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Summary : In previous reports, we have show how to transform a text yn in a random
sequence by using functions of Fibonacci Tq. Now, in this report, we obtain a clearer result by
proving that Tq(yn) has the IID model as correct model. But, it is necessary to define correctly a
correct model. Then, we study also this problem.
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1 Introduction

1.1 Building of IID sequences

In [6] and [7], we studied a method to obtain IID 1 sequences xn of random numbers. With this
aim, we have transformed sequences yn ∈ {0/m, 1/m, ...., (m − 1)/m}, n=1,2,....,N, provided by
texts or machines.

One can thus suppose that yn is the realization of a sequence of random variables Yn defined
on a probability space (Ω, A, P ) : yn = Yn(ω) where ω ∈ Ω and where Yn is a correct model of yn.

As a matter of fact, there exist an infinity of correct models of yn. It is thus necessary to be
placed in the set of all the possible random variables.

Hypothesis 1.1 Let m ∈ N
∗. One considers the sequences of random variables Y θ

n , n=1,.......,N,
defined on the probabilities spaces (Ω,A, Pθ), θ ∈ Θ : (Y θ

1 , Y θ
2 , Y θ

3 , Y θ
4 , ............., Y θ

N ) : Ω →
{0/m, 1/m, ...., (m − 1)/m}N . One assumes that Y θ

n = Yn for all θ ∈ Θ. In order to simplify the
presentations of results, we set P{(Y θ

1 , ...., Y θ
N ) ∈ Bo} = Pθ{(Y1, ...., YN ) ∈ Bo} for all Borel set

Bo.

For example, one can assume that Ω = {0/m, 1/m, ...., (m−1)/m}N and (Y1, ...., YN ) = (Id, ...., Id).

It will thus raise the question to define correctly what is a correct model because, even if a
model Y θ

n is not correct, it is however always possible that yn = Y θ
n (ω) as it is the case for the

increasing sequences when Y θ
n is the IID model.

In the case where the model Y θ
n is IID, to define a correct model is a generalization of the

already very complex problem of the definition of an IID sequence. However we will be able to
give satisfactory answers in the particular case which interests us. In this one, we use the functions
of Fibonacci to obtain IID sequences.

Definition 1.1 Let fin be the Fibonacci sequence : fi1 = fi2 = 1, fin+2 = fin+1 + fin. Let
T be a congruence T (x) ≡ ax modulo m such that there exists n1 > 2 satisfying a = fin1

and
m = fin1+1. Then T is said a Fibonacci’s congruence.

1Independent Identically Distributed
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Definition 1.2 Let q ∈ N
∗. Let T be the congruence of Fibonacci modulo m. We define the

function of Fibonacci Tq by Tq = Prq ◦ T̂ where

1) T̂ (x) = T (mx)/m, when z ≡ z modulo m and 0 ≤ z < m if z ∈ Z,

2) Prq(z) = 0, b1b2....bq when z = 0, b1b2... is the binary writing of z.

These functions Tq make IID the sequences of random variables Y θ
n ∈ {0/m, 1/m, ......................,

(m − 1)/m}. Indeed, we have proved in [7] and [6] that, by choosing m and q correctly, for
most models Y θ

n (including the bad ones), for all Borel set Bo, for all n ∈ {0, 1, ...., N}, for all
p ∈ {0, 1, ...., N}, for all injective sequence js ∈ Z, s=1,2,...,p, such that j1 = 0,

P
{
(Xθ

n+j1 , ...., X
θ
n+jp

) ∈ Bo
}

= L(Bo)[1 + Ob(1)ǫ] ,

where Xθ
n = Tq(Y

θ
n ), where ǫ is small enough, where L(Bo) means the Borelian measure of Bo,

and where Ob(.) means the classical ”O(.)” with the additional condition |Ob(1)| ≤ 1.

Now, if P
{
(Xθ

n+j1
, ...., Xθ

n+jp
) ∈ Bo

}
= L(Bo)[1 + Ob(1)ǫ], one cannot differentiate xn from

an IID sequence. More generally, if there is a correct model Y θ1
n of a sequence yn, n=1,2,....,N,

and if another model Y θ2
n checks, for all n, for all p, for all sequence js, for all Borel set Bo,

P
{
(Y θ2

n+j1
, ...., Y θ2

n+jp
) ∈ Bo

}
= P

{
(Y θ1

n+j1
, ...., Y θ1

n+jp
) ∈ Bo

}
[1 + Ob(1)ǫ] ,

Y θ2
n will be also a correct model of yn. We will prove this result in section 4.

One will deduce from it that there is a correct model Y θc
n of yn such that, for all Borel set Bo,

P
{
(Tq(Y

θc
1 ), ...., Tq(Y

θc

N )) ∈ Bo
}

= L(Bo) .

Thus the model Xθc
n = Tq(Y

θc
n ) will be exactly the IID model and it is a correct model of xn =

Tq(yn). That gives a simpler proof of the results of [7] and [6].
But, of course, for showing well what that means, it is necessary to give at first a definition of

a correct model, and thus also of an IID model.

2 Definitions of a random sequence

It thus raises the question to define correctly what is a correct model. In fact, to define a correct
model is a question of the same order as to define an IID sequence. Indeed, in the IID case, to
say that Y θ

n will be a correct model amounts saying that yn is an IID sequence : it is thus well
the problem of the definition of an IID sequence which one finds here.

2.1 P-distributed sequences

Many studies were made to have reasonable definitions of IID sequences : there is a good summary
of these studies in chapter 3-5 of Knuth : cf [1]. A first method to define an IID sequence xn

consists in using the p-distributed sequences.

Definition 2.1 : Let xn ∈ {0/m, 1/m, ...., (m−1)/m}, n=1,2,....,N, be a sequence of real numbers
such that m ∈ N

∗. For all finite sequence of intervals Is ⊂ [0, 1], we denote by Pe the empirical

probability : Pe = (1/[N − p])
∑N−p

n=1 1I1
(xn)1I2

(xn+1).....1Ip
(xn+p).

The sequence {xn} is said p-distributed if |Pe−L(I)| ≤ (N −p)−1/2 for all I = I1⊗I2⊗ ...⊗Ip.

Definition 2.2 The sequence xn is random if it is p-distributed for all p ≤ Log2(N − p) .
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Unfortunately, this definition does not take into account the randomness of subsequences
xt1 , xt2 , ......xth

. However, it is known that one cannot extend this definition to all the trans-
formations s → ts which define these subsequences : for example, this definition cannot be satis-
fied by the sequences xts

increasing. It is necessary thus that the application s → ts is too not
complicated. Also Knuth proposes the following definition.

Definition 2.3 : The sequence xn is random with respect to a set of algorithms A, if for all
sequence xt1 , xt2 , ......xth

, determined by A, it is p-distributed for all p ≤ Log2(N − p).

These definitions summarize those given by Knuth, [1] page 108. This type of definition was
the subject of many studies. In any case, none of these definitions is fully satisfactory. Knuth
speaks philosophical debate on this subject.

In any case, these definitions have gaps from the statistical point of view or from the point
of view of Borel sets. In [6], one studied these problems and gave definitions more adapted, but
unfortunately still too undetermined. It is not serious: the idea was to circumvent the associated
problems by using the models of xn, i.e. the sequences of random variables Xθ

n = Tq(Y
θ
n ) defined

on probability spaces.

2.2 Probabilistic definition

Indeed, another method consists in using a probabilistic definition.

Definition 2.4 : The sequence xn is random if there exists an IID sequence of random variables,
Xn ∈ {0/m, 1/m, ...., (m − 1)/m}, defined on a probability space (Ω, A, P ) such that xn = Xn(ω)
where ω ∈ Ω.

But there is a problem with this definition : for example, xn could be increasing. Then,
Franklin proposed another definition : [8].

Definition 2.5 : The sequence xn is random if it has each property that is shared by all samples
of an IID sequence of random variables.

But, this definition is not precise and one could even deduce from it that no really random
sequence exists (cf [1], Knuth page 149). Finally, one can also use the definition of a sample.

Definition 2.6 : The sequence xn is said random if it is known a priori that there exists an IID
sequence of random variables, Xθc

n , defined on a probability space (Ω, A, P ) such that xn = Xθc
n (ω)

and such that Xθc
n is a correct model of the sequence xn.

In this case, the definition of a correct model IID is equivalent to the definition of a random
sequence. Of course, in order to understand this definition, it is necessary to know what is a
correct model.

3 Correct models

3.1 General study

It thus raises the question to define correctly what is a correct model. Indeed, if a model Y θ
n is

not correct, it is however possible that yn = Y θ
n (ω) , where Y θ

n is a sequence of random variable
defined on a probability space (Ω,A, P ).

