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ANALYTICITY OF THE ENTROPY FOR SOME RANDOM WALKS

FRANCOIS LEDRAPPIER

ABSTRACT. We consider non-degenerate, finitely supported random walks on a free group.
We show that the entropy and the linear drift vary analytically with the probability of
constant support.

1. INTRODUCTION

Let F be a finitely generated group and for x € F, denote |z| the word length of z. Let
p be a finitely supported probability measure on F' and define inductively, with p© being
the Dirac measure at the identity e,

p™M(@) = PV xpl@) = Y p" D (@y p(y).

yeF

Some of the asymptotic properties of the probabilities p(™ as n — oo are reflected in two
nonnegative numbers, the entropy h, and the linear drift ,:

hy —hm——Zp(" YInp™ (z) £, = liyfn%ZMp(")

rEF zeF
Erschler asks whether h, and ¢, depend continuously on p (see [EK]). In [Ed] she gives
examples of finitely supported probability measures pj, converging to p with h, <limy h,, .
In those examples, the support of p is not the limit of the supports of the py. So in this
note, we fix a finite set B C F' such that U,B"™ = F and we consider probability measures
in P(B), where P(B) is the set of probability measures p such that p(x) > 0 if, and only
if, x € B. The set P(B) is naturally identified with an open subset of the probabilities on
B which is an open bounded convex domain in RIZI=1, We show:

Theorem 1.1. Assume F = F; is the free group with d generators, B is a finite subset of
F such that U,B"™ = F. Then, with the above notation, the functions p — h, and p — ¢,
are real analytic on P(B).

The ratio h,/l, has a geometric interpretation as the Hausdorff dimension D,, of the
unique stationary measure for the action of F' on the space JF of infinite reduced words.
It follows from Theorem [[.1] that this dimension D, is also real analytic in p, see below
Corollary R.J for a more precise statement. Ruelle ([RZ]) proved that the Hausdorff di-
mension of the Julia set of a rational function, as long as it is hyperbolic, depends real
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2 FRANCOIS LEDRAPPIER

analytically of the parameters and our approach is inspired by [[R2]. We first review prop-
erties of the random walk on F' directed by a probability p. In particular, we can express
hy and £, in terms of the exit measure p> of the random walk on the boundary OF (see
[Ld] and section B for background and notation). We then express this exit measure using
thermodynamical formalism: if one views OF as a one-sided subshift of finite type, the exit
measure p*° is the isolated eigenvector of maximal eigenvalue for a dual transfer operator
L}, involving the Martin kernel of the random walk. Finally, from the description of the
Martin kernel by Derriennic ([Dg]), we prove that the mapping p — L, is real analytic.
The proof uses contractions in projective metric on complex cones ([Rd], [D1]]) and I want
to thank Loic Dubois for useful comments. Regularity of p — p> and Theorem follow.

In the note, the letter C stands for a real number independent of the other variables, but
which may vary from line to line. In the same way, the letter O, stands for a neighborhood
of p € P(B) in C? which may vary from line to line.

2. CONVOLUTIONS OF p

We recall in this section the properties of the convolutions p(™ of a finitely supported
probability measure p on the free group Fy = F. We follow the notation from [Ld]. Any ele-
ment of F' has a unique reduced word representation in generators {a, -+ ,aq,a—1, "+ ,a_q}.
Set d(z,x) = 0 and, for z # 2/, 6(z,2") = exp —(z A 2’), where (z A 2’) is the number of
common letters at the beginning of the reduced word representations of x and z’. Then
0 defines a metric on F' and extends to the completion F'U 0F with respect to 6. The
boundary OF' is a compact space which can be represented as the space of infinite reduced
words. Then the distance between two distinct infinite reduced words £ and &' is given by

5(67 5/) = €exp _(5 A 6,)7
where (£ A ¢') is the length of the initial common part of £ and &’

There is a natural continuous action of F' over OF which extends the left action of F
on itself: one concatenates the reduced word representation of x € F' at the beginning of
the infinite word £ and one obtains a reduced word by making the necessary reductions. A
probability measure p on 9F is called stationary if it satisfies

po=Y_ p(@)z.p.
zeF

There is a unique stationary probability measure on JF, denoted p> and the entropy h,
and the linear drift £, are given by the following formulae:

_ n B0 o @) pla

1) t = -3 ([ w00 pio)
= V) dp™ T
2) f = m}g}( [ bt 1)) o),

where 0¢(z) = |z| — 2(§ A z) = limy_,¢(Jz1y| — |y|) is the Busemann function.
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Observe that in both expressions, the sum is a finite sum over z € B. In the case of a
finitely supported random walk on a general group, formula (fl) holds, but with (OF, p™)
replaced by the Poisson boundary of the random walk (see [Fd], [Ka]); formula (f) also
holds, but with (OF, p*>) replaced by some stationary measure on the Busemann boundary

of the group ([KL)).

