown that "reduction in dimensionality" could exhibit significant rate enhancement when the drug concentration in solution and K eq are low, D 2 is large and the receptor targets are far apart.

The relative contribution of ligand diffusion and the probability of successful binding to the formation (and dissociation) of bimolecular ligand-receptor complexes is addressed in a comprehensive model [START_REF] Delisi | The effect of cell size and receptor density on ligand-receptor reaction rate constants[END_REF][START_REF] Delisi | Effect of nonspecific forces and finite receptor number on rate constants of ligand-cell bound-receptor interactions[END_REF]. This model stipulates that binding between a ligand (L) and its receptor (R) proceeds according to a two-step process. Diffusion of the ligand will first bring them to within a very short distance of one another (to the so called "reaction distance") and it is only when this "encounter complex" ([L…R]) is formed that the binding process (formation of L.R) can take place with a specific "reaction forward rate constant" (k 1 ) (Fig. 2, left panel). This model neatly separates the ligand-receptor binding in two parts: one depends on the viscosity of the medium (manifested by the diffusion rate constants k + and k -) while the other depends on the reaction mechanism (manifested by k 1 and k -1 ). It can also be represented by a single-step process with the "effective" forward rate constant k f = k + k 1 /(k -+ k 1 ) and the "effective" reverse rate constant k r = k -k -1 /(k -+ k 1 ) (Fig. 2, right panel). Inherently, this model implies that the mixed 3D-2D approach could provide a rate advantage over the 3D approach if partitioning of the ligand in the membrane allows it to adopt a more adequate position, orientation and/or conformation [START_REF] Rhodes | Kinetics of binding of membrane-active drugs to receptor sites. Diffusion-limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site[END_REF][START_REF] Chester | Diffusion of dihydropyridine calcium channel antagonists in cardiac sarcolemmal lipid multibilayers[END_REF]). These issues are addressed in more detail below.

Ligand partitioning and penetration into the membrane.

When obtained after equilibrating the ligand between the aqueous solvent (buffer, medium) and membrane fraction, the equilibrium partition coefficient, K p , can be calculated by dividing the ligand concentration in the membrane (in moles.l -1 of membrane) by the ligand concentration in the solvent (in moles.l -1 of solution). K p is dimensionless and should not be confused with the ligand's equilibrium dissociation constant K eq for binding to non-specific sites in the membrane. With respect to the experimental models that are used to estimate K p values, it is now widely accepted that partitioning of ligands in biological membranes and artificial phospholipid bilayer systems is more adequate than the previously widely used isotropic two-phase bulk solvent systems such as the octanol/buffer combination. Indeed, these latter experiments only provide information about the hydrophobicity of the ligand without taking account of the ability of the ligands to interact with the polar head groups of membrane lipids [START_REF] Mason | Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes[END_REF]. In line with this theoretical consideration, partition coefficients of DHP's and D 2 -dopamine receptor antagonists for membranes and membrane lipids are very different from those reported for the octanol/water combination [START_REF] Oliveira | Partition coefficients of dopamine antagonists in brain membranes and liposomes[END_REF][START_REF] Mason | Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes[END_REF]. However, when using synthetic membranes for K p determinations, one also needs to be aware of the important contribution of their physical state (and e.g. the influence of the temperature thereon), their phospholipid composition and even their cholesterol content [START_REF] Mason | A molecular model involving the membrane bilayer in the binding of lipid soluble drugs to their receptors in heart and brain[END_REF]. For example, the K p 's for DHP incorporation into lipid bilayers were found to be inversely A c c e p t e d M a n u s c r i p t related to their cholesterol content [START_REF] Herbette | Membrane Pathways for Drug/lon Channel Interactions: Molecular Basis for Pharmacokinetic Properties[END_REF].

When K p is elevated, it is conceivable that the high concentration of ligand molecules in the membrane plays a more eminent role in boosting its rate of receptor-association (i.e. the association rate constant multiplied by the local ligand concentration) than the faster accessibility of the receptors by 2D diffusion [START_REF] Mason | Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes[END_REF]. In other words, even if 2D diffusion is essentially nonexistent, increasing the local ligand concentration by membrane partitioning could produce a rate advantage compared to a pure 3D-approach. In the same line, high affinity binding could merely be the consequence of an elevated concentration of ligand in the membrane [START_REF] Sargent | Membrane lipid phase as catalyst for peptide-receptor interactions[END_REF]. Indeed, conventional equilibrium dissociation constants for ligand-receptor interaction (K D , expressed in moles.l -1 of aqueous solution) could be defined as K D = K D '. K p -1 where K D ' is the local equilibrium dissociation constant (Mason et al., 1991, Castanho andFernandez, 2006).