One has just understood that, to define a correct model it is a question of the same order as
to define an IID sequence. It is thus extremely complex. But one can have a solution because one
wants only to prove that the correct models Tq(Y

θ
n ) will be close to the IID model.
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Models with continuous density Because yn is discrete, one can suppose that the random
vector (Y θ

1 , ...., Y θ
N ) has a continuous density function with respect to the uniform discrete mea-

sure of {0/m, 1/m, ...., (m − 1)/m}N . Therefore it is also generally the case for the conditional
distribution of Yφ(n) given Yφ(n−1) = y′

1, Yφ(n−2) = y′
2,.... when φ is a permutation de {1, 2, ...., N}.

For example, one can show that, if yn = [ e(n) + rand0(n) ]/m (cf step c) page 92 of [7] )
where e(n) means texts and rand0(n) is a pseudo random sequence, the conditional probabilities
have a Lipchitz coefficient K ′

0 small enough. As a matter of fact, it is encore easier to prove if
yn = [e(n) + rand0(n)/m + e′(n) + rand1(n)]/m where e’(n) represent texts witten backward (cf
sections 11.2.4 of [6] and appendix B).

We deduce that the models Y θ
n which have a Lipchitz coefficient K ′

0 small enough are correct
models.

A scientific assumption Generally, one feels well that correct models exist. In fact, it is a
traditional assumption in science. In weather for example, the researchers seek a correct model,
which implies its existence (if not, why to try to make forecasts?). One could thus admit that like
a conjecture or a postulate without defining exactly what is a correct model.

To predict the future In fact, a correct model depends on its usefulness. For example, in
meteorology, its usefulness is to predict weather.

One can transpose that to unspecified sequences of real numbers yn, n=1,2,....,N. The usefulness
of a model will be in general to predict the future. That applies perfectly to the research which
we carry out in order to obtain IID sequences : if a sequence is IID random, one will not be able
to predict the future knowing the past.

One could thus admit like definition of a correct model this one : a correct model is a model
such as, knowing the past Y θ

n−s = y′
n−s, s=1,2,..., this one makes possible to predict the best

possible the future. To be more complete, it is necessary to extend this definition to the sequences
yφ(n) where φ is a permutation of {1, 2, ...., N}.

It is necessary thus that the forecast is good : it has to be the most precise possible, but, if
knowing the past, one predicts the future in a too precise way and that it is not real, the model
will be bad.

Let us notice, that, under this condition, we suppose that one does not know the future yφ(n+s),
s=1,2,... : if not, the empirical probability would be a correct model.

Mathematical definition Mathematically, one can thus specify that: it will be said that Y θ
n

is a correct model, if, for any permutation φ of {1, 2, ..., N}, for all sequence y′
s, for all n, it makes

possible to give the conditional probability of Y θc

φ(n) knowing the past Y θc

φ(n−1) = y′
1, Y θc

φ(n−2) =

y′
2,....., which is the best possible one.

It will be thus true in particular when y′
s = yφ(n−s) for s=1,2,3,.... It will thus be known that

P{Y θc

φ(n) ∈ Bo | Y θc

φ(n−1) = yφ(n−1), Y
θc

φ(n−2) = yφ(n−2), ......} will be the most precise possible by

taking account of what one really knows, i.e the sequence yφ(n−s).
Therefore, one can nothing object to this conditional probability in order to define the future

when what one really knows, it is the sequence yn. Of course it is in question conditional proba-
bilities which one could really deduce from the sample yn if all the mathematical properties were
known and if one had an infinite computing power.

Some difficulties Unfortunately, in these definitions, one made only to move the problem:
mathematically, what means ”probabilities the most precise possible” and ”the best possible”?
One understands well what one wishes. But to define it mathematically seems extremely compli-
cated.
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However, one can do our study without knowing it. Indeed, which interests us, it is that the
Tq(Y

θ
n ) have a law close to an IID distribution.

Now, if Y θc
n is a correct model, P{Y θc

φ(n) ∈ Bo | Y θc

φ(n−1) = y′
1, Y

θc

φ(n−2) = y′
2, .........} defines

the future Y θc

φ(n) ∈ Bo sufficiently well for all Borel set Bo, when, which one knows, it is the

sequence yφ(n). It will be thus true in particular for P{Tq(Y
θc

φ(n)) ∈ Bo′ | Y θc

φ(n−1) = y′
1, Y

θc

φ(n−2) =

y′
2, .........}, and, therefore, for P{Xθc

φ(n) ∈ Bo′ | Xθc

φ(n−1) = x′
1, X

θc

φ(n−2) = x′
2, ....} (cf proposition

A.1). Therefore, this conditional probability defines a good forecast of the future. That means
that if one knows xφ(n−s), s=1,2,.., a good prediction of xφ(n) will be given by this conditional
probability.

However we have proved in [6] that P{Xθc

φ(n) ∈ Bo′ | Xθc

φ(n−1) = x′
1, X

θc

φ(n−2) = x′
2, ....} =

L(Bo′)[1+Ob(1)ǫ] where ǫ is small enough for the models with a continuous density and a coefficient
of Lipschitz K ′

0 not too large. Moreover, one has just understood above that one can admit that
such models are correct if yn is represents a text to which one adds a pseudo-random sequence.
At last, we shall prove in section 5 that, in this case, there exists a correct model Y θc

n such that
P{Xθc

φ(n) ∈ Bo′ | Xθc

φ(n−1) = x′
1, X

θc

φ(n−2) = x′
2, ....} = L(Bo′) if ǫ is small enough.

That means that if one knows xφ(n−s), s=1,2,.., a good prediction of xφ(n) will be given by

uniform probability. Then, we have proved that, there exists a correct model Y θc
n such that Tq(Y

θc
n )

is exactly the IID random sequence.

All the correct models One could think that another correct model could have different results
and that poses a problem. But it is especially a philosophical problem: indeed, that would mean
that two correct models would have incomptatible results. That seems impossible (cf also section
6).

One can thus conclude : because it is admitted that the model with continuous density and
with a coefficient of Lipschitz K ′

0 not too large is correct, the correct models of Tq(Y
θ
n ) will be

close to model IID 2.

Definition by negation One could also want to specify the definition in a negative way. In
particular yn should not fail for too many tests of the hypothesis H0 : ”yn = Y θ

n (ω)”.
Another manner of specifying the definition in a negative way would be to say that a model

is not incorrect. For example, for an IID sample, a model AR (1): Xn+1 = aXn + ηn can be
regarded as incorrect if a is large enough with respect to N.

One could thus say that a model is correct if one finds no mathematical property which shows
that the conditional probabilities could be different from those obtained when one knows all the
mathematical properties of the model and when one has a infinite capacity of computation.

This negative definition thus means that the sample yn will not check the properties that one
expects from a sample having a given law. But in these examples, they are only certain properties.
In a more precise way, it is necessary to wonder which properties exactly one expects to find. One
finds the problems of the definition of Franklin.

Some other correct models To obtain an acceptable definition of a correct model is maybe a
problem which can be resolved.

Indeed, it is understood well that to say that there exists a correct model is a reasonable
proposition. As one has pointed out it, it is a traditional scientific assumption.

In fact, for finite sequences yn, it is a certainty that there exist correct models. For example: to
yn, one associates an independent sequence of random variables Y θ0

n , with uniform law on intervals
containing yn, dependent on n, width small enough, for example about 100/N or 1/N, etc. One
can thus also easily imagine a such correct model with continuous density.

It is noticed that our definition of a model correct is not contradicted by this example : this
one is close to the empirical probability and we excluded this case.

2One can find other reasons to consolidate this assertion in chapter 13 of [6].
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Several correct models There undoubtedly exist several models correct especially when the se-
quences yn are finished. Thus, if yn is an IID sample, the Y θ

n ’s satisfying P{Y θ
φ(n) ∈ [a, b]|Y θ

φ(n−s) =

y′
s, s = 1, 2, ...} = (b − a)[1 + ǫ], for all a < b, for all permutation φ, for all sequence y′

s, s=1,2,...,
and where ǫ is small enough are also correct models (cf section 4).

Conclusion In conclusion, a correct model would make possible to obtain the best conditional
probability for all sequences yφ(n), not knowing the future.

Does there exist such a model? Presumably, because generally yn represents a physical phe-
nomenon. It is thus normal to suppose its existence. Moreover, in certain cases, one can show
such models : it is the case for texts.

3.2 Texts

Now, we consider the particular case where the yn’s result from texts.
A priori, a correct model would be a model which makes possible to predict the following letters

(yn, yn+1,.....) with a satisfactory probability if one knows the preceding letters yn−1, yn−2 .....
One could thus say that the model will predict all the possible texts which follows the beginning
of the text.

However such a model is too precise: indeed, for sequences representing a text, to suppose that
one is in an English text is a priori which is wrong : cf 6) page 307 of [6]. For example, one could
logically predict words invented not existing. A model in modern English language would be a
correct model. But a model in a possible evolution of the English language would be it too.

