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ABSTRACT

Poorly controlled diabetes is associated with hormonal imbalances, 
including decreased prolactin production partially due to increased lactotroph
apoptosis. In addition to its metabolic actions, ghrelin inhibits apoptosis in
several cell types. Thus, we analyzed ghrelin’s effects on diabetes-induced
pituitary cell death and hormonal changes. Six weeks after onset of diabetes 
in male Wistar rats (streptozotocin 70 mg/kg), mini-pumps infusing saline or 
24 nmol ghrelin/day were implanted (jugular). Rats were killed two weeks 
later. Ghrelin did not modify body weight or serum glucose, leptin or 
adiponectin, but increased total ghrelin (p<0.05), IGF-I (p<0.01) and prolactin
(p<0.01) levels. Ghrelin decreased cell death, iNOS and active caspase-8 
(p<0.05) and increased prolactin (p<0.05), Bcl-2 (p<0.01) and Hsp70 (p<0.05)
content in the pituitary. In conclusion, ghrelin prevents diabetes-induced death 
of lactotrophs, decreasing caspase-8 activation and iNOS content and 
increasing anti-apoptotic pathways such as pituitary Bcl-2 and Hsp70 and 
serum IGF-I concentrations.



Page 3 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

3

INTRODUCTION

In poorly controlled diabetic animals or humans increased cell death 
occurs in different tissues and organs (Arroba et al., 2003; Barber et al., 1998; 
Cai et al., 2002; García-Cáceres et al., 2008; Li et al., 2002; Pesce et al., 
2002), with this cell loss being involved in many of the secondary 
complications of diabetes. In the anterior pituitary, lactotrophs appear to be 
more susceptible to diabetes induced cell death than other cell types (Arroba 
et al., 2003, 2005, 2006; Yamauchi and Shiino, 1986). We previously
demonstrated that in poorly controlled diabetes caspase 8, the prototypical
initiator caspase of the extrinsic cell death pathway (Boldin et al., 1996,
Wajant, 2002), is activated and colocalizes with prolactin (PRL) producing 
cells (Arroba et al., 2005), possibly explaining their increased death rate. 
However, pituitary levels of proteins involved in the intrinsic cell death 
pathway, including members of the Bcl-2 family, X-linked inhibitor of apoptosis
(XIAP), and the effector caspases 3 and 6, are either unchanged or balanced 
towards cell survival (Arroba et al., 2005), with these changes being cell-type 
specific (Arroba et al., 2007).

Increased apoptosis of lactotrophs may underlie, at least in part, the 
reduction in circulating PRL concentrations in poorly controlled diabetic 
patients or animals (Arroba et al., 2003; Boujon et al., 1995; Ikawa et al., 
1992; Iranmanesh et al., 1990; Mera et al., 2007; Steger et al., 1989; Ostrom
et al., 1993). This decrease in PRL could result in the reduced or delayed milk 
production observed in some diabetic women (Hartmann and Cregan, 2001; 
Neubauer et al. 1990, 1993; Neville et al., 1988) and streptozotocin-induced 
diabetic rats (Ikawa et al., 1992; Lau et al., 1993). In diabetic males, 
decreased prolactin secretion has also been associated with sexual 
dysfunction (Sudha et al., 1999).

Ghrelin has both endocrine and non-endocrine activities including 
regulation of food intake and energy homeostasis (Wren et al., 2001), 
induction of adiposity (Tschop et al., 2000), actions on insulin secretion and 
glucose metabolism (Egido et al., 2002; Dezaki et al., 2006; Reimer et al., 
2003) and stimulation of pituitary hormones including GH, prolactin and ACTH 
(Kojima et al., 1999; Arvat et al., 2001; Cheng et al., 1993; Broglio et al., 2003;
Tassone et al., 2003). In addition, anti-inflammatory and anti-apoptotic actions 
of ghrelin have been reported in different organs and tissues (Baldanzi et al., 
2002; Dixit et al., 2004; Granado et al., 2005; Granata et al., 2006).
     Ghrelin has also been shown to have beneficial effects in diseases 
associated with catabolism and body weight loss (DeBoer, 2008), including 
cancer, diabetes or sepsis (Kamiji and Inui, 2008). Indeed, ghrelin treatment 
could be beneficial in the treatment of diabetes as both acylated (AG) and
unacylated ghrelin (UAG) increase glucose-induced β-cell insulin secretion
and, stimulate proliferation and prevent apoptosis of pancreatic β-cells
(Granata et al., 2006, 2007). However, how this hormone affects metabolic 
parameters, such as circulating IGF-I, leptin, insulin, adiponectin or ghrelin 
concentrations, as well as pituitary hormone concentrations and pituitary cell 
apoptosis, in diabetic rats has not yet been investigated. Hence, the aim of 
this study was to analyze the effect of ghrelin treatment on the metabolic state 
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of streptozotocin-induced diabetic rats, focusing on its possible beneficial 
effect on apoptosis in the pituitary and prolactin levels.