However, K p -based calculations would still underestimate the true concentration of a ligand in the vicinity of the receptor if the ligand molecules were confined to a discrete portion of the bilayer [START_REF] Mason | Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes[END_REF]. Whatever the pertinence of this assertion, it points at a crucial aspect of membrane partitioning, namely that because of the highly ordered structure of the lipid bilayer, amphiphilic and lipophilic ligands align themselves within a membrane bilayer in a preferred orientation and location in accordance to their electronic and stereochemical properties. Hence, the physical characteristics of these ligands may contribute to the discrete depth by which they tend to reside within the membrane. This depth has been defined as the center of a Gaussian curve reflecting the distribution profile of the drug in the lipid bilayer [START_REF] Mason | Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes[END_REF]. That this location may affect K p is suggested by a comparative study by [START_REF] Herbette | Possible molecular basis for the pharmacokinetics and pharmacodynamics of three membrane-active drugs: propranolol, nimodipine and amiodarone[END_REF] (Figure 3) in where (a)

amiodarone was found to be located deep within the bilayer close to the end of the phospholipid fatty acid tails at the bilayer center and to have the highest K p value and (b) propranolol and nimodipine (a DHP) were closer to the hydrocarbon core-water interface of the bilayer and exhibited smaller K p values. This location facilitates both a hydrophobic interaction with the phospholipid acyl chains and electrostatic interactions between the amino functions of the ligands and the phosphate head groups.

Based on observations that hydrophobic and amphiphilic ligands tend to reside at a discrete depth within the membrane, it has been proposed that the binding domains on their receptor should face the bilayer at the same "depth" as the active portion of those ligands [START_REF] Rhodes | Kinetics of binding of membrane-active drugs to receptor sites. Diffusion-limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site[END_REF][START_REF] Chester | Diffusion of dihydropyridine calcium channel antagonists in cardiac sarcolemmal lipid multibilayers[END_REF]Castanho and Fernandez, 2006). In line with this view, structure-activity relationship and mutation studies suggest that the DHP binding site is located on the -helical transmembrane (TM)

A c c e p t e d M a n u s c r i p t domains of the L-type calcium channel approximately 11-14 Å from the external membrane surface [START_REF] Bangalore | L-type calcium channels: asymmetrical intramembrane binding domain revealed by variable length, permanently charged 1,4dihydropyridines[END_REF]. This site is located allosterically with respect to the calcium-binding site of the channel [START_REF] Peterson | Allosteric interactions required for high-affinity binding of dihydropyridine antagonists to Ca(V)1.1 Channels are modulated by calcium in the pore[END_REF].

Lateral translocation between the receptor's transmembrane -helices?