These model can be refined besides: if a novel is used, it would be astonishing to find texts
speaking about mathematical theorem. Therefore, there are models which make possible to better
predict the continuation than others. But it is necessary that is explained by the text which
precedes. If one takes only 100 words, one will not deduce from it the style of the author.

In fact in order to admit that only the English texts can represent the yn, it would be necessary
that the used text is preceded by a very large number of books which make possible to decode
the language: for example preceded of all the books written in English and of all the texts of the
author in order to know his style. In this case, it is possible that the only correct models are texts,
even texts of the author.

Let us suppose that it is the case. That makes possible to define precise correct models. Indeed,
in this case, one can admit that the correct model will be that representing all the possible texts
written according to the style of the author and speaking about the subject introduced by the first
pages. Of course, there is an almost infinite number of possible texts as soon as N, the sample
size of yn is large.

Concerning the associated probabilities, one can suppose that all the texts are equiprobable.
That seems a correct model.

But it is not the alone one. One can take other probabilities than the equiprobable probability,
for example a close probability, even another. Indeed, it seems that certain text are likely more
to exist than the different ones. The equiprobable model is thus not the best inevitably. In order
to find the best models it would be necessary to find those whose probabilities correspond the
best to all which one knows about texts of the author. That seems impossible to realize. But
theoretically, it could exist. In fact, there are several suitable models.

It thus seems difficult to find exactly all the possible correct models and especially to find a
better model. However, it is felt well that these models including all the texts which the author
can write seems rather correct and that there are from them which are better than others.

Therefore, for the texts, one can show correct models. All the possible texts of the author
with an about uniform probability seems be a good model. Then this model defines conditional
probabilities P{Y θt

φ(n) ∈ Bo|Y θt

φ(n−1) = y′
1, Y

θt

φ(n−2) = y′
2, ....} for all n, for all y′

s, s=1,2,..., and for

all permutation φ.
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3.3 Conclusion

Thus in certain cases, there exist correct models which enable us to predict the future correctly.
One can suppose that the method described for the texts is good and can be generalized.

If this assumption is refused, one will be obliged to admit that there exists such correct models
defining correctly the conditional probabilities without more precise details as one does it in
weather and elsewhere. It was understood that it is enough in order to prove that the IID model
is a correct model of xn = Tq(yn).

4 Models equivalent with a margin of ǫ

4.1 The problem

Let Y θ2
n and Y θ1

n be two sequences of random variables such that, for all Borel set Bo,

P
{
(Y θ2

1 , ......, Y θ2

N ) ∈ Bo
}

= P
{
(Y θ1

1 , ......, Y θ1

N ) ∈ Bo
}[

1 + Ob(1)ǫ(N)

]
,

where ǫ(N) = Nǫ(1) is small enough (cf proposition 6.3.2 of [6]). One supposes that Y θ1
n is a correct

model of the sequence yn, n=1,2,....,N. One wants to prove that Y θ2
n is also a correct model of yn

if ǫ(N) is small enough (e.g. ǫ(N) ≤ 1/10).

4.2 Example

Let us suppose that we have a really IID sequence of random variables Xǫ
n with uniform distribution

on [0,1/2] and [1/2,1] and with a probability such as P{Xǫ
n ∈ [1/2, 1]} = 0, 500[1 + ǫ] where

ǫ = 0, 001. Then, this sequence has not the uniform distribution on [0,1]. However, if we have a
sample with size 10, we will absoluetely not understand that Xǫ

n has not the uniform distribution
on [0,1]. It is wellknown that one need samples with size larger than N=10000 minimum (and
even more) in order to test this difference.

More precisely, by the CLT (Central Limit Theorem), P
{

|
PN

n=1(1[1/2,1](X
ǫ
n)−1/2−ǫ/2)|√

N(1−ǫ2)/4
≥ b

}
≈

Γ(b) where Γ(b) = P{|XG| ≥ b} when XG ∼ N(0, 1). Then, P
{

|
PN

n=1(1[1/2,1](X
ǫ
n)−1/2)|√

N/4
≥ b

}
≈

Γ
(
b[1 − η(ǫ)]

)
where η is continuous with η(0) = 0.

More generally, one cannot test significantly H0 : ”Xθ
n has the uniform distribution” against

H1(ǫ) : ”P{Xθ
n ∈ Bo} = L(Bo)[1 + Ob(1)ǫ] ” if

√
N ǫ ≤ 1/10.

For example, if
√

N ǫ = 1/10 and b=2, the probability of obtaining
PN

n=1[1[1/2,1](X
θ
n)−1/2]√

N/4
≥ 2

is about 0.0466 under H1(ǫ) and about 0.0455 under H0 : i.e. the probability of rejecting the
assumption IID, H0, under H1(ǫ) is not much bigger than that of rejecting H0 if Xθ

n is really IID.
Indeed, under, H1(ǫ),

P
{∑N

n=1(1[1/2,1](X
ǫ
n) − 1/2)

√
N(1 − ǫ2)/4

≥ b
}

+ P
{∑N

n=1(1[1/2,1](X
ǫ
n) − 1/2)

√
N(1 − ǫ2)/4

≤ −b
}

= P
{∑N

n=1(1[1/2,1](X
ǫ
n) − 1/2 − ǫ/2)

√
N(1 − ǫ2)/4

≥ b −
√

Nǫ√
1 − ǫ2

}

+P
{∑N

n=1(1[1/2,1](X
ǫ
n) − 1/2 − ǫ/2)

√
N(1 − ǫ2)/4

≤ −b −
√

Nǫ√
1 − ǫ2

}

≈ (1/2)Γ
(
b −

√
Nǫ√

1 − ǫ2

)
+ (1/2)Γ

(
b +

√
Nǫ√

1 − ǫ2

)
.
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4.3 IID models with a margin of ǫ

These results hold in dimension p , i.e. for 1
N−p

∑
n 1Bo1(Y

θ1
n+j1

)......1Bop(Y θ1
n+jp

). One deduces

from what precedes that, if xn is the realization of a sequence of random variables Xθ
n such

that P{(Xθ
1 , ...., Xθ

N ) ∈ Bo} = L(Bo)[1 + Ob(1)Nǫ] for all Borel set Bo, one will not be able to
differentiate this model from an IID model if ǫ is rather small with respect to N.

Reciprocally, if xn, n=1,2,....,N, is really an IID sample, a model such that P{(Xθ
1 , ...., Xθ

N ) ∈
Bo} = L(Bo)[1 + Nǫ] is also a correct model of the sequence xn.

Because we shall obtain P{(Xθ
1 , ...., Xθ

N ) ∈ Bo} = L(Bo)[1 + Nǫ] in [6] and [7], one will be
able to admit that the IID model is a correct model of the sequences xn which we built in these
reports.

4.4 Case where the CLT holds

One can adopt assumptions more general than those of the IID case by only supposing than
the CLT is checked. For example, assume that the CLT holds and that the Y θ1

n ’s have the
same distribution for n=1,2,....,N. Let PY1

(I) = P{Y θ1
n ∈ I} where I is an interval. Let P 1

e =
(1/N)

∑
n 1I(Y

θ1
n ) and P 2

e = (1/N)
∑

n 1I(Y
θ2
n ). Let σ2

B the variance of P 1
e . Then, if N is big

enough, by the CLT,
P{|P 1

e − PY1(I)| > σBb} ≈ Γ(b) ,

where Γ(b) = P{|XG| ≥ b} when XG ∼ N(0, 1). We recall that

P{|P 1
e − PY1

(I)| > σBb} = Pθ1

{∣∣(1/N)
∑

n

1I(Yn) − PY1
(I)

∣∣ > σBb
}

.

Now there exists a Borel set Bo1 ⊂ {0/m, 1/m, ...., (m − 1)/m}N such that

{
ω ∈ Ω

∣∣∣
∣∣(1/N)

∑

n

1I(Yn(ω)) − PY1
(I)

∣∣ > σBb
}

=
{

(Y1, ...., Yn) ∈ Bo1
}

.

Then,

P{|P 2
e − PY1

(I)| > σBb} = Pθ2

{∣∣(1/N)
∑

n

1I(Yn) − PY1
(I)

∣∣ > σBb
}

= Pθ1

{∣∣(1/N)
∑

n

1I(Yn) − PY1(I)
∣∣ > σBb

}
[1 + Ob(1)Nǫ(1)]

= P{|P 1
e − PY1(I)| > σBb}[1 + Ob(1)Nǫ(1)] .

Then,
P{|P 2

e − PY1(I)| > σBb} ≈ Γ(b)[1 + Ob(1)Nǫ(1)] .

Then, there will not be possible to conclude that yn is a realization of Y θ1
n rather than of Y θ2

n

by testing PY1
(I). For example, let us suppose N = 104, ǫ(1) = 0.00001. In this case, for b=2,

P{|P 1
e − PY1

(I)| > 2σB} ≈ 0.0455,

P{|P 2
e − PY1(I)| > 2σB} ≤ c2, where c2 ≈ 0.0500 .