Recall that in the case of the free group the Hausdorff dimension of the measure p>
on (OF, ) is given by h,/¢, ([Ld], Theorem 4.15). So we have the following Corollary of
Theorem [1]:

Corollary 2.1. Assume F = Fy is the free group with d generators, B is a finite subset
of F' such that U, B™ = F'. Then, with the above notation, the Hausdorff dimension of the
stationary measure on (OF,0) is a real analytic function of p in P(B).

The Green function G(z) associated to (F,p) is defined by

Go) = 3 p™ ()
n=0

(see Proposition B.d below for the convergence of the series). For y € F, the Martin kernel
K, is defined by

Gz"'y)

K,(z) = —= Y

Derriennic ([Dd]) showed that v, — £ € OF if, and only if, the Martin kernels K, converge
towards a function K¢ called the Martin kernel at £. We have (see e.g. [Ld (3.11)):

dz.p>
e (©) = Kelo).

3. RANDOM WALK ON F'

The quantities introduced in Section P can be associated with the trajectories of a
random walk on F'. In this section, we recall the corresponding notation and properties.
Let © = FN be the space of sequences of elements of F, M the product probability p".
The random walk is described by the probability IP on the space of paths €2, image of M
by the mapping:

(wn)nez = (Xy)n>0, where Xg = e and X,, = X,,_jw, for n > 0.

In particular, the distribution of X, is the convolution p(™. The notation p> reflects the
following

Theorem 3.1 (Furstenberg, see [Ld], Theorem 1.12). There is a mapping Xoo : Q — OF
such that for M-a.e. w,

lim X, (w) = Xoo(w).

n

The image measure p*° is the only stationary probability measure on OF .
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For z,y € F, set u(z,y) for the probability starting from x of ever reaching y. By
left invariance, u(x,y) = u(e,2~'y). Moreover, by the strong Markov property, G(z) =
u(e, z)G(e) so that we have:

u(z,y)

3) Kyfa) = 20

By definition, we have 0 < wu(z,y) < 1. The number u(z,y) is given by the sum of the
probabilities of the paths going from x to y which do not visit y before arriving at y.

Proposition 3.2. Let p € P(B). There are numbers C and (,0 < { < 1 and a neighbor-
hood O, of p in CB such that for all q € Op, allz € F and alln >0,

" ()| < C¢™.
Proof. Let ¢ € CB. Consider the convolution operator P, in ly(F,C) defined by:

Pyf(x) =" flay aly).

yel
Derriennic and Guivarc’h ([DG]|) showed that for p € P(B), P, has spectral radius smaller
than one. In particular, there exists ng such that the operator norm of P* in UH(F) is
smaller than one. Since B and B™ are finite, there is a neighborhood O, of p in C® such
that for all ¢ € O,, |[P0]l2 < A for some A < 1 and [|[PF|l; < C for 1 < k < ng. It follows
that for all ¢ € O, all n > 0,

HP¢?||2 < O \n/nol,
In particular, for all z € F, |¢") (z)| = [[Pgde](z)] < [Pfdel2 < CA/mol|5 |y < OAl/mol,
O

Fix p € P(B). For x € F, V a finite subset of F and v € V, let o) (v) be the
probability that the first visit in V' of the random walk starting from x occurs at v. We
have 0 < 3, .y @ (v) <1 and

%

+ (v) extends to an analytic function

Proposition 3.3. Fixx,V andv. The mapping p — «
on a neighborhood of P(B) in CB.

Proof. The number o (v) can be written as the sum of the probabilities ag’v(v) of entering

V at v in exactly n steps. The function p — o’ (v) is a polynomial of degree n on P(B):
apV(v) = Z%% i
&

where £ is the set of paths {x, xiy, zijie, - ,xiyig- - i, = v} of length n made of steps in
B which start from x and enter V in v. By Proposition B.9, there is a neighbourhood O,
of p in P(B) and numbers C, ¢,0 < ¢ < 1, such that for ¢ € O, and for all y € F,

g™ (y) < ¢
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It follows that for ¢ € Oy,
o (v)] < Clg|™ (27 v) < C¢™.