Mutation experiments with G protein-coupled receptors (GPCR's) have pointed out that their binding pocket for small natural messengers and small competitive ligands is deeply embedded within the central cleft formed by their 7 membrane-spanning -helical domains (TM domains). Whereas such binding pockets are traditionally considered to be accessible to hydrophilic ligands that reside in the aqueous phase, it has already been proposed at several occasions that membrane-associated amphiphilic and lipophilic ligands could still gain access to them via lateral diffusion between the receptor's -helical TM domains of that receptor (Figure 5A). Such pathway has been proposed for a number of ligands (Figure 5B) like the endogenous CB 1 cannabinoid receptor agonist anandamide, the synthetic  2 adrenergic receptor agonist salmeterol, the AT 1 -type angiotensin II receptor antagonist losartan and the D 2 -dopamine receptor antagonist spiperone [START_REF] Anderson | Formoterol: pharmacology, molecular basis of agonism, and mechanism of long duration of a highly potent and selective  2 -adrenoceptor agonist bronchodilator[END_REF][START_REF] Anderson | Why are long-acting beta-adrenoceptor agonists longacting?[END_REF][START_REF] Theodoropoulou | Interactions of angiotensin II non-peptide antagonist losartan with phospholipid membranes by combined use of differential scanning calorimetry and electron spin resonance spectroscopy[END_REF]Zoumpoulakis et al., 2003;[START_REF] Mavromoustakos | Efforts to understand the molecular basis of hypertension through drug:membrane interactions[END_REF][START_REF] Makriyannis | How lipophilic cannabinergic ligands reach their receptor sites[END_REF][START_REF] Tian | The conformation, location, and dynamic properties of the endocannabinoid ligand anandamide in a membrane bilayer[END_REF][START_REF] Packeu | Antagonistdopamine D 2L -receptor interactions in intact cells[END_REF]. Anadamantine (Figure 5B) is not stored in a cellular compartment but is produced upon demand from cell membrane phospholipid components. It is then conveyed by specialized carrier proteins to presynaptic nerve terminals where it incorporates in the plasma membrane. In these membranes, anadamantine is likely to adopt an extended conformation with its head group near the lipid-water interface and the end of its fatty acid tail near the bilayer center [START_REF] Barnett-Norris | Lipids, lipid rafts and caveolae: their importance for GPCR signaling and their centrality to the endocannabinoid system[END_REF][START_REF] Lynch | Molecular dynamics simulations of the endocannabinoid Narachidonoylethanolamine (anandamide) in a phospholipid bilayer: probing structure and dynamics[END_REF]. This allows anandamide to engage the CB 1 receptors through a fast lateral diffusion within the membrane [START_REF] Makriyannis | How lipophilic cannabinergic ligands reach their receptor sites[END_REF][START_REF] Tian | The conformation, location, and dynamic properties of the endocannabinoid ligand anandamide in a membrane bilayer[END_REF]. In this respect, a bXXb motif (formed by beta branching amino acids, V6.43 and I6.46) on the lipid face of the CB 1 receptor in its inactive state has been proposed to serve as an initial interaction site for anandamide [START_REF] Tian | The conformation, location, and dynamic properties of the endocannabinoid ligand anandamide in a membrane bilayer[END_REF][START_REF] Lynch | Cannabinoid CB 1 receptor recognition of endocannabinoids via the lipid bilayer: molecular dynamics simulations of CB 1 transmembrane helix 6 and anandamide in a phospholipid bilayer[END_REF]. The fatty acid tail of this agonist is indeed located at the correct depth in the bilayer to interact with this motif. Other cannabinergic compounds are generally amphiphilic in nature as well and, although they are likely to bind to distinct pockets of the CB 1 receptor, they are also thought to reach those pockets by lateral diffusion within the membrane [START_REF] Xie | The conformational properties of the highly selective[END_REF][START_REF] Murphy | Integrity of extracellular loop 1 of the human cannabinoid receptor 1 is critical for high-affinity binding of the ligand CP 55,940 but not SR 141716[END_REF]Kendall, 2003, Makriyannis et al., 2005;[START_REF] Tian | The conformation, location, and dynamic properties of the endocannabinoid ligand anandamide in a membrane bilayer[END_REF][START_REF] Price | Allosteric modulation of the cannabinoid CB1 receptor[END_REF][START_REF] Lynch | Cannabinoid CB 1 receptor recognition of endocannabinoids via the lipid bilayer: molecular dynamics simulations of CB 1 transmembrane helix 6 and anandamide in a phospholipid bilayer[END_REF][START_REF] Kapur | Mutation studies of Ser7.39 and Ser2.60 in the human CB1 cannabinoid receptor: evidence for a serine-induced bend in CB1 transmembrane helix 7[END_REF]. Interestingly, a survey of sequence data by [START_REF] Lynch | Cannabinoid CB 1 receptor recognition of endocannabinoids via the lipid bilayer: molecular dynamics simulations of CB 1 transmembrane helix 6 and anandamide in a phospholipid bilayer[END_REF] indicates that a matching Salmeterol (Figure 5B) is an amphiphilic synthetic  2 -adrenergic receptor agonist. It consists of a hydrophilic saligenin head which is responsible for receptor activation and an extended lipophilic phenylalkoxyalkyl side chain which is responsible for its very high partitioning in synthetic membranes [START_REF] Rhodes | Equilibrium and kinetic studies of the interactions of salmeterol with membrane bilayers[END_REF][START_REF] Bergendal | Salmeterol mediated reassertion of relaxation persists in guinea-pig trachea pretreated with aliphatic side chain structural analogues[END_REF]. Similar to phospholipids, salmeterol is about 25 Å long, it assumes the same specific orientation in membranes and it is not prone to 'flip-flop' to the other face of the membrane [START_REF] Rhodes | Equilibrium and kinetic studies of the interactions of salmeterol with membrane bilayers[END_REF][START_REF] Johnson | The pharmacology of salmeterol[END_REF]. This agonist is considered to accomplish a 2D-approach as well as a lateral diffusion between the receptor's TM domains [START_REF] Johnson | The pharmacology of salmeterol[END_REF][START_REF] Anderson | Why are long-acting beta-adrenoceptor agonists longacting?[END_REF][START_REF] Coleman | Exosites: their current status and their relevance to the duration of action of long-acting  2 -adrenoceptor agonists[END_REF][START_REF] Teschemacher | Kinetic analysis of drug-receptor interactions of long-acting beta2 sympathomimetics in isolated receptor membranes: evidence against prolonged effects of salmeterol and formoterol on receptor-coupled adenylyl cyclase[END_REF]. As only the hydrophilic saligenin head is necessary for receptor activation, it has been proposed that the phenylalkoxyalkyl side chain interacts with a non-polar region in the cell membrane in the close vicinity of the receptor, the 'exosite' [START_REF] Johnson | The pharmacology of salmeterol[END_REF][START_REF] Clark | Stable activation and desensitization of beta 2-adrenergic receptor simulation of adenylyl cyclase by salmeterol: evidence for quasi-irreversible binding to an exosite[END_REF]. This should allow the saligenin head to freely reach (and leave) the central core of the  2 -adrenergic receptor by a Charnière (hinge) principle (Figure 5C). This model provides also an elegant explanation for the very fast termination of the salmeterol response in the presence of hydrophilic antagonists like sotalol and the fast reappearance/"reassertion" of the response when the antagonist is washed away even though no the wash-out medium is salmeterol-free [START_REF] Ball | Salmeterol, a novel, long-acting beta 2-adrenoceptor agonist: characterization of pharmacological activity in vitro and in vivo[END_REF]Linden et al., 1991;[START_REF] Voss | Long-acting ß 2 -adrenoceptor agonists in asthma: molecular pharmacological aspects[END_REF]. The oxygen atom in the alkyloxalkyl side chain has been proposed to act as the point of support for the pivoting saligenin head [START_REF] Johnson | Molecular mechanisms of beta(2)-adrenergic receptor function, response, and regulation[END_REF] and, in this respect, structure-activity relationship studies have pointed at an important role of its position in the alkyloxalkyl side chain. It has therefore been proposed that the efficiency of the saligenin head pivoting/docking process is dictated by the average depth of the "hinge" in the membrane [START_REF] Herbette | Membrane Pathways for Drug/lon Channel Interactions: Molecular Basis for Pharmacokinetic Properties[END_REF][START_REF] Chester | Diffusion of dihydropyridine calcium channel antagonists in cardiac sarcolemmal lipid multibilayers[END_REF][START_REF] Mason | Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes[END_REF][START_REF] Castanho | Lipid membrane-induced optimization for ligandreceptor docking: recent tools and insights for the ''membrane catalysis'' model[END_REF].