Now, if yn is a realization of Y θ1
n , it is known that (1/N)

∑
n 1I(yn) is close to PY1(I) with

a certain probability : it is completely possible that (1/N)
∑

n 1I(yn) is enough different from
PY1

(I), but the probability that occurs is weak.
Moreover, if yn is a realization of Y θ2

n , it is also possible that (1/N)
∑

n 1I(yn) is enough
different from PY1

(I), but that is not likely much more to occur than if yn is a realization of Y θ1
n .

8



Then, for the test associated to PY1
(I), it will be thus impossible to differentiate the model

Y θ1
n and Y θ2

n as good model for the sequence yn.

These results are not only true for the estimate of only one PY1
(I), but of several : PY1

(Is),
s=1,2,....,D. I.e. one can generalize them to the chi squared-test. Indeed, in this case, one is thus
interested to the probability

P
{

N
∑

s

[ 1

N

∑

n

1Is(Y
θ1
n ) − ps

]2

≥ a
}

where ps = PY1
(Is). In this case, one uses the Borel sets

Bo2 =
{

ω ∈ Ω
∣∣∣ N

∑

s

[ 1

N

∑

n

1Is
(Yn) − ps

]2

≥ a
}

.

Therefore,

P
{

N
∑

s

[ 1

N

∑

n

1Is
(Y θ2

n ) − ps

]2

≥ a
}

= P
{

N
∑

s

[ 1

N

∑

n

1Is
(Y θ1

n ) − ps

]2

≥ a
}

[1 + Ob(1)ǫ(N)] .

Then, if ǫ(N) is small enough, one cannot differentiate Y θ1
n and Y θ2

n by this chi squared test.

One can generalize these results in dimension 2: for example

P
{ 1

N − 1

∑

n

1A(Y θ2
n )1B(Y θ2

n+1) = k
}

= P
{ 1

N − 1

∑

n

(1A(Y θ1
n )1B(Y θ1

n+1) = k
}[

1 + Ob(1)ǫ(N)

]
.

In dimension p , one uses
∑

n 1Bo1
(Y θ1

n+j1
)......1Bop

(Y θ1
n+jp

). Of course, one can also generalize
to other functions, i.e. to about the totality of the known tests. Because of it, it seems impossible
to differentiate Y θ1

n and Y θ2
n as models of yn .

Then, we have just studied the tests associated to these models. In order to be able to apply
them it is useful to be able to use the CLT. Now, in general, the sequences yn which we use are
asymptotically independent (for example texts or numbers provided by machines). The models
where the CLT is checked are thus correct. The conclusions that we deduce of it are thus correct
too : it is impossible to differentiate Y θ1

n and Y θ2
n as models of yn .

Now, even if yn is asymptotically independent, a model not asymptotically independent could
maybe be a correct model. What could one say in this case? It seems that one would arrive to
the same conclusion because two correct models cannot give different conclusions : cf reasoning
of section 6.

4.5 Another case

As a matter of fact, the relation P{(Y θ2
1

, ........., Y θ2

N ) ∈ Bo} = P{(Y θ1
1 , ..........., Y θ1

N ) ∈ Bo}
[1 + Ob(1)ǫ(N)] for all Borel set Bo ⊂ {0/m, 1/m, ...., (m − 1)/m}N is a very strong relation.

Because of it, it seems impossible to differentiate Y θ1
n and Y θ2

n as models of yn in other cases than
the case where the CLT holds.

For example, this results holds also if only the Weak Law of Large Number holds. Indeed
one does not know the exact law of Pe − PY1(I). But it exists theoretically. However, to know
this law is not important : it is enough that one has the relation P{|P 2

e − PY1
(I)| > b} =

9



P{|P 1
e − PY1

(I)| > b}[1 + Ob(1)ǫ(N)] for all b > 0 in order to be able to conclude from it that one

will cannot differentiate the models Y θ1
n and Y θ2

n .
Moreover, the inequality of Bienaymé-Tschebischeff shows that the sums divided by the vari-

ance are normalized. One deduced from it that one cannot differentiate the effects of these models.

4.6 General Case

One now asks if to prove this result in the general case is possible, i.e. if, whatever the model Y θ1
n

(for example without tests), the relation P{(Y θ2
1

, ...., Y θ2

N ) ∈ Bo} = P{(Y θ1
1 , ...., Y θ1

N ) ∈ Bo}[1 +
Ob(1)ǫ(N)] implies always that one cannot differentiate Y θ1

n and Y θ2
n . It is maybe the case. But,

in order to prove it, there is likely philosophical or other problems of the type of the definition of
the randomness of Franklin. That is thus likely a complicated study.

But one can say still a certain number of thing in the general case.

Is the problem it resolvable? At first, in the general case, a first question is : how for an
unspecified Borelien Bo, can (Y θ

1 , ......, Y θ
N ) ∈ Bo it be depending on a sample of size N? A priori, it

is difficult to establish a connection, considering, in this case, the sample is precisely (y1, ......, yN )
: in space {0/m, 1/m, ., (m − 1)/m}N , one has a sample of size 1.

Then it seems that it is not possible to have many informations on the model Y θ
n if there is

just the sample yn. However yes : we are interested to the equality P
{
(Y θ2

1 , ......, Y θ2

N ) ∈ Bo
}

=

P
{
(Y θ1

1 , ......, Y θ1

N ) ∈ Bo
}
[1 + ǫ(N)]. It is a strong relation especially for a sample of size 1.

Moreover, in this case, there is no problem
Can one use it in the general case? Why not? Indeed, let us suppose that one has a correct

model Y θ1
n . To check P

{
(Y θ2

1 , ......, Y θ2

N ) ∈ Bo
}

= P
{
(Y θ1

1 , ......, Y θ1

N ) ∈ Bo
}
[1 + Ob(1)ǫ(N)] leads

to admit that the models Y θ2
n is correct: that intuitively seems a logical conclusion. But one

does not understand how, in the state of our knowledge, one can prove it. In order to prove it, it
would be necessary, for example, to study completely all the models asymptotically independent,
at first checking the CLT and to know if it is enough that almost all the tests have good results.
Moreover, all the possible models would have to be studied.

Empirical probability It is observed now that, if a model Y θ1
n is correct and a model Y θ2

n is
not correct, it would be necessary that a variation of the probability which would be smaller than
P

{
(Y θ1

1 , ......, Y θ1

N ) ∈ Bo
}
ǫ(N) exchange something sufficiently important so that one understands

a difference of the models with respect to the sample. Therefore, the probability in question will
be close to the empirical probability (the empirical probability with any dimension, including N).
Thus the model would be very close to the empirical model.

However, the empirical model is in general a bad theoretical model. Thus, in the case of texts,
it is known a priori that the empirical probability is not the good model because it will fail as
soon as one increases N. One thus arrives at a contradiction.

Then, even if the empirical probability can be selected like correct model, a probability of a
model Y θ2

n where one changes only a little this probability 3 is also correct.
It would be thus astonishing that a model as special as the empirical model Y θ1

n satisfies ef-
fectively that, if Y θ1

n is correct, an approximate model Y θ2
n will be it also and that an unspecified

3In the case of empirical probability or of probability concentrated in only some points, the assumption of the
probability chosen randomly in hypothesis 6.3.4 of [7] and used in order to define the quantity of models has a
negligible probability to be checked : one is in a case Proba(Ω”) = 0 where Ω” ⊂ Ω (cf Hypothesis 6.3.4 of [7]). In
the case of probability concentrated in some points, it is better to choose the continuous case with a large K0 in

order to study the relations P{Y θ2
n ∈ Bo} = P{Y θ1

n ∈ Bo}[1 + ǫ] : property 6.3.5 and appendix A of [7]
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model does not check this implication. In particular, it would be astonishing for models with con-
tinuous density and coefficient of Lipschitz not too large. It would be even astonishing for models
with unspecified coefficient of lipschitz, i.e. in the general case. Of course astonishing means that
this is intuitive.

Presentation of the problem In fact, this intuition is based on the following reasoning: if Y θ1
n

is a correct model for the sequence yn, that means that the event ”the sequence yn is the result
of a choice at random of ω where yn = Y θ1

n (ω)” is an event which has reasonable probability to
be carried out. Then, it is not understood what can prevent that yn = Y θ2

n (ω) is a realization
equally probable if one changes only a little the probabilities.

The only cases where they could have problem seem those of the probability concentrated close
to some points like the empirical probability. But one has just understood that even in this case,
it is still true.

One thus understands well what leads to think that, in all the cases, one will not be able to
differentiate Y θ1

n and Y θ2
n .