MATERIAL AND METHODS

Animals and experimental design
Adult male Wistar rats (250 g) were used. The procedures followed the 

guidelines recommended by the European Union for the care and use of 
laboratory animals, and the animal protocols were approved by the University 
Animal Care Committee. Rats were housed three or four per cage with free 
access to food and water, under constant conditions of temperature (20–
22°C) and light (lights on from 07:30 to 19:30). Before diabetes induction rats 
were adapted for one week to the new environment and diet. 

Rats were injected (i.p.) with 70 mg/kg streptozotocin (STZ; Sigma). 
Control rats received vehicle only. Blood glucose concentrations were 
measured the morning following STZ injection via tail puncture (Glucocard 
Memory 2; Menarini Diagnostic, Florence, Italy) and animals were considered 
to be diabetic if they had glucose levels superior to 300 mg/dl. Six weeks after 
diabetes onset a catheter was placed in the jugular vein and this was 
connected to a mini-pump (Alzet, Durect Co.,Canada) that was placed 
subcutaneously. Control rats were infused with 12 µl/day of saline and 
diabetic rats were divided into two groups: One group received 12 µl/day of 
saline and the other 24 nmol/day of n-Octanoyl-ghrelin (ANASPEC, San Jose, 
CA). Eight weeks after diabetes induction all rats were killed by decapitation. 
Trunk blood was collected in cooled tubes, allowed to clot, and centrifuged.
Serum was stored at -80ºC until hormone levels were measured. Pituitary 
glands were removed, weighed and stored at -80º C until processed. Three to 
six rats per group were used for each analysis.

Pituitary homogenization and protein quantification
     Tissue was homogenized on ice in 200 µl of radioimmunoprecipitation 
assay lysis buffer with an EDTA-free protease inhibitor cocktail (Roche 
Diagnostics, Mannheim, Germany). After homogenization, samples were 
centrifuged at 14,000 rpm for 20 min at 4ºC. Supernatants were transferred to 
a new tube and protein concentration was estimated by Bradford protein 
assay.

ELISA cell death detection
This photometric enzyme immunoassay for the in vitro quantification of 

cytoplasmic histone-associated DNA fragments (mono- and 
oligonucleosomes) was performed according to the instructions of the 
manufacturer (Roche Diagnostics). The same amount of total protein was 
loaded in all wells and each sample was measured in duplicate (Tecan Infinite 
M200, Grödig, Austria). The background value was subtracted from the mean 
value of each sample and all values are referred to the mean value of the 
control group.  

Terminal dUTP nick-end labelling (TUNEL) plus immunohistochemistry
Immunohistochemistry/TUNEL assays were performed on frozen 12 

µm cryostat pituitary mounted on positively charged slides as previously 
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described (Arroba et al., 2003, 2005, 2006, 2007). The TUNEL assays were 
performed following the manufacturer’s instructions (Roche). Briefly, after 
fixation in 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4), pituitary 
were washed three times in buffer and incubated for 30 min with a 0.1% 
sodium citrate, 0.1% Triton X-100 solution to increase tissue permeability. 
Slides were again washed three times with buffer, and incubated with TUNEL 
solution for 90 min at 37 ºC in a humid chamber in the dark. After washing, the 
slides were incubated with antibody towards prolactin (1:2000), in TBS 
containing 3% BSA and 1% Triton X-100 and left for 48 h at 4ºC. The slides 
were incubated with Alexa Fluor antifluorescein-488 and -633-conjugated goat 
anti-guinea pig IgG (Molecular Probes) in blocking buffer both at a dilution of 
1:1000. Finally, the slides were again washed three times before mounting in 
glycerol. Results were visualized with a confocal microscope (Leica model 
DMIRB; Leica, Wetzlar, Germany).

Immunoblotting
In each assay the same amount of protein was loaded in all wells (1–

60 µg depending on the protein to be detected) and resolved by using 12% 
SDS-acrylamide gels. After electrophoresis proteins were transferred to 
polyvinylidine difluoride (PVDF) membranes (Bio-Rad) and transfer efficiency 
was determined by Ponceau red dyeing. Filters were then blocked with Tris-
buffered saline (TBS) containing 5% (wt/vol) non-fat dried milk and incubated 
with the appropriate primary antibody (for details, see Table 1). Membranes
were subsequently washed and incubated with the corresponding secondary 
antibody conjugated with peroxidase (1:2000; Pierce, Rockford, IL). Bound 
peroxidase activity was visualized by chemiluminescence and quantified by 
densitometry using a Kodak Gel Logic 1500 Image Analysis system and 
Molecular Imaging Software, version 4.0 (Rochester NY, USA). All blots were 
rehybridized with actin to normalize each sample for gel-loading variability. All 
data are normalized to control values on each gel.