The combined 3D-2D approach has to do with ligands that are able to perform their final approach to the receptor without the need for temporarily leaving the lipid bilayer. Yet, this also applies to ligands whose reactive groups need to approach the receptor from the aqueous phase provided that another portion of these molecules is still tethered to the membrane [START_REF] Axelrod | New dimensions in two dimensions[END_REF]. This has been elegantly demonstrated with experiments involving fatty acid attachment to peptide hormones and analogues like CCK-9, [Thr 28 ,Nle 31 ]-CCK-(25-33) and [Nle 15 ]-human-gastrin-(2-17) [START_REF] Romano | Peptide hormone-membrane interactions: the aggregational and conformational state of lipo-gastrin derivatives and their receptor binding affinity[END_REF][START_REF] Moroder | New Evidence for membrane-bound pathway in hormone receptor binding[END_REF][START_REF] Moroder | On the mechanism of hormone recognition and binding by the CCK-B/gastrin receptor[END_REF]. Starting with short lipid chains, initial elongation decreased the A c c e p t e d M a n u s c r i p t affinity of these lipo-gastrin peptide constructs for their respective receptor. As these lipid chains are still too short to permit a firm attachment of the construct to the membrane, they were still supposed to escape from the membrane first and then to reach the receptor's binding site via the aqueous phase.

Hence, the effect of initial lipid chain elongation on the affinity of the constructs was related the fact that it became more and more difficult for them to escape from the membrane. However escape is no longer possible with lipid chain lengths beyond C10. This explains why further chain elongation no longer produced a substantial decrease in receptor affinity. These latter findings suggest that the extracellular loop domains of the involved GPCR's are sufficiently flexible and mobile to permit a lateral penetration of the peptide head groups at the water/lipid interface so that they can reach their binding site in the central cleft of the receptor (Figure 5D) [START_REF] Lutz | Mapping of ligand binding sites of the cholecystokinin-B/gastrin receptor with lipo-gastrin peptides and molecular modeling[END_REF]. This also implies that if a segment of a peptide is sufficiently hydrophobic in character, it is likely to provoke the spontaneous partitioning of that peptide in the membrane [START_REF] Sargent | Conformation and orientation of regulatory peptides on lipid membranes. Key to the molecular mechanism of receptor selection[END_REF]. Hence, the combined 3D-2D approach could also apply to certain peptide ligands.

Conformational modification of the ligand in the lipid bilayer.

The so-called 'nonspecific' nature of ligand-membrane interactions is likely to be a misconception.

Indeed, rather than merely controlling ligand approach kinetics and local accumulation at the plasma membrane, these interactions could also affect the receptor binding process by exerting translational, conformational and orientational constraints on each ligand on a very specific structural basis [START_REF] Sargent | Membrane lipid phase as catalyst for peptide-receptor interactions[END_REF][START_REF] Rhodes | Equilibrium and kinetic studies of the interactions of salmeterol with membrane bilayers[END_REF][START_REF] Schwyzer | 100 Years lock-and-key concept: are peptide keys shaped and guided to their receptors by the target cell membrane?[END_REF][START_REF] Bader | Structure and dynamics of micellebound neuropeptide Y: Comparison with unligated NPY and implications for receptor selection[END_REF]. In this respect, it is noteworthy that this not only applies to small amphiphilic ligand molecules but also to peptide messengers like gastrin, CCK and NPY [START_REF] Bader | Structure and dynamics of micellebound neuropeptide Y: Comparison with unligated NPY and implications for receptor selection[END_REF]Castanho and Fernandez, 2006;[START_REF] Stone | Evidence for a C-terminal structural motif in gastrin and its bioactive fragments in membrane mimetic media[END_REF]. While such regulatory peptides have no unique 3D structure in solution, they acquire well-defined conformations upon interacting with the membrane [START_REF] Sargent | Conformation and orientation of regulatory peptides on lipid membranes. Key to the molecular mechanism of receptor selection[END_REF][START_REF] Contreras | Interaction of -Melanocyte Stimulating Hormone with Binary Phospholipid Membranes: Structural Changes and Relevance of Phase Behavior[END_REF]. Hydrophobic interactions certainly play an important role in this process and for peptides it is generally assumed that amino acids with hydrophobic residues form alpha helices that penetrate perpendicularly into the lipid bilayer [START_REF] Gremlich | Conformational changes of adrenocorticotropin peptides upon interaction with lipid membranes revealed by infrared attenuated total reflection spectroscopy[END_REF][START_REF] Sargent | Membrane lipid phase as catalyst for peptide-receptor interactions[END_REF][START_REF] Bokvist | Two types of Alzheimer's beta-amyloid (1-40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation[END_REF]. In the same line, ACTH 1-24 , substance P and dynorphin 1-13 have been found to adopt a partially helical structure in 2,2,2-trifluoroethanol, a solvent that mimics the lipid environment (Greff et al., 1977;[START_REF] Erne | Membrane structure of substance P. III: Secondary structure of substance P in 2,2,2-trifluoroethanol, methanol, and on flat lipid membranes studied by infrared spectroscopy[END_REF][START_REF] Sargent | Conformation and orientation of regulatory peptides on lipid membranes. Key to the molecular mechanism of receptor selection[END_REF]). Yet, peptide-membrane interactions could also comprise an important electrostatic component. This has clearly been demonstrated in the case of peptideSARSIFP (severe acute respiratory syndrome coronavirus sequence, amino acids 873-888), which interacts differently with the membrane depending on the A c c e p t e d M a n u s c r i p t charge of the phospholipids [START_REF] Bokvist | Two types of Alzheimer's beta-amyloid (1-40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation[END_REF]. In the same line, the 39-42 amino acid long amphiphilic amyloid-β peptide (Aβ), the main constituent found in extracellar amyloid plaques in the brain of Alzheimer Disease patients, is likely to be inserted in the plasma membrane by its hydrophobic domain prior to its release. In this respect, experiments with Aβ1-40 reveled that only a short part of this peptide is inserted in neutral lipid bilayers (Figure 6A). This is because the hydrophilic part of these peptides is only stabilized in the bulk solution However, the insertion becomes more pronounced upon increasing the surface potential because of the emerging electrostatic anchoring of charged peptide residues close to the membrane surface [START_REF] Bokvist | Two types of Alzheimer's beta-amyloid (1-40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation[END_REF].