4.7 A problem

Non transitivity But it is necessary to add something to these assertions. If the model Y θ1
n

is correct and that the model Y θ2
n is also correct, a model Y θ3

n equivalent with a margin of ǫ(N)

to Y θ2
n would be it also correct with the relation P{(Y θ3

1
, ...., Y θ3

N ) ∈ Bo} = P{(Y θ1
1 , ...., Y θ1

N ) ∈
Bo}[1 + 2Ob(1)ǫ(N)]? A priori not inevitably!

If it is admitted, one would manage to find that the models Y
θp
n checking P{(Y θp

1
, ...., Y

θp

N ) ∈
Bo} = P{(Y θ1

1 , ...., Y θ1

N ) ∈ Bo}[1 +pOb(1)ǫ(N)] would be also correct for all p. One would end up
finding models which would not be correct.

Therefore, there is no reason that Y θ3
n is also correct. It cannot be differentiated of Y θ2

n , but
not of Y θ1

n . In other words, this relation is not transitive.

The problem That thus poses a problem because if one uses for example a realization yn of the
IID model, and that if one takes for sequence Y θ1

n a model checking P{(Y θ1
1

, ...., Y θ1

N ) ∈ Bo} =
L(Bo)[1+Ob(1)ǫ1] where ǫ1 is small enough but not very small, there are no reasons a priori that
Y θ2

n is a correct model. Indeed, in order that Y θ2
n is not correct, it is enough that Y θ1

n is in extreme
cases of the correct models, i.e. it is enough that ǫ1 is in extreme cases of the possible values of
the ǫ’s such that P{(Y θ

1
, ...., Y θ

N ) ∈ Bo} = L(Bo)[1 + Ob(1)ǫ], supBo(Ob(1)) = 1, imply that Y θ
n is

a correct model.

Answers One could want to answer to this objection by taking the ǫ more and more small. But
it would thus be necessary that the ǫ0 equal to the upper limit of the possible ǫ’s cannot also give
a correct model.

One can also introduce a second definition, that of models perfectly correct where the condi-
tional probabilities would be the most concentrated possible, but where Y θ1

n would remain a valid
model. But there is a problem : in the case of an IID sample, the model where the conditional
probabilities are less concentrated possible is the IID model, therefore, a priori, one of the best
possible models. It is thus a contradiction in our definitions.

It is thus necessary to return to the definition which we have given, that of correct models where
the conditional probabilities are the best possible ones and to use differently it. In particular, it
is necessary that ǫ1 is not the limit of the possible values in the case of an IID sample.

Finally, a simple solution will be indeed to give a new definition, that of perfectly correct
models by using the relation P{(Y θ2

1
, ...., Y θ2

N ) ∈ Bo} = P{(Y θ1
1 , ...., Y θ1

N ) ∈ Bo}[1 + ObBo(1)ǫ]
where |ObBo(1)| ≤ 1 and supBo

(
|ObBo(1)|

)
= 1.
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Perfectly correct model It is said that a model Y
θpfc
n is perfectly correct if

1) It is a correct model : Y
θpfc
n ∈ MC(yn), the set of the correct models of yn.

2) Y θ
n ∈ MC(yn) if P{(Y θ

1 , ..., Y θ
N ) ∈ Bo} = P{(Y θpfc

1
, ..., Y

θpfc

N ) ∈ Bo}[1 + Ob(1)ǫθS
pfc

] =⇒
Y θ

n ∈ MC(yn) where ǫS
θpfc

= supθc∈MC(yn)(ǫθc
) when

ǫθc
= sup

{
ǫ

∣∣∣ P{(Y θ
1

, ..., Y θ
N ) ∈ Bo} = P{(Y θc

1 , ..., Y θc

N ) ∈ Bo}[1 + ObBo(1)ǫ] =⇒ Y θ
n ∈ MC(yn)

}
.

Let us take again the above example about Xǫ
n. It seems that a perfectly correct model would

be that where P{Xǫ
n ∈ [1/2, 1]} = Pe{[1/2, 1]}, the empirical probability of [1/2,1] if the sample

xn is such as the conditions showing independence and that the law is the same one for all n are
checked.

But, for a such model with a sample of size 10, the model where P{Xǫ
n ∈ [1/2, 1]} =

Pe{[1/2, 1]}[1 + 1/1000] will be probably correct, but not perfectly correct.

Remark Let us notice that the existence of perfectly correct models, seems not to pose a prob-
lem : as soon as there exist two correct models close with a margin of ǫ, it is likely that there
exist perfectly correct models. The only difficulties are those which one could meet if the upper
limit was not reached. One could maybe prove that this case is not posed by taking the points
of accumulations. But there is no utility to make such mathematical proofs, the more so as the
mechanism of the reasoning and the goal (cf following section) are easy to understand. This proves
to be useless more especially as the definition of the correct models is undetermined mathemati-
cally. In any case, one could circumvent the difficulties by modifying the definitions a little. One
could same introduce models locally perfectly correct , etc

Another answer There is another answer to the problem in order to prove that there exists a
correct model Y θ

n such that Xθ
n is the IID model. We introduce it in the following section. Then,

the use of perfectly correct models will be useless in the following section. But it will be usefull
latter.

5 Exact IID model

Generally, if Y θ
n is a correct model such as Tq(Y

θ
n ) cannot be differentiated with the IID model,

one will be able to choose another correct model Y θ0
n close to Y θ

n and such that Tq(Y
θ0
n ) is exactly

the IID model. It is a manner simpler to show that Tq(yn) is an IID sequence.

Property 5.1 One assumes that m is large enough. Let Y θc
n be a correct model of the sequence

yn. One assumes that there exists ǫY > 0 such that if Y θ
n is a model satisfying, for all Borel set

Bo, P
{
(Y θ

1 , ......, Y θ
N ) ∈ Bo

}
= P

{
(Y θc

1 , ......, Y θc

N ) ∈ Bo
}
[1 + Ob(1)ǫY ], then Y θ

n is a correct model
of yn.

One assumes also that, for all (k1, ...., kN ),

P
{
{Tq(Y

θc
1 ) = k1/2q} ∩ ...... ∩ {Tq(Y

θc

N ) = kN/2q}
}

=
1

2qN
[1 + ǫk1,....,kN

(q)]

where supk1,....,kN
|ǫk1,....,kN

(q)| = ǫX(q). One assumes that ǫX(q) is increasing, that ǫX(1) << ǫY

and that there exists q1 ∈ N
∗ such that ǫX(q1) is small enough.

Then, there exists q0 ∈ N
∗ and a correct model Y θ0

n of the sequence {yn}n=1,...,N such that, for
all (k1, ...., kN ),

P
{
{Tq0(Y

θ0
1 ) = k1/2q} ∩ ...... ∩ {Tq0(Y

θ0

N ) = kN/2q}
}

=
1

2q0N
.
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Proof There exists q0 ≤ q1 such that ǫX(q0) ≤ (1/2)ǫY . Then, one uses the model Y θ0
n such

that, for all (k1, ...., kN ),

P
{
(Y θ0

1 , ......, Y θ0

N ) = (y′
1, ......., y

′
N )

}
=

P
{
(Y θc

1 , ......, Y θc

N ) = (y′
1, ......., y

′
N )

}

1 + ǫk1,....,kN
(q0)

for all y′
1 ∈ T−1

q0
(k1/2q0), ........., y′

N ∈ T−1
q0

(kN/2q0). It ckecks

P
{
{Tq0

(Y θ0
1 ) = k1/2q0} ∩ ...... ∩ {Tq0

(Y θ0

N ) = kN/2q0}
}

=
1

2q0N
.

It ckecks also : for all (y′
1, ......., y

′
N ),

P
{
(Y θ0

1 , ......, Y θ0

N ) = (y′
1, ......., y

′
N )

}
= P

{
(Y θc

1 , ......, Y θc

N ) = (y′
1, ......., y

′
N )

}
[1 + Ob(1)ǫ′Y ]

where |ǫ′Y | ≤ C0 ≈ ǫX(q0). Then, |ǫ′Y | < ǫY . Then, for all Borel sets Bo,

P
{
(Y θ0

1 , ......, Y θ0

N ) ∈ Bo
}

= P
{
(Y θc

1 , ......, Y θc

N ) ∈ Bo
}
[1 + Ob(1)ǫ′Y ] .

Then, Y θ0
n is a correct model of yn. Moreover Tq0

(Y θ0
n ) is the IID model. �

Now, it is known that one can find models correct Y θ
n such that P{(Xθc

1
, ..., Xθc

N ) ∈ Bo} =
L(Bo)[1 + Ob(1)ǫ′] where ǫ′ is increasingly small if q decreases. Indeed, by property 6.3.5 of [7],
it is known that it is true for the models Y θt

n with a coefficient of Lipschitz K ′
0 not too large :

P{Tq(Y
θt
n ) = k/2q | Tq(Y

θt
n−s) = x′

s, s = 1, 2, ..., p} = (1/2q)
[
1 +

O(1)K′

0

m/2q

]
. For the more general

models there are similar results into proposition 6.3.5 of [7].
Remark that the value of the ǫY ’s such that P{(Y θ

1 , ..., Y θ
N ) ∈ Bo} = P{(Y θc

1
, ..., Y θc

N ) ∈
Bo}[1 + ObBo(1)ǫY ] =⇒ Y θ

n ∈ MC(yn) depends very little on m. For example, if ǫY ≤ 1/100, it
is likely that almost all the tests checked by Y θc

n will be it by Y θ
n (cf section 4.4).