Determinations of serum levels of total and acylated ghrelin, leptin,
insulin, adiponectin and IGF-I

Total and acylated ghrelin were measured by radioimmunoassay 
following the manufacturer’s instructions (Linco Research, St Charles, MI, 
USA). The sensitivity of the method was 93 pg/ml for total ghrelin and 7.8 
pg/ml for acylated ghrelin and the intra-assay variation was 6.4% for total 
ghrelin and 7.4% for acylated ghrelin. 

Serum insulin, leptin and adiponectin levels were measured with 
commercial ELISA kits from Linco Research (St Charles, MI, USA) following 
the procedure indicated by the manufacturer. The sensitivity was 0.2 ng/ml for 
insulin and leptin, and 50 pg/ml for adiponectin. The intra- assay variation was
1.9% for insulin, 2.1% for leptin and 8.1% for adiponectin.
     Serum IGF-I concentrations were measured by a double-antibody RIA as 
previously described (Granado et al., 2008). 

All samples were run in duplicate and within the same assay for all 
analyses. 
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Determination of pituitary levels of ACTH, TSH, LH, GH and serum PRL 
by Multiplex bead array assays

Pituitary levels of ACTH, TSH, LH, GH and PRL and serum PRL levels 
were measured by using a rat pituitary panel LINCOplex kit (Linco Research, 
St Charles, MI, USA) following the guidelines of the manufacturer. Briefly, 
pituitary lysates and serum samples (25 µl) were incubated for 18 hours at 
4ºC with polystyrene beads labeled with a specific ratio of two different 
fluorescent dyes and conjugated with a capture antibody specific for the 
antigen to be detected. After incubation, wells were washed using a vacuum 
manifold and antibody conjugated to biotin (25 µl) was added. After an 
incubation period of 30 minutes at RT, beads were incubated for 30 minutes 
with 50 µl of streptavidin conjugated to phycoerythrin. Beads (a minimum of 
100 beads per parameter) were analyzed in a Bio-Plex suspension array 
system 200 (Bio-Rad Laboratories, Hercules, CA, USA). Raw data (mean 
fluorescence intensity) were analyzed by using Bio-Plex Manager 4.1. 
software. For appropriate quantification, serum samples were diluted 1:3 in 
serum matrix and pituitary lysates were diluted 1:50000 in assay buffer for GH 
determination and 1:1000 for ACTH, TSH, LH and PRL determination. 

Statistical analysis
     Statistics were performed using the statistics program GraphPad Prism 
4.0. Data are presented as mean ± SEM and differences among experimental 
groups were analyzed by one-way analysis of variance. Post-hoc 
comparisons were made using subsequent Bonferroni multiple range tests.
The values were considered significantly different when the p value was lower
than 0.05.

RESULTS
Body weight gain, glycemia and serum insulin levels

Body weight gain of control and diabetic rats from the time of minipump 
implantation until termination of the animals is shown in Table 2. There was 
no significant effect of ghrelin treatment on weight gain in diabetic rats. 

Glycemia was increased in diabetic rats treated with saline or ghrelin 
compared to control rats (P<0.001), with ghrelin having no significant impact 
on blood glucose levels in diabetic rats. In addition, serum insulin levels were 
undetectable in all diabetic animals (P<0.05; Table 2).

Serum leptin, ghrelin, adiponectin and IGF-I levels.
All diabetic animals had lower serum leptin (P<0.001) and adiponectin

(P<0.001) concentrations than control rats, regardless of whether they had 
been treated with saline or ghrelin (Table 2). However, although acylated 
ghrelin did not differ between groups, ghrelin administration to diabetic rats 
resulted in significantly higher total ghrelin levels compared to control and 
diabetic rats administered saline (P<0.001; Table 2). 

Serum IGF-I concentrations were decreased in diabetic rats infused 
with saline (P<0.05; Table 2), while serum IGF-I levels in diabetic rats treated 
with ghrelin were not significantly different from control values.
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Pituitary hormones
Table 3 shows ACTH, TSH, LH, GH and PRL levels in the pituitary of 

control and diabetic rats. Neither diabetes nor ghrelin treatment modified total 
ACTH or TSH content in the pituitary. Pituitary LH content was significantly 
increased in diabetic rats treated with saline (P<0.05), and ghrelin treatment 
had no effect. In contrast, total pituitary GH content was reduced in all diabetic 
rats, regardless if they had been infused with saline or ghrelin (P<0.01).