Electrostatic and hydrophobic components of the ligand-membrane interaction may produce a favorable enthalpic contribution capable of compensating the entropic penalty resulting from the reduced number of conformations and orientations that the ligand can adopt within the membrane [START_REF] Sargent | Conformation and orientation of regulatory peptides on lipid membranes. Key to the molecular mechanism of receptor selection[END_REF][START_REF] Moroder | Synthesis, conformational and biological properties of lipophilic derivatives of gastrin and cholecystokinin peptides[END_REF]. Provided that some of the conformations and orientations of the membrane-associated ligand are favorable for receptor binding, this process will have less entropy requirements. In other words, there should be an entropic advantage for the 2D approach when compared to a situation in which the ligand approaches its binding site at the receptor via a 3D random walk in solution (Castanho and Fernandez, 2006). An interesting aspect of dividing the binding process in several steps is that, compared to a one-step model with equivalent total free energy (∆G ≈ observed K D ), the lower energetic requirements of the individual steps should significantly increase the overall reaction rate [START_REF] Sargent | Membrane lipid phase as catalyst for peptide-receptor interactions[END_REF]. For the same reason, there should also be a significant increase in the overall dissociation rate, implying that ligands with experimental equilibrium dissociation constants of 1 nM may have dissociation half-lives in the minute range. These considerations constitute the rationale for the "membrane catalysis" model (Schwyzer, 1985;[START_REF] Sargent | Membrane lipid phase as catalyst for peptide-receptor interactions[END_REF], which stipulates that a flexible peptide ligand binds to the membrane in the first step. After acquiring a membrane-induced conformation, the peptide then binds to the receptor in the second step (Figure 6B). According to this view, the most important role attributed to membranes is their ability to optimize the conformation of the peptide ligands, so that they enter and fit the binding site of the receptor with greater ease. The membrane catalysis model is obviously also applicable to non-peptide ligands but, irrespective of the ligand, it is only applicable if the receptor possesses a docking site at the required depth in the lipid bilayer and if the ligand acquires a binding-prone conformation in the membrane [START_REF] Aiello | Interaction between dihydropyridines and phospholipid bilayers: a molecular dynamics simulation[END_REF]Castanho and Fernandez, 2006).

The membrane catalysis model is supported by several experimental observations. For example, side

A c c e p t e d M a n u s c r i p t chain deployments in the membrane-bound state of substance P analogues are found to be similar to those in the biologically active chemically constrained states [START_REF] Schwyzer | 100 Years lock-and-key concept: are peptide keys shaped and guided to their receptors by the target cell membrane?[END_REF] and peptide hormones such as glucagon, ACTH, calcitonin, and -endorphin also have amphiphilic structures that are essential for biological activity [START_REF] Kaiser | Amphiphilic secondary structure: design of peptide hormones[END_REF]. On the other hand, [L-Ala 2 ]Leu-enkephalin may be inactive because its orientation on membranes is different from that of the active compounds [START_REF] Schwyzer | 100 Years lock-and-key concept: are peptide keys shaped and guided to their receptors by the target cell membrane?[END_REF].

Ligand partitioning and in vivo residence time.