Thus there exists indeed m sufficiently large and q sufficiently small and a correct

model Y θ0
n ∈ {0/m, 1/m, ...., (m − 1)/m} such that Tq(Y

θ0
n ) is the IID model.

In fact, there exist an infinity of correct models Y θ
n such that P

{
(Xθ

n+j1
, ...., Xθ

n+jp
) ∈ Bo

}
=

L(Bo). In particular, if yn means texts, it is true for the models with a coefficient of Lipchitz not
too large. This result thus makes possible to have a very clear conclusion : xn has like correct
model the IID model.

That means that xn behaves like any IID sample : a priori, xn can check not the properties
which one awaits from a IID sample like certain tests, but that occurs only with a probability
equal to that of any IID sample.

6 The sequence xn is IID for all the correct models

In this section, one will understand that one can deduce from the results about the Y θ
n that if yn

n=1,2,., N, represents a text, Tq(Y
θ
n ) is indifferentiable from an IID sequence for all the correct

models of yn.
Indeed, one understood in [7] that, for some models with continous density and coefficient

of Lipschitz K0 not too large, Xθ
n cannot be differentiated with an IID sequence. If the yn are

provided by texts, one can admit this assumption.
There thus exists a correct model such as Xθ

n is IID. That means, according to the definition
which we have given, that one cannot predict Xθ

φ(n) knowing Xθ
φ(n−1) = x′

1, Xθ
φ(n−2) = x′

2,.... with
a distribution other than the uniform distribution.
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Also, it seems well that, if, for another correct model, one obtained a different result, there
would be fatally one of the two models which would not be correct. Indeed, at the most, only one
of the conclusions will be satisfied. For example, on the models of climatic warming, some predict
a strong warming and others more restricted : both will not be checked.

Therefore, one cannot have a different result for various correct model. Therefore, for all the
correct models Y θ

n , a priori Tq(Y
θ
n ) cannot be differentiated with an IID sequence.

On the other hand, we wanted to know the effects of Tq on the texts. Then, on all the texts
which we have tested, we always have found that the empirical probability Pe checked the following
condition : for all p not too large with respect to N, for all intervals I1, I2, ....., Ip,

Pe

{
{Xn ∈ I1} ∩ {Xn+1 ∈ I2} ∩ ....... ∩ {Xn+p ∈ Ip}

}
≈ L(I1)L(I2)....L(Ip) .

That corresponds completely with which we have already noted : a text and the T−1
q (I) where

I is an interval are independent events. The conditional probability of the Xθ
n are thus sums chosen

randomly, and thus asymptotically normal (cf section 6.1.2 of [7]).
The empirical probabilities thus check the fundamental equalities of IID sequences. It would

be thus astonishing that the models associated to these sequences does not check the equalities of
IID sequences, at least with a margin of ǫ. It is thus normal to think that the correct models will
be thus those which will check this fundamental equality.

Other arguments are in sections 13.2, 13.3.2 and 13.3.3 of [6]
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A Conditional probabilities of X
θ
n

A correct model Y θ
n of a sequence yn is thus a model which represents the associated phenomenon

well.
Therefore, it makes possible to predict correctly the future knowing the past, i.e. to define

the best possible P{Y θ
n ∈ Bo | Y θ

n−s = y′
s, s = 1, 2, 3, .........}. It will be thus true also for

P{Tq(Y
θ
n ) ∈ Bo′|Y θ

n−s = y′
s, s = 1, 2, 3, .....}. The following proposition shows that it is true also

for P{Xθ
n ∈ Bo′|Xθ

n−s = x′
s, s = 1, 2, 3, .....}.

Proposition A.1 Let Yn ∈ {0/m, 1/m, ...., (m−1)/m} be a sequence of random variables defined
on a probability space (Ω,A, P ) and let Xn = Tq(Yn). Then, for all Borel set Bo,

P{Xn ∈ Bo | Xn−s = xs, s = 1, 2, ..., p}

=
∑

ys1∈T−1
q (x1)

....
∑

ysp∈T−1
q (xp)

ηys1
,...,ysp

P{Xn ∈ Bo|Yn−j = ysj , j = 1, 2, ..., p}

where ∑

ys1∈T−1
q (x1)

....
∑

ysp∈T−1
q (xp)

ηys1
,...,ysp

= 1 .

Proof We have :
P{Xn ∈ Bo|Xn−s = xs, s = 1, 2, ..., p}

=
P

{
{Xn ∈ Bo} ∩ {Xn−1 = x1} ∩ .... ∩ {Xn−p = xp}

}

P
{
{Xn−1 = x1} ∩ .... ∩ {Xn−p = xp}

}

=
P

{
{Xn ∈ Bo} ∩

{
∪ys1

{Yn−1 = ys1
}
}
∩ .... ∩

{
∪ysp

{Yn−p = ysp
}
}}

P
{{

∪ys1
{Yn−1 = ys1}

}
∩ .... ∩

{
∪ysp

{Yn−p = ysp}
}}

where ∪yst
{Yn−t = yst

} = ∪yst∈T−1
q (xt)

{Yn−t = yst
}.

Then,

P{Xn ∈ Bo|Xn−s = xs, s = 1, 2, ..., p}

=
P

{
∪ys1

.... ∪ysp
{Xn ∈ Bo} ∩ {Yn−1 = ys1

} ∩ .... ∩ {Yn−p = ysp
}
}

P
{
∪ys1

.... ∪ysp
{Yn−1 = ys1} ∩ .... ∩ {Yn−p = ysp}

}

=

∑
ys1

....
∑

ysp
P

{
{Xn ∈ Bo} ∩ {Yn−1 = ys1} ∩ .... ∩ {Yn−p = ysp}

}

∑
ys1

....
∑

ysp
P

{
{Yn−1 = ys1} ∩ .... ∩ {Yn−p = ysp}

}

=
∑

ys1

....
∑

ysp

ηys1
,...,ysp

P
{
{Xn ∈ Bo} ∩ {Yn−1 = ys1} ∩ .... ∩ {Yn−p = ysp}

}

P
{
{Yn−1 = ys1

} ∩ .... ∩ {Yn−p = ysp
}
}

where

ηys1
,...,ysp

=
P

{
{Yn−1 = ys1

} ∩ .... ∩ {Yn−p = ysp
}
}

∑
ys1

....
∑

ysp
P

{
{Yn−1 = ys1} ∩ .... ∩ {Yn−p = ysp}

} .
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Of course, ∑

ys1

....
∑

ysp

ηys1
,...,ysp

= 1 . �

For example assume that the yn’s are provided by texts. Assume that the model with uniform
probability is the best (all the english texts are equiprobable).

Therefore, it makes possible to predict correctly the future knowing the past, i.e. to define
P{Tq(Y

θ
n ) ∈ Bo|Y θ

n−s = y′
s, s = 1, 2, 3, .....} which is the best possible forecast for all the Borel set

Bo, all the y′
n−s and all n. Indeed, for texts a such model exists (cf section 3.2).

Then, proposition A.1 which affims that P{Xθ
n ∈ Bo|Xθ

n−s = x′
s, s = 1, 2, 3, .....} is a sum of

P{Xθ
n ∈ Bo|Y θ

n−s = y′
s, s = 1, 2, 3, .....} which are the best forecast of the future for all the y′

s,
s=1,2,3,..... shows that P{Xθ

n ∈ Bo|Xθ
n−s = x′

s, s = 1, 2, 3, .....} is the best possible forecast.
Therefore, if Y θ

n is a correct model, Xθ
n is also a correct model and P{Xθ

n ∈ Bo | Xθ
n−s =

x′
s, s = 1, 2, ..., p} defines correctly the conditional probabilities.

Now, if one uses one alone english text, one does not know that yn derives from texts. Then,
the conditional probabilities P{Y θ1

n ∈ Bo|Y θ1
n−s = y′

s, s = 1, 2, 3, .....} are less concentrated than
those associated to the model of the English texts. Then, if one uses one alone english text, the
conditional probabilities P{Xθ1

n ∈ Bo | Xθ1
n−s = x′

s, s = 1, 2, ..., p} are less concentrated than the

conditional probabilities P{Xθ0
n ∈ Bo | Xθ0

n−s = x′
s, s = 1, 2, ..., p} associated to the model of the

transformation of the English texts.
The best way in order to explain it, it is to assume that there exists a continous density with a

Lipchitz coefficient K ′T
0 for texts. Then if one does not know that one is an English text, one has

a Lipschitz coefficient K ′nT
0 such that K ′nT

0 ≤ K ′T
0 . Now we recall that, by property 6.3.5 of [7],

P{Xθt
n ∈ I | Xθt

n−s = x′
s, s = 1, 2, ..., p} ≈ L(I)

[
1 +

6Ob(1)K′t
0

m/2q

]
where K ′0

0 = K ′T
0 and K ′1

0 = K ′nT
0 .