In accordance with our previous studies (Arroba et al., 2003), serum 
PRL levels (control: 2415.6 ± 370.9, diabetic + saline: 440.0 ± 114.2, diabetic 
+ ghrelin 1571.5 ± 83.8, ANOVA p<0.001) and total pituitary PRL content 
were decreased in diabetic rats infused with saline (P<0.05). In this study we 
demonstrate that treatment of diabetic rats with ghrelin for two weeks 
increased both pituitary and serum PRL to levels that were not statistically 
different from control values. To verify these observations pituitary PRL levels 
were also measured by western blot, obtaining the same results (Figure 1).

Pituitary apoptosis markers
In order to elucidate the mechanisms by which ghrelin is able to 

prevent the decreased PRL content in the pituitary of diabetic rats, cell death 
and different proteins related to apoptosis previously found to be altered in the 
pituitary of diabetic rats (Arroba et al., 2005) were measured in this tissue.

Total cell death in the anterior pituitary    
Total cell death in the pituitary, as determined by ELISA for histones, 

was increased in diabetic rats infused with saline, while treatment of diabetic 
rats with ghrelin returned these values to control levels (100  9.7; 2248 
709; 146  9.4). Immunohistochemistry in combination with TUNEL (Figure 2) 
indicated that his cell death corresponded primarily to lactotrophs as
previously demonstrated (Arroba et al., 2007). Very few TUNEL labeled cells 
were found in pituitaries of control rats or diabetic rats treated with ghrelin.

Caspases 3, 6 and 8
As previously reported (Arroba et al., 2005), the increase in pituitary 

cell death was associated with caspase-8 activation, as shown in Figure 3. 
Both the proform (55 kDa) and cleaved caspase-8 (42-44 kDa) were 
increased in the pituitaries of diabetic rats treated with saline, and ghrelin 
administration returned these parameters to control levels (P<0.001 and 
P<0.05, respectively). 

Pituitary caspase-3 content was not modified by diabetes, and ghrelin 
treatment had no effect on this parameter (Figure 4A & B). On the contrary, 
procaspase 6 levels were up-regulated in diabetic rats treated with saline, but 
not in diabetic animals treated with ghrelin (P<0.001; Figure 4C), whereas the 
fragmented form of this caspase did not differ between experimental groups
(Figure 4D).     

XIAP 
There was no difference between experimental groups in the intact 

form of XIAP (Figure 5A). However, the fragmented form of the anti-apoptotic 
protein XIAP was up-regulated in the pituitaries of diabetic animals treated 
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with saline (Figure 5B, P<0.01), and treatment of diabetic rats with ghrelin 
returned the pituitary content of this protein to control values.  

Heath shock protein (Hsp) 70 and Bcl-2
The anti-apoptotic proteins Hsp 70 and Bcl-2 were unchanged in 

diabetic rats treated with saline (Figure 6A & B, respectively). However, 
treatment of diabetic rats with ghrelin resulted in a significant increase in the 
pituitary content of these proteins (P<0.05 and P<0.01, respectively).

Inducible nitric oxide synthase (iNOS)
Streptozotocin-induced diabetes increased inducible nitric oxide 

synthase (iNOS) content in the pituitary (P<0.05) and ghrelin treatment 
blocked this effect (Figure 7). 