In drug screening studies the interaction between a receptor and its ligands is traditionally quantified in terms of affinity only. Yet, there is increasing awareness that the in vivo effectiveness and duration of ligand action is also dictated by the time period over which this ligand resides at its receptor [START_REF] Copeland | Drug-target residence time and its implications for lead optimalization[END_REF][START_REF] Tummino | Residence time of receptor-ligand complexes and its effect on biological function[END_REF][START_REF] Vauquelin | Kinetic versus allosteric mechanisms to explain insurmountable antagonism and delayed ligand dissociation[END_REF]. This in vivo residence half-life should not be confused with the half-life by which ligand-receptor complexes dissociate. Indeed the half-life of the ligand-receptor complexes is measured under conditions in which no new complexes can be formed, e.g. by adding an excess of unlabelled ligand in the case of radioligand dissociation experiments [START_REF] Vauquelin | Kinetic versus allosteric mechanisms to explain insurmountable antagonism and delayed ligand dissociation[END_REF]. Instead, the in vivo residence half-life refers to the time needed to halve the receptor occupancy when the concentration of free and membrane-associated ligand is more or less slowly declining (via desorption, clearance, degradation, ...). This implies that, at any time, complexes can still be formed by binding of native ligand molecules as long as they are still around as well as by rebinding of ligand molecules that previously dissociated from the same or neighboring receptor molecules [START_REF] Vauquelin | Kinetic versus allosteric mechanisms to explain insurmountable antagonism and delayed ligand dissociation[END_REF]. In this respect membrane partitioning could contribute to a long residence time by a number of different mechanisms.

From an equilibrium point of view, very lipophilic molecules have a high membrane/water partition coefficient K p because they prefer to reside in the lipid bilayer hydrocarbon core. Without considering other parameters, the accumulation of such ligands in the membrane may already increase their in vivo residence half-life because of the hyperbolic relationship between the free ligand concentration and receptor occupancy (such as shown by a typical radioligand saturation binding curve). This implies that, when starting with an already low free ligand concentration (i.e. when only part of the receptors are occupied), the in vivo residence half-life will be very close to the half-life by which the free ligand concentration declines (Figure 7A). However, when the initial ligand concentration is elevated (i.e. when most of the receptors are occupied), the in vivo residence half-life will markedly exceed the half-life of the free ligand.

A c c e p t e d M a n u s c r i p t

While K p refers to the ratio of the adsorption and release/desorption rates of a ligand, it is obvious that these pharmacokinetic parameters may also affect the ligand's therapeutic action in their own right. In this respect, slow release from the plasma membrane is widely considered to play a preponderant role in the long duration of action of highly lipophilic ligands. This is typically illustrated by the hydrophobic  2 -adrenergic receptor agonist salmeterol (Figure 4 right panel) whose aptness to produce pseudo-irreversible relaxation of guinea-pig trachea and human bronchi at all concentrations [START_REF] Johnson | The pharmacology of salmeterol[END_REF][START_REF] Nials | Formoterol on airway smooth muscle and human lung mast cells: a comparison with salbutamol and salmeterol[END_REF] has been linked by some to its slow release from airway smooth muscle membranes [START_REF] Anderson | Formoterol: pharmacology, molecular basis of agonism, and mechanism of long duration of a highly potent and selective  2 -adrenoceptor agonist bronchodilator[END_REF][START_REF] Anderson | Why are long-acting beta-adrenoceptor agonists longacting?[END_REF][START_REF] Austin | QSAR and the rational design of long-acting dual D 2 -receptor/beta 2 -adrenoceptor agonists[END_REF]. Such link is embodied in the "diffusion microkinetic" model that stipulates that the plasma membrane can act as a depot/reservoir for the ligand rather than merely functioning as an inert substratum for the receptor [START_REF] Anderson | In new drugs for asthma therapy[END_REF], Coleman et al., 1996). Obviously, slow desorption will act in concert with a high K p to prolong the effect duration of a ligand (Figure 7B). This has been proposed to be the case for the highly lipophilic DHP lacidipine (Herbettte, 1994). Lacidipine has a higher K p than many other DHPs (so that a higher local concentration can be attained), it is located deeper in the lipid bilayer and it partitions slower into and out of the membrane. While the high K p establishes a high concentration of this ligand within the membrane, it slow release ensures that its concentration in the membrane remains above its therapeutic threshold for a long period of time (Herbettte, 1994). This combination of properties may explain the comparatively gentle onset and long duration of clinical action of this drug despite its short plasma half-life [START_REF] Herbette | Membrane Pathways for Drug/lon Channel Interactions: Molecular Basis for Pharmacokinetic Properties[END_REF].

However, membrane partitioning could also increase the effect duration of a ligand by alternative mechanisms. An intriguing possibility is that some ligands could undergo specific and long-lasting binding to 'exosites' in the membrane. These auxiliary sites could be located either at the receptors themselves (i.e. an anchoring site that is different from the active site but is not supposed to affect the conformation of the active site via an allosteric mechanism) or in their immediate vicinity in the membrane. The exosite theory was originally proposed by [START_REF] Rocha | A thermodynamic approach to problems of drug antagonism I. The "Charnière theory[END_REF] to explain the persistent antagonistic activity at histamine H 1 receptors and it has subsequently been adopted to explain the long duration of action of the muscarinic acetylcholine receptor agonist xanomeline and the  2 adrenergic receptor agonist salmeterol (Figure 5C) [START_REF] Johnson | The pharmacology of salmeterol[END_REF][START_REF] Johnson | Mechanisms of action of  2 -adrenoceptor agonists[END_REF][START_REF] Coleman | Exosites: their current status and their relevance to the duration of action of long-acting  2 -adrenoceptor agonists[END_REF][START_REF] Christopoulos | On the unique binding and activating properties of xanomeline at the M 1 muscarinic acetylcholine receptor[END_REF]. The presence of an exosite implies that, once dissociated from the active site of the receptor, the ligand is not free to diffuse away from that receptor. This constitutes an important difference with the microkinetic theory that permits ligands to freely interchange between the receptor's active site and the lipid bulk phase. Hence, while