On the other hand, it is no possible to have conditional probabilities less concentrated than the
uniform distribution. We deduce P{Xθ1

n ∈ Bo | Xθ1
n−s = x′

s, s = 1, 2, ..., p} ≈ L(Bo).

Another way in order to explain this result is to write that P
{
(Y θ0

1 , ......, Y θ0

N ) ∈ Bo
}

=

L(Bo)[1 + Ob(1)ǫ0] when one assumes that one is in an English text, and P
{
(Y θ1

1 , ......, Y θ1

N ) ∈
Bo

}
= L(Bo)[1 + Ob(1)ǫ1] when one does not know it, where ǫ1 ≤ ǫ0.
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B Use of text witten backward

B.1 Use of texts

Now, we suppose that we use sequences yn obtained from texts.
In an obvious way, the texts are realizations of sequences of random variables: for example,

one can take as model, the set of the possible texts provided with the uniform probability. In this
model, if one knows a text until the letter ”n-1”, there are a large number of alternatives for the r
following letters as soon as r is rather large. That means indeed that the conditional probability
of Y θ

n knowing the past, is not concentrated in a too small number of points.
However there is a problem for some subsequences yφ(n) : if one knows a text until the letter

”n-1” and the text after the letter ”n+r”, (for example r=18), there will be much less possibilities
for the r letters ranging between the two parts of texts than if only the past is known. To answer
this point, in sections 11.2.4 of [6], we have added modulo m a text and a text written backward.

But that seems exaggerated because it is not known a priori that we are in an English text
if one has only a few texts 4. Moreover, a priori all the words possible of the English language
are not known : one cannot thus predict them. That does not prevent from concluding : if the
conditional probabilities of the texts are not concentrated in some points in a model of English
text, a fortiori, it is also the case if it is not known that one is in a English text.

Moreover, a pseudo-random sequence is added to used texts (step c, page 93 of [7]). That
makes possible to have sequences yn which have a good randomness (cf [9], or chapter 3 of [6]).

Moreover, it is encore easier to prove that the conditional probability of Y θ
n knowing the past, is

not concentrated in a too small number of points if yn = [e(n) + rand0(n) + e′(n) + rand1(n)]/m
where e’(n) represent a text witten backward and randj(n) pseudo-random sequences for j=0,1,
(cf sections 11.2.4 of [6]). In this case, one can show that this condition is correct.

Indeed suppose that the sequences xn and yn represents two texts at which one adds to each
one a pseudo-random sequences. Let Yn and Xn be two correct models. One is interested to the
sequence Xn+s + Yn−s , s = 0,±1,±2, ..... As matter of fact, one adds a text to a text written
backward

Then, we will understand that the probability that Xn + Yn = a0 given Xn+s + Yn−s = as for
s=1,-1, will be about that of Xn + Yn = a0 given Xn−1 = b1 et Yn−1 = c1.

B.2 Theorem

We have the following theorem

Theorem 1 Let Yn and Xn be two independent sequences of random variables defined on a prob-
ability space (Ω,A, P ) such that Xn, Yn ∈ {0/m, 1/m, ...., (m − 1)/m}. Then,

P{Xn + Yn ≡ a0 | Xn−1 + Yn+1 ≡ a1, Xn+1 + Yn−1 ≡ a2}

=
∑

x1,y1

ηx1,y1
αx1,y1

P
{
Xn + Yn ≡ a0

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
,

where

αx1,y1
=

P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0, Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}

P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

} ,

4Let us recall difficulties in order to discover the meaning of certain languages in archeology : all are not identifed.
Let us recall also the hieroglyphs on the Rosetta Stone whose one had however 3 translations.
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ηx1,y1
=

P
{
{Xn−1 = x1} ∩ {Xn+1 ≡ a2 − y1}

}
P

{
{Yn+1 ≡ a1 − x1} ∩ {Yn−1 = y1}

}
∑

x1,y1
P

{
{Xn−1 = x1} ∩ {Xn+1 ≡ a2 − y1}

}
P

{
{Yn+1 ≡ a1 − x1} ∩ {Yn−1 = y1}

} ,

∑
x1,y1

=
∑

(x1,y1)∈{0/m,1/m,....,(m−1)/m}2 ,
∑

x1,y1
ηx1,y1

= 1 and a ≡ b if ma ≡ mb modulo m.

Proof We have

P{Xn + Yn ≡ a0 | Xn−1 + Yn+1 ≡ a1, Xn+1 + Yn−1 ≡ a2}

=
P

{
{Xn + Yn ≡ a0} ∩ {Xn−1 + Yn+1 ≡ a1} ∩ {Xn+1 + Yn−1 ≡ a2}

}

P
{
{Xn−1 + Yn+1 ≡ a1} ∩ {Xn+1 + Yn−1 ≡ a2}

}

=

P



{Xn + Yn ≡ a0} ∩
n

∪x1 {Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

∪y1 {Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

P



n

∪x1 {Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

∪y1 {Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

=
X

x1,y1

P



{Xn + Yn ≡ a0} ∩
n

{Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

P

x1,y1
P



n

{Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

=
X

x1,y1

P



n

{Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

P

x1,y1
P



n

{Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

P



{Xn + Yn ≡ a0} ∩
n

{Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

P



n

{Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

=
X

x1,y1

ηx1,y1

P



{Xn + Yn ≡ a0} ∩
n

{Xn−1 = x1} ∩ {Yn+1 ≡ a1 − x1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 ≡ a2 − y1}
o

ff

P



n

{Xn−1 = x1} ∩ {Yn+1 ≡ a1 − x1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 ≡ a2 − y1}
o

ff

=
X

x1,y1

ηx1,y1P



Xn + Yn ≡ a0

˛

˛

˛

˛

Xn−1 = x1, Yn+1 ≡ a1 − x1, Yn−1 = y1, Xn+1 ≡ a2 − y1

ff

.

On the other hand,

P
{

Xn + Yn ≡ a0

∣∣∣ Xn−1 = x1, Yn+1 ≡ a1 − x1, Yn−1 = y1, Xn+1 ≡ a2 − y1

}

= Cx1, y1P
{
Xn + Yn ≡ a0

∣∣Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
,

where

cx1,y1 =
P

{
Xn + Yn ≡ a0

∣∣∣ Xn−1 = x1, Yn+1 ≡ a1 − x1, Yn−1 = y1, Xn+1 ≡ a2 − y1

}

P
{

Xn + Yn ≡ a0

∣∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
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=

P

{
{Xn+Yn≡a0}∩

{
{Xn−1=x1}∩{Yn+1≡a1−x1}

}
∩
{
{Yn−1=y1}∩{Xn+1≡a2−y1}

}}

P

{{
{Xn−1=x1}∩{Yn+1≡a1−x1}

}
∩
{
{Yn−1=y1}∩{Xn+1≡a2−y1}

}}

P
{
{Xn+Yn≡a0}∩{Yn+1≡a1−x1}∩{Xn+1≡a2−y1}

}

P
{
{Yn+1≡a1−x1}∩{Xn+1≡a2−y1}

}

=

P

{
{Xn+Yn≡a0}∩

{
{Xn−1=x1}∩{Yn+1≡a1−x1}

}
∩
{
{Yn−1=y1}∩{Xn+1≡a2−y1}

}}

P
{
{Xn+Yn≡a0}∩{Yn+1≡a1−x1}∩{Xn+1≡a2−y1}

}

P

{{
{Xn−1=x1}∩{Yn+1≡a1−x1}

}
∩
{
{Yn−1=y1}∩{Xn+1≡a2−y1}

}}

P
{
{Yn+1≡a1−x1}∩{Xn+1≡a2−y1}

}

=
P

{
Xn−1 = x1, Yn−1 = y1

∣∣∣ Xn + Yn ≡ a0, Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}

P
{

Xn−1 = x1, Yn−1 = y1

∣∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

} . �

B.3 Application

Let us suppose again that the sequences xn and yn represents texts at which one adds to each
one a pseudo-random sequence. It is supposed that Yn and Xn are two correct models. One is
interested by Xn+s + Yn−s , s = 0,±1,±2, .... : one adds a text and a text written backward.