DISCUSSION  

     In this study we have investigated the effects of ghrelin treatment on 
different metabolic parameters and pituitary hormone levels in streptozotocin-
induced-diabetes, focusing on ghrelin’s protective effect in diabetes-induced 
apoptosis of lactotrophs. To our understanding, this is the first study showing 
the beneficial effect of ghrelin treatment on pituitary cell apoptosis in an
experimental model of diabetes mellitus. 
     Ghrelin modulates insulin secretion and glucose metabolism (Reimer et al., 
2003), augmenting glycemia by decreasing glucose-induced insulin release 
from pancreatic islets (Dezaki et al., 2006). However, we found no effect of 
ghrelin treatment on glycemia or serum insulin levels in diabetic rats. This
suggests that not only was ghrelin unable to stimulate insulin secretion, most 
likely due to the complete destruction of β-pancreatic cells by the 
streptozotocin, but it was also unable to stimulate β-cell proliferation in this 
experimental model, possibly due to the destruction of precursor cells.
     Ghrelin and GH-secretagogues are reported to increase body weight gain 
both in humans and animals (DeBoer, 2008). In our experimental model, 
diabetic rats treated with ghrelin did not gain significantly more weight than 
diabetic rats administered saline. In agreement with our data, although a
marked increase in body weight gain is reported in control rats treated with 
ghrelin (Dembinski et al., 2005; Nakazato et al., 2001; Strassburg et al., 
2008), this effect has not always been found in animals suffering from 
catabolic diseases such as cancer, colitits or diabetes (de Smet et al., 2009; 
Irako et al., 2006). Thus, the lack of significant weight gain in response to 
ghrelin could be due to the state of catabolism and extreme weight loss of the 
diabetic rats. It should also be noted that although circulating levels of total 
ghrelin increased significantly with the infusion of ghrelin, acylated ghrelin 
levels did not. Hence, the lack of effect on weight gain could be the result of 
no change in acylated ghrelin levels. Whether this lack of increase in acylated 
ghrelin levels is due to the instability of the compound in the minipump, or to 
active deacylation in the blood remains to be determined. However, it is clear 
that the results reported in these studies may be due mainly to an increase in 
circulating unacylated ghrelin levels.
          As previously described, all diabetic rats had lower serum leptin levels 
than control rats as a result of hyperglycemia and their extreme catabolic state
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(Havel et al., 1998; Sivitz et al., 1998). Ghrelin treatment had no effect on this 
parameter, coincident with no significant effect on body weight. Similarly,
serum adiponectin concentrations were also reduced in all diabetic rats, 
regardless if they had been treated with saline or ghrelin. However, ghrelin-
treated rats had higher serum IGF-I and total ghrelin concentrations than 
diabetic rats infused with saline, suggesting that these rats may be in a better 
metabolic state than those without treatment (Froesch and Hussain, 1994). In
agreement with our data, ghrelin has been previously reported to increase
serum IGF-I levels (Dembinski et al., 2005). However, the increase in serum 
IGF-I levels was not associated with an increase in pituitary GH levels, even 
though ghrelin was originally reported to stimulate both GH production and 
secretion (Kojima et al., 1999). No change in pituitary GH content does not 
necessarily indicate that production and secretion are not modified, as both 
could be increased resulting in unchanged static content. However, it has 
been reported that whereas intermittent ghrelin treatment increases GH 
secretion, chronic ghrelin administration does not (Thompson et al., 2003). 
The stimulatory action of ghrelin on serum IGF-I could be a direct effect of this 
hormone in the liver, as GHRP-2, another ghrelin analogue, directly increases 
IGF-I mRNA in cultured hepatic cells (Granado et al., 2008). Although it has 
been reported that the liver does not express GHSR1a (Gnanapavan et al., 
2002), others have shown that hepatic non-parenchyma cells, but not 
hepatocytes, do express this receptor at a low level (Granado et al., 2008). 
Furthermore, ghrelin could be acting through a GHSR1a-independent 
mechanism to stimulate IGF-I production (Filigheddu et al., 2007, Granata et 
al., 2007).
     Apart from GH inhibition, poorly controlled diabetes is also associated with 
alterations in the concentrations of other pituitary hormones (Valimaki et al., 
1991). However, we previously reported that no changes in cell turnover of 
thyrotrophs, corticotrophs or gonadotrophs occur in poorly controlled diabetic 
rats (Arroba et al., 2006; Arroba et al., 2007), suggesting that changes in the 
synthesis and secretion by individual cells could explain the observed 
changes in circulating hormones. In our study pituitary TSH and ACTH 
content was not modified by either diabetes or ghrelin treatment to diabetic 
rats. As diabetes significantly decreases circulating ACTH (Revsin et al., 
2008) and TSH levels (Chamras and Hershman, 1990), no effect on pituitary 
hormone content, suggests a down regulation of both synthesis and secretion 
As circulating LH levels have been previously reported to decrease in 
streptozotocin-induced diabetic rats (Dong et al., 1991), an increase in 
pituitary content suggests a decrease in secretion. Indeed, recent indicates 
that in this experimental model the anterior pituitary conserves its capacity to 
secrete LH in response to physiological stimulation (Castellano et al., 2009).