A c c e p t e d M a n u s c r i p t the concentration of free ligand should be prone to decline due to redistribution, degradation and/or other elimination pathways, the concentration of ligand available for active site binding should be maintained for a longer time period in the case of exosite binding [START_REF] Green | Sustained activation of a G protein-coupled receptor via "anchored" agonist binding. Molecular localization of the salmeterol exosite within the 2-adrenergic receptor[END_REF].

A major handicap of the exosite theory is that such auxiliary binding sites have hitherto never been positively identified (e.g. by radioligand binding studies) and that a number of experimental findings even cast doubt on the validity of this theory [START_REF] Bergendal | Salmeterol mediated reassertion of relaxation persists in guinea-pig trachea pretreated with aliphatic side chain structural analogues[END_REF][START_REF] Teschemacher | Kinetic analysis of drug-receptor interactions of long-acting beta2 sympathomimetics in isolated receptor membranes: evidence against prolonged effects of salmeterol and formoterol on receptor-coupled adenylyl cyclase[END_REF][START_REF] Jakubík | Allosteric Modulation by Persistent Binding of Xanomeline of the Interaction of Competitive Ligands with the M 1 Muscarinic Acetylcholine Receptor[END_REF]. For example, it was argued that if the exosite for salmeterol displays pharmacological specificity and high affinity for its phenylalkoxyalkyl side chain, other molecules with the same side chain would attenuate its reassertion behavior of salmeterol. Yet such structural mimetics failed to do so [START_REF] Bergendal | Salmeterol mediated reassertion of relaxation persists in guinea-pig trachea pretreated with aliphatic side chain structural analogues[END_REF]. Moreover, in disagreement with the exosite theory, reassertion of the muscarinic acetylcholine receptor agonist xanomeline only took place at high concentrations in cell systems and, in the same vein, persistent reassertion of the salmeterol-mediated relaxation of strips from guinea pig trachea was only observed when its initial concentration was sufficiently elevated [START_REF] Bergendal | Salmeterol mediated reassertion of relaxation persists in guinea-pig trachea pretreated with aliphatic side chain structural analogues[END_REF][START_REF] Jakubík | Allosteric Modulation by Persistent Binding of Xanomeline of the Interaction of Competitive Ligands with the M 1 Muscarinic Acetylcholine Receptor[END_REF]. This provides support to those who claim that the reassertion of an agonist's effect is simply related to its long-lasting association with the plasma membrane (i.e. the 'microkinetic' theory). The term "reassertion" has hitherto only been linked to the reappearance of an agonist's effect. Yet, this term could apply to all ligand types if, by definition, it refers to the reestablishment of receptor occupancy (rather than solely receptor activation) by a ligand after wash-out of the aqueous ligand-containing solution and temporary occupancy of the receptor's binding pocket by a competitive ligand molecule. Based on this more general definition, "reassertion" is likely to apply all kinds of amphiphilic/hydrophobic ligands. In this respect, it could well explain some of the behavioral aspects of D 2 dopamine receptor antagonist [ 3 H]-spiperone in radioligand binding studies on intact recombinant cells (Figure 8A).

Finally, by retaining dissociated ligands to a compartment with a small volume such as a cell plasma membrane could favor their propensity to rebind/re-associate to the same or to neighboring receptor molecules. Such compartments could also include synapses [START_REF] Coombs | Effects of the geometry of the immunological synapse on the delivery of effector molecules[END_REF], tortuous paths with blind pockets is tissues such as the brain and even spaces between cells in a monolayer culture [START_REF] Hrabetová | Contribution of dead-space microdomains to tortuosity of brain extracellular space[END_REF][START_REF] Spivak | Diffusion delays and unstirred layer effects at monolayer cultures of Chinese hamster ovary cells: radioligand binding, confocal microscopy, and mathematical simulations[END_REF][START_REF] Vargová | Extracellular space diffusion and extrasynaptic transmission[END_REF]. In radioligand dissociation experiments, this "rebinding" phenomenon leads to an apparent decrease in the radioligand's dissociation rate in wash-out medium only (i.e. when radioligand rebinding is possible) when compared to similar wash-out experiments in the presence of an unlabelled competing ligand at high concentration; i.e. when radioligand rebinding is effectively prevented (Vauquelin and A c c e p t e d M a n u s c r i p t

Sczcuka , 2007). Based on intact cell experiments, rebinding was recently shown to be so extreme as to approach virtual irreversibility in the case of the lipophilic D 2 -type dopamine receptor antagonist spiperone [START_REF] Packeu | Antagonistdopamine D 2L -receptor interactions in intact cells[END_REF] and the CB 1 -type cannabinoid receptor inverse agonist taranabant (Sczcuka et al., 2008). These experiments are compatible with the ability of cell membrane confinement to exacerbate rebinding phenomena with lipophilic drugs and, as suggested by recent simulation studies (Sczcuka et al., 2008), rebinding could explain the long-lasting effect of salmeterol as pertinently as the exosite model. In the same line, rebinding could also explain the need for the simultaneous presence of receptors and their lipid environment for the wash-resistant xanomeline binding to take place [START_REF] Jakubík | Role of Receptor Protein and Membrane Lipids in Xanomeline Wash-Resistant Binding to Muscarinic M 1 Receptors[END_REF].