Study of P
{
Xn + Yn ≡ a0

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
We know that P

{
Xn + Yn ≡

a0

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
is the conditional probability that Xn + Yn ≡ a0 given the

futures Yn+1 and Xn+1.
There will be thus a probability which will not be more concentrated that of a text knowing the

future. But it is an increase: the probability of the sum Xn + Yn knowing the future Yn+1 ≡ a1−x1

and Xn+1 ≡ a2−y1 is probably less concentrated than, for example, the probability of Xn knowing
the future Xn+1 ≡ a2 − y1.

In fact, the conditional probability will be much less concentrated than that: it is not known
that one is in a text. Moreover, because a pseudo-random generator is added, this probability will
be rather close to that of independence : P

{
Xn + Yn ≡ a0

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
is

not too distant from P
{
Xn + Yn ≡ a0

}
which is not too distant from 1/m (cf pages 199-202 of

[6]).
Therefore, the probability of the sum Xn + Yn knowing the future is not concentrated close to

some points. That means that there will be no points where it is close to 0, and not points where
it is close to 1. That means that, in the case of models with continuous density, the coefficient of
Lipschitz will not be too large.

Study of P{Xn−1 = x1, Yn−1 = y1 | Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1} Now considering the
independence of texts Xn and Yn, P

{
Xn−1 = x1, Yn−1 = y1

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
=

P
{
Xn−1 = x1

∣∣ Xn+1 ≡ a2 − y1

}
P

{
Yn−1 = y1

∣∣ Yn+1 ≡ a1 − x1

}
.
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However, for the texts, as soon as one takes as sequence yn a sequence of group of Q=10 or 20
letters for example, one finds the Q-dependence statistically (chapter 10 of [6]).

Therefore, P
{

Xn−1 = x1, Yn−1 = y1

∣∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
≈ 1/m2 if m is large

enough.

Study of P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0, Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
One

understands, by simulation, that P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn+Yn ≡ a0, Yn+1 ≡ a1−x1, Xn+1 ≡
a2 − y1

}
is not too different from P

{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0

}
.

It is not astonishing: Xn−1 is almost independent of Xn+1. Therefore, P
{
Xn−1 = x1, Yn−1 =

y1

∣∣ Xn + Yn ≡ a0, Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
depends especially on Xn + Yn

5.

One can also understand it because of following relations

P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0, Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}

=
P

{
{Xn−1 = x1} ∩ {Yn−1 = y1} ∩ {Xn + Yn ≡ a0} ∩ {Yn+1 ≡ a1 − x1} ∩ {Xn+1 ≡ a2 − y1}

}

P
{
{Xn + Yn ≡ a0} ∩ {Yn+1 ≡ a1 − x1} ∩ {Xn+1 ≡ a2 − y1}

}

=
P

{
{Xn−1 = x1} ∩ {Yn−1 = y1} ∩

{
∪x0

{Xn = x0} ∩ {Xn + Yn ≡ a0

}
∩ {Yn+1 ≡ a1 − x1} ∩ {Xn+1 ≡ a2 − y1}

}

P
{{

∪x0
{Xn = x0} ∩ {Xn + Yn ≡ a0

}
∩ {Yn+1 ≡ a1 − x1} ∩ {Xn+1 ≡ a2 − y1}

}

=
∑

x0

P
{
{Xn−1 = x1} ∩ {Yn−1 = y1} ∩

{
{Xn = x0} ∩ {Yn ≡ a0 − x0}

}
∩ {Yn+1 ≡ a1 − x1} ∩ {Xn+1 ≡ a2 − y1}

}
∑

x0
P

{{
{Xn = x0} ∩ {Yn ≡ a0 − x0}

}
∩ {Yn+1 ≡ a1 − x1} ∩ {Xn+1 ≡ a2 − y1}

}

=
∑

x0

P
{
{Xn−1 = x1} ∩ {Xn = x0} ∩ {Xn+1 ≡ a2 − y1}

}
P

{
{Yn−1 = y1} ∩ {Yn ≡ a0 − x0} ∩ {Yn+1 ≡ a1 − x1}

}
∑

x0
P

{
{Xn = x0} ∩ {Xn+1 ≡ a2 − y1}

}
P

{
{Yn ≡ a0 − x0} ∩ {Yn+1 ≡ a1 − x1}

}

=
∑

x0

βx0

P
{
{Xn−1 = x1} ∩ {Xn = x0} ∩ {Xn+1 ≡ a2 − y1}

}
P

{
{Yn−1 = y1} ∩ {Yn ≡ a0 − x0} ∩ {Yn+1 ≡ a1 − x1}

}

P
{
{Xn = x0} ∩ {Xn+1 ≡ a2 − y1}

}
P

{
{Yn ≡ a0 − x0} ∩ {Yn+1 ≡ a1 − x1}

}

=
∑

x0

βx0
P

{
Xn−1 = x1|Xn = x0, Xn+1 ≡ a2 − y1

}
P

{
Yn−1 = y1|Yn ≡ a0 − x0, Yn+1 ≡ a1 − x1

}

where =
∑

x0
βx0

= 1.

It is not too difficult to understand, that, for example, P{Xn−1 = x1|Xn = x0, Xn+1 ≡ a2−y1

}

is hardly more concentrated than P{Xn−1 = x1|Xn = x0

}
if xn represents only texts. It is even

truer if xn represents a text to which one adds a pseudo random sequence, and it is even truer in
the case which interests us considering than one summons on all the x0.

Then, it is not astonishing that P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0, Yn+1 ≡ a1 −
x1, Xn+1 ≡ a2 − y1

}
is not too different from P

{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0

}
.

5In the general case, that could be false : e.g. cf the properties of higher order correlation coefficients (cf [5])
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Now, P{Xn + Yn ≡ a0} ≈ 1/m because one adds a pseudo random sequence to text (cf pages
199-202 of [6]). Therefore,

P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0

}
=

P{Xn−1 = x1, Yn−1 = y1, Xn + Yn ≡ a0}
P{Xn + Yn ≡ a0}

≈ m.P
{
Xn−1 = x1, Yn−1 = y1

}P
{
Xn−1 = x1, Yn−1 = y1, Xn + Yn ≡ a0

}

P
{
Xn−1 = x1, Yn−1 = y1,

}

= m.P
{
Xn−1 = x1

}
P

{
Yn−1 = y1

}
P

{
Xn + Yn ≡ a0

∣∣Xn−1 = x1, Yn−1 = y1,
}

≈ (1/m)P
{
Xn + Yn ≡ a0

∣∣Xn−1 = x1, Yn−1 = y1,
}

.

Of course, P
{
Xn + Yn ≡ a0

∣∣Xn−1 = x1, Yn−1 = y1,
}

is, this time, the conditional probability

knowing the past. There are thus about the same results that above for P
{
Xn +Yn ≡ a0

∣∣ Yn+1 ≡
a1 − x1, Xn+1 ≡ a2 − y1

}
. Therefore, P

{
Xn + Yn ≡ a0

∣∣Xn−1 = x1, Yn−1 = y1,
}

will be not too
different from 1/m.

Conclusion By joining together all these results, one understands that

αx1,y1P
{
Xn + Yn ≡ a0

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}

will be not too different from 1/m.

Now,

ηx1,y1
=

P
{
{Xn−1 = x1} ∩ {Xn+1 ≡ a2 − y1}

}
P

{
{Yn+1 ≡ a1 − x1} ∩ {Yn−1 = y1}

}
∑

x1,y1
P

{
{Xn−1 = x1} ∩ {Xn+1 ≡ a2 − y1}

}
P

{
{Yn+1 ≡ a1 − x1} ∩ {Yn−1 = y1}

}

≈ P{Xn−1 = x1}P{Xn+1 ≡ a2 − y1}P{Yn+1 ≡ a1 − x1}P{Yn−1 = y1}∑
x1,y1

P{Xn−1 = x1}P{Xn+1 ≡ a2 − y1}P{Yn+1 ≡ a1 − x1}P{Yn−1 = y1}

≈ 1/m4

∑
x1,y1

(1/m4)
≈ 1/m2 .

Therefore,

∑

x1,y1

ηx1,y1αx1,y1P
{
Xn + Yn ≡ a0

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}

is not too different from

(1/m2)
∑

x1,y1

P
{
Xn + Yn ≡ a0

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
.

However in general, to make a sum on x1, y1 standardizes the probabilities (it is true as soon
as one can consider that they are randomly selected cf section 6.1.2 of of [7]). Therefore, in most
case, P{Xn + Yn ≡ a0 | Xn−1 + Yn+1 ≡ a1, Xn+1 + Yn−1 ≡ a2} will be even more close to (1/m)
that the previous reasonings which is carry out without the sums

∑
x1,y1

did not let it suppose.

Finally, all this confirms that P{Xn + Yn ≡ a0 | Xn−1 + Yn+1 ≡ a1, Xn+1 + Yn−1 ≡ a2} is not
too different from 1/m. One deduces from it that the coefficient of Lipschitz will not be too large.
Then, it is enough to apply Tq in order to have sequences proved IID.
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