Prolactin levels in both serum and pituitary were significantly decreased 
in diabetic rats and increased in response to ghrelin. Indeed, ghrelin has been 
reported to stimulate PRL synthesis and secretion both in animals (Kaiya et 
al., 2003; Riley et al., 2002) and in humans (Arvat et al., 2001; Baldelli et al., 
2004; Broglio et al., 2003; Rubinfeld et al., 2004). It is also possible that 
ghrelin inhibits the increase in lactotroph cell death seen in poorly controlled 
diabetes. Indeed, ghrelin treatment decreases cell death and activation of 
caspase 8 in the anterior pituitary. Lactotrophs are the pituitary cell type most 
affected by diabetes-induced apoptosis (Arroba et al., 2003) and this involves
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caspase-8 activation (Arroba et al., 2005), and this in conjunction with 
increased pituitary PRL content, suggests that ghrelin may decrease 
lactotroph cell loss in diabetic animals. As previously described, no activation 
of the intrinsic cell death pathway in the pituitary, only an increase in 
procaspase-6 levels, was found (Arroba et al., 2005). Although ghrelin had no 
effect on the activation of caspase 6 or 3, it inhibited the rise in the proform of 
caspase 6, suggesting that this hormone reverted the various processes
previously described to occur in both the intrinsic and extrinsic cell death
pathways.
     Although the precise mechanism of action cannot be deduced from these 
studies, ghrelin’s anti-apoptotic effects could be mediated, at least in part, by 
the increase in serum IGF-I levels. Both circulating and locally produced IGF-I 
have cell-proliferative and anti-apoptotic properties (Kooijman, 2006; 
Kurmasheva and Houghton, 2006) by acting directly through its receptor,
which is present in most organs and tissues (Werner and LeRoith, 2000), or 
indirectly by inhibiting inflammatory mediators such as TNF-α or nitric oxide 
(Hijikawa et al., 2008; Hill et al., 1999). Accordingly, it has been recently 
reported that IGF-I treatment prevents liver injury through the inhibition of 
TNF-α and iNOS induction in D-galactosamine and LPS-treated rats (Hijikawa 
et al., 2008) and that GHRP-2 treatment, a ghrelin analogue, prevents LPS-
induced liver injury by increasing hepatic IGF-I and decreasing nitric oxide
concentrations and TNF-α gene expression (Granado et al., 2008). 
     The pituitary content of iNOS was upregulated in diabetic rats infused with 
saline, but not in ghrelin treated animals, suggesting a ghrelin-induced 
decrease in the generation of free radicals. Similarly, ghrelin has been 
reported to decrease nitric oxide production by peritoneal macrophages
(Granado et al., 2005) and to decrease high glucose-induced apoptosis of 
endothelial cells and apoptosis induced by oxygen-glucose deprivation in 
hypothalamic neuronal cells through reactive oxygen species inhibition 
(Chung et al., 2007; Zhao et al., 2007). Moreover, it has recently been 
reported that UCP2 mediates ghrelin's orexigenic effect on NPY/AgRP 
neurons by lowering free radicals (Andrews et al., 2008). The diabetes-
induced increase of iNOS could be due to the increase in TNF-α pituitary as 
TNF-α up-regulates iNOS gene expression in anterior pituitary cells (Candolfi 
et al., 2004) and TNF-α  is increased in the pituitary of diabetic rats (Arroba et 
al., 2006). Moreover, nitric oxide (NO) mediates the inhibitory effect of TNF-α
on PRL release (Candolfi et al., 2004) and has been reported to induce 
apoptosis through caspase-8 activation (Du et al., 2006); thus, iNOS inhibition 
could possibly be one of the mechanisms of decreased-apoptosis in ghrelin-
treated rats. 

Levels of the anti-apoptotic proteins Bcl-2 and Hsp 70 were higher in 
the pituitaries of diabetic animals without treatment than in control animals,
suggesting that there is a balance between apoptosis activation and apoptosis 
inhibition. Ghrelin further increased the levels of these proteins in diabetic 
rats, suggesting that it may decrease apoptosis due to both inhibition of pro-
apoptotic and activation of anti-apoptotic pathways in the pituitary. In 
agreement with our data, ghrelin promotes cell survival by increasing Bcl-2 
and Hsp 70 levels in hypothalamic and cortical neurons in an experimental 
model of focal ischemia/reperfusion (Chung et al., 2007; Miao et al., 2007; 
Yang et al., 2007).
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     The fragmented form of XIAP, another anti-apoptotic protein that
decreases caspase activation, was up-regulated in the pituitaries of diabetic 
rats treated with saline, as previously reported (Arroba et al., 2005), but not in 
ghrelin-treated diabetic rats. Although XIAP is increased in the anterior 
pituitary of diabetic rats, this protein is expressed in less than 1% of 
lactotrophs and gonadotrophs, and in a higher proportion in somatotrophs 
(50%), corticotrophs (90%) and thyrotrophs (90%) (Arroba et al., 2007). This 
indicates that XIAP protects pituitary cell populations other than lactotrophs. 
The observation that XIAP returned to control levels when cell death was no 
longer induced, suggests that the increase in this apoptosis inhibitor may be in 
response to the increased stress of the neighboring lactotrophs.