Finally, while tortuosities in extracellular spaces in tissues could already limit the diffusion of molecules in general, the repeated partitioning in cell membranes is likely to further exacerbate this process in the case of hydrophobic ligands [START_REF] Lovich | Carrier proteins determine local pharmacokinetics and arterial distribution of paclitaxel[END_REF][START_REF] Hrabetová | Contribution of dead-space microdomains to tortuosity of brain extracellular space[END_REF]. By retaining a hydrophobic ligand in its target tissue, repeated partitioning could greatly contribute to the often-observed long-lasting effect of such molecules in vivo as well as in in vitro experiments with intact tissues.

Concluding remarks.

The so-called non-specific partitioning of amphiphilic/hydrophobic ligands in plasma membranes may exert control on their receptor binding characteristics in many ways such as by altering the time they need to reach a receptor molecule, their conformation and the receptor-domain towards which the final approach takes place. These effects, along with the accumulation of such ligands in a small volume around the receptors may affect their association rate, their affinity as well as their in vivo residence time at the receptor. However, general rules are hard to formulate, as membrane partitioning does not always exert a positive influence on the ligand's receptor binding characteristics.

Novel membrane-connected concepts, including exosite binding and ligand translocation between the receptor's -helical transmembrane domains have been advanced as well but, by lack of tangible proof, the physical reality of these concepts is likely to remain matter of debate for some time to come. In addition, new questions recently emerged such as why some antagonists display distinct receptor binding kinetics in intact cell systems when compared to leaky cells and membrane preparations thereof [START_REF] Hara | Endothelin ET(B) receptors show different binding profiles in intact cells and cell membrane preparations[END_REF][START_REF] Fierens | Distinct binding properties of the AT 1 receptor antagonist [ 3 H]candesartan to intact cells and membrane preparations[END_REF][START_REF] Smith | Risperidone irreversibly binds to and inactivates the h5-HT 7 serotonin receptor[END_REF]. An additional example thereof is shown in Figure 8B. Further research in these areas (and about approach (right panel) [START_REF] Wang | Reaction rate enhancement by surface diffusion of adsorbates[END_REF]. [START_REF] Bokvist | Two types of Alzheimer's beta-amyloid (1-40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation[END_REF]. Panel B, simplified scheme for the ''membrane catalysis'' model of [START_REF] Sargent | Membrane lipid phase as catalyst for peptide-receptor interactions[END_REF] in where partitioning and conformational change of a peptide ligand is described as a single equilibrium step defined by K p . K D ' is the local equilibrium dissociation constant and refers to the ligand concentration in the membrane at which half of the receptors are occupied. The overall 

  s c r i p t first introduced by DeLisi and coworkers

  also borne by several other GPCR's for lipid-derived ligands like the CB 2 cannabinoid receptor, an oxoeicosanoid receptor and several lysosphingolipid and prostanoid receptors.
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 1 Figure 1: Representative example of the path taken by of a ligand to reach its receptor target at the surface of a membrane (black dot) via an exclusive 3D approach (left panel) or via a mixed 3D-2D
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 2 Figure 2: Schematic representation of drug (L) -receptor (R) binding with the formation of an ephemeric encounter complex from where the drug can either bind with the reaction forward rate constant k 1 or diffuse away from the receptor.

Figure 3 :

 3 Figure 3: Dihydropyridine partition coefficients into biological (sarcoplasmic reticulum) membranes and octanol: Adapted form Mason et al. (1991).
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 45 Figure 4: Locations of a membrane-spanning protein (hydrophobic TM domains are shaded) and the ligands amiodarone, nimodipine and propranolol at different depths within the lipid bilayer (from[START_REF] Herbette | Possible molecular basis for the pharmacokinetics and pharmacodynamics of three membrane-active drugs: propranolol, nimodipine and amiodarone[END_REF] 

Figure 6 :

 6 Figure 6: Panel A, insertion of the hydrophobic Aβ1-40 peptide segment into membranes (Bokvist et

  for the ligand-receptor interaction (K D , expressed in moles.l -1 of aqueous solution) corresponds to K D = K D '. K p -1 .
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 78 Figure7: Panel A, influence of the initial receptor occupancy (abscissa, in percent of total receptor concentration) on the residence half-life (ordinate, the free ligand half-life being taken as unit) when the free ligand concentration decreases exponentially with time. Panel B: a high K p and a slow ligand desorption rate act in concert to prolong the concentration of a membrane-associated ligand within the therapeutic window (adapted from[START_REF] Herbette | Membrane Pathways for Drug/lon Channel Interactions: Molecular Basis for Pharmacokinetic Properties[END_REF] 
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