The fact that only half of the somatotrophs were found to express XIAP 
suggests that these cells may be protected from cell death by another 
mechanism, as only a small number of apoptotic somatotrophs were found 
(Arroba et al., 2005). Whether the apoptotic GH-expressing cells also express 
PRL remains to be determined. Indeed, pituitary somatomammotrophs 
express both GH and PRL, and early lactotrophs are reported to also produce 
GH, suggesting that most lactotrophs arise from GH producing cells (Hoeffler 
et al., 1985), although this dogma has recently been challenged (Luque et al., 
2007). It has also been suggested that in the adult animal these cell types 
may inter-change their hormonal identity depending upon their surrounding 
environment (Porter et al., 1990). However, in response to diabetes this does 
not appear to be the case as the number of PRL producing cells decreases 
with no corresponding increase in GH producing cells (Arroba et al., 2003). 
Pituitary cell proliferation is also increased in response to poorly controlled 
diabetes, with lactotrophs again being the most affected cell type (Arroba et 
al., 2006). This increase in proliferation temporally follows the increase in cell 
death, suggesting that it may be in response to the increased death. Indeed, 
in the ghrelin treated diabetic rats where pituitary cell death was decreased, 
markers of proliferation were also normalized (data not shown).
     In conclusion, ghrelin treatment reduces diabetes-induced cell death in the 
anterior pituitary decreasing pro-apoptotic pathways such as caspase-8 
activation and iNOS pituitary content and increasing anti-apoptotic factors
such as serum IGF-I concentrations and pituitary Bcl-2 and Hsp70 levels.
Furthermore, these anti-apoptotic effects of ghrelin could be involved in the 
observed normalization of prolactin levels through the reduction in lactotroph 
cell turnover.
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FIGURE LEGENDS

Figure 1. Pituitary prolactin levels
Total pituitary prolactin content in diabetic rats administered saline was 
significantly lower than in control rats (P<0.01). However, prolactin content in 
the pituitary of diabetic rats treated with ghrelin was not statistically different 
from control rats. Data are represented as mean  SEM and referred to 100% 
of control values (n=3-6 rats).

Figure 2. Terminal dUTP nick-end labelling (TUNEL) plus 
immunohistochemistry for prolactin
Representative TUNEL labeling (green) is shown in the pituitary of a control 
(A), diabetic rat (B) and diabetic rat treated with ghrelin (C). The majority of 
TUNEL labeled cells (green) colocalized in cells that were positive for 
prolactin (red) immunostaining. Double labeling for prolactin (D) and TUNEL 
labeling (E) is shown to colocalize (F) in the pituitary of a diabetic rat. The 
scale bar in A-C represents 250 µm and in D-F 50 µm (n=3 rats).

Figure 3. Pituitary caspase-8 levels
(A) The proform of caspase-8 (44kDa) was increased in diabetic rats
treated with saline and ghrelin treatment decreased this effect (P<0.001). (B) 
The active form of caspase-8 (25kDa) was also significantly up-regulated in 
diabetic rats administered saline (P<0.05), whereas there were no statistical 
differences between control and diabetic rats treated with ghrelin. Data are 
represented as mean  SEM and referred to 100% of control values (n=3-6 
rats).

Figure 4. Pituitary caspase-3 and caspase-6 levels
There was no significant difference between groups in levels of the proform of 
caspase-3 (32kDa) (A) or in the active fragmented form of caspase-3 (17kDa) 
(B). The proform of caspase-6 was increased in diabetic rats administered 
saline (P<0.001) and ghrelin treatment blunted this up-regulation (C). There 
was no significant difference between groups in fragmented caspase-6 
(30kDa) (D). Data are represented as mean  SEM and referred to 100% of 
control values (n=3-6 rats).

Figure 5. Pituitary content of X-linked inducer of apoptosis (XIAP)
(A) There were no statistical differences between groups in the 57kDa form of 
XIAP. (B) Ghrelin treatment prevented the diabetes-induced increase in the 
30kDa fragment of XIAP (P<0.05). Data are represented as mean  SEM and 
referred to 100% of control values (n=3-6 rats).

Figure 6.  Pituitary Hsp70 and Bcl-2 levels
Pituitary Hsp 70 (A) and Bcl-2 (B) content were increased in diabetic rats, but 
this rise was only significant in those diabetic rats treated with ghrelin  (P<0.05 
and P<0.01, respectively). Data are represented as mean  SEM and referred
to 100% of control values (n=3-6 rats).
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Figure 7. Pituitary iNOS content
There was an up-regulation of pituitary iNOS content in diabetic rats infused 
with saline (P<0.05), whereas pituitary iNOS levels of diabetic rats treated 
with ghrelin where not significantly different from those of control rats. Data 
are represented as mean  SEM and referred to 100% of control values (n=3-
6 rats).

Table 1. Antibodies used in Western blot analyses
  
Table 2. Body weight gain, glycemia and serum insulin, leptin,
adiponectin acylated ghrelin, total ghrelin and IGF-I levels in control and 
diabetic rats
There were no significant differences in body weight gain between groups. 
Glycemia was increased in all diabetic rats (P<0.001) and serum leptin, insulin 
and adiponectin levels were decreased in diabetic rats regardless if they had 
been infused with saline or ghrelin (P<0.001, P<0.05 and P<0.001,
respectively). There were no significant differences in serum acylated ghrelin 
levels, whereas ghrelin treated rats had significantly higher total ghrelin serum 
concentrations (P<0.001). Serum IGF-I levels were decreased in diabetic rats 
treated with saline (P<0.001) and ghrelin treatment returned them to control 
levels (P<0.05) (n=5-7 rats).

Table 3. Pituitary ACTH, TSH, LH, GH and PRL levels
There were no significant differences in pituitary ACTH or TSH content 
between groups. On the contrary, diabetes increased pituitary LH (P<0.05) 
and decreased GH content (P<0.01). Ghrelin treatment had no effect on LH or 
GH levels. Pituitary prolactin levels were decreased in diabetic rats infused 
with saline (P<0.01), whereas prolactin levels in diabetic rats treated with 
ghrelin were not different from control rats (n=5-7 rats).
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Figure1

http://ees.elsevier.com/mce/download.aspx?id=36778&guid=2f87c4d1-8249-4c3b-9270-f42cb3f58db2&scheme=1
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Figure 2

http://ees.elsevier.com/mce/download.aspx?id=36789&guid=aac37e0c-8958-4bce-a7ab-717d6ce94491&scheme=1
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Figure3

http://ees.elsevier.com/mce/download.aspx?id=36779&guid=fdcffce3-23c8-4792-8a00-f82d6e3d723a&scheme=1
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Figure4

http://ees.elsevier.com/mce/download.aspx?id=36780&guid=61d73a31-b405-4360-a3ec-1df107af9441&scheme=1
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Figure5

http://ees.elsevier.com/mce/download.aspx?id=36781&guid=dc9bf870-26eb-42fb-8644-354468b1b618&scheme=1
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Figure7

http://ees.elsevier.com/mce/download.aspx?id=36782&guid=bbb24037-dec3-4a78-995a-e6e91ab728dc&scheme=1
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Table 1. Antibodies used for Western Blot

ANTIBODY SOURCE
WESTERN BLOT 

CONCENTRATION
Prolactin National Hormone and Peptide Program (Torrance, CA) 1:10000

Caspase 8 Neomarkers (Fremont, CA) 1:1000

XIAP Becton-Dickinson Biosciences 1:1000

Caspase 3 Becton-Dickinson Biosciences (Franklin Lakes, NJ) 1:1000

Cleaved caspase 3 Cell Signaling Technology (Beverly, MA) 1:1000

Caspase 6 Medical Biological Laboratories 1:1000

iNOS BD Biosciences 1:500

Hsp70 Stressgen Bioreagents (Ann Arbor, MI, USA) 1:1000

Actin Santa Cruz Biotechnology 1:1000

Table1
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Table 2. Body weight gain, glycemia, and serum insulin, leptin, adiponectin, acylated
ghrelin, total ghrelin and IGF-I levels. (* P<0.05 vs CONTROL+SALINE, *** P<0.001 vs 
CONTROL+SALINE).

CONTROL+SALINE DIABETES+SALINE DIABETES+GHRELIN
Body weight gain (g) 6.62  3.2 -4.2  6.2 2.8  7.4

Glycemia (mg/dl) 84.6  1.7 600  0.0 *** 550.4  24.7 ***

Insulin (ng/ml) 1.48  0.54 Undetectable * Undetectable *

Leptin (ng/ml) 11.13  2.09 0.26  0.16 *** 0.18  0.08 ***

Adiponectin (ng/ml) 31  2 5  0.9 * 5.9  0.3 *

Acylated ghrelin (pg/ml) 461.6  167.9 505.0  144.6 829.3  331.2

Total ghrelin (pg/ml) 1840.75  839.39 1776.47  380.24 13470  1530 ***

IGF-I (ng/ml) 1309  154 428  137 *** 895  37 

Table2
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Table 3. Pituitary content of ACTH, TSH, LH, GH and PRL (ng/µg protein). (* P<0.05 vs 
CONTROL+SALINE, ** P<0.01 vs CONTROL+SALINE).

CONTROL+SALINE DIABETES+SALINE DIABETES+GHRELIN
ACTH 2.97    0.42 2.52   0.59 2.96   1.2

TSH 207.5   34.5 181.5   24.2 156.3   25.5

LH 147.7   6.03 354.5   29.8 * 324.1   38.0 *

GH 4836.2  309.4 2131.1   686.3 ** 2848.3   137.5 **

PRL 287.2    41.6 115.6   45.5* 274.2   65.6

Table3