Therefore, ¢ — o (v) is given locally by a uniformly converging series of polynomials, it
is an analytic function on O := U, 0,. O

4. BARRIERS AND HOLDER PROPERTY OF THE MARTIN KERNEL

Set r = max{|z|;xz € B}. A set V is called a barrier between z and y if 6(x,y) > r and
if there exist two points z and 2’ of the geodesic between z and y, distinct from x and y
such that 6(z,2") =r —1 and V is the intersection of the two balls of radius r — 1 centered
at z and at 2’. The basic geometric Lemma is the following;:

Lemma 4.1 ([Dd], Lemme 1). If z and y admit a barrier V, then every trajectory of the
random walk starting from x and reaching y has to visit V' before arriving at y.

For V, W finite subsets of F', denote A‘V}/ the matrix such that the line vectors are the

alY (w),w € W. In particular, if W = {y}, set u{, for the (column) vector

u, = Ay} = (¥ (y))vev = (u(v,9))vev

With this notation, Lemma [I.]] and the strong Markov property yield, if 2 and y admit

V' as a barrier:
u(z,y) = Y aof (u(v,y) = (o, ),

with the natural scalar product on RY. Then, Derriennic makes two observations: firstly,
this formula iterates when one has k successive disjoint barriers between x and y and
secondly there are only a finite number of possible matrices A¥/V when V and W are
successive disjoint barriers with §(V, W) = 1. This gives the following formula for u(z,y):

Lemma 4.2 ([Dd], Lemme 2). Let p € P(B). There are N square matrices with the same
dimension Ai,--- ,An, depending on p, such that for any x,y € F, if V1,Va, -+, Vi are

disjoint successive barriers between x and y such that §(V;,Viz1) =1 fori=1,--- [k —1,
there are (k — 1) indices j1,- -+ jx—1, depending only on the sequence V; such that:

Vi
(4) u(‘rv y) = <aac1 ) Ajl e Ajkflu%/k>’

By construction, the matrices A; have nonnegative entries and satisfy >, A;(v,w) < 1.
Moreover, we have the following properties:

Proposition 4.3 ([Dd)], Corollaire 1). Assume the set B contains the generators and their
inverses, then for each p € P(B), for each j =1,--- ,N, the matriz A; has all its O entries
in full columns.

From the proof of proposition [L.3} if the set B contains the generators and their inverses
and A; = Agj“, columns of 0’s correspond to the subset W;; of points in V;; which
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cannot be entry points from paths starting in V;. In particular, they depend only of the
geometry of B and are the same for all p € P(B).

We may — and we shall from now on — assume that the set B contains the generators
and their inverses. Indeed, since h,w) = khy and £,&) = kfp, we can replace in Theorem
[T the probability p by a convolution of order high enough that the generators and their
inverses have positive probability. Then, by Proposition [l.J the matrices A;(g) have the
same columns of zeros for all ¢ € P(B). Moreover,

Proposition 4.4. For eachj =1,--- | N, the mapping p — A; extends to analytic function
on a neighborhood of P(B) in CP into the set of matrices with the same configuration of
zeros as Aj.

Proof. The proof is completely analogous to the proof of Proposition B.J; one may have to

take a smaller neighborhood for the sake of avoiding introducing new zeros. O
We are interested in the function ® : OF — R, ®(¢) = —InK¢(&). By (B), @) and
Deriennic’s Theorem, we have:
®¢) = —In nh_?;o Keieo-tn (61)

o gu(& S &)
= i u(e, §162+ - &n)

Vi
o (0 @ A Ot )
E00 (010 A5, (€) - Ay ()l )

where A; (§) = AEE)(O, the Vi(€) are successive disjoint barriers between &; and £ with

0(Vs(€),Vsr1(€)) = 1 for all s > 1, §(&1,V1) = 1 and yy is the closest point beyond Vj on
the geodesic from &; to €.

)

Define on the nonnegative convex cone Cy in R™ the projective distance between half
lines as

9(f.9) = |n[f,g,h 1],
where h,h’' are the intersections of the boundaries of the cone with the plane (f,g) and
[f,g,h, '] is the cross ratio of the four directions in the same plane. Represent the space
of directions as the sector of the unit sphere D = CyU S™ ! then, ¥ defines a distance on
D. Let A be a m x m matrix with nonpositive entries and let T": D — D be the projective

action of A. Then, by [Bi]:
(5) HNTf,Tg) < BY(f,g), where § = tanh (i Diam T(D)> .

When A; is one of the matrices of Lemma [, it acts on RV and the image T;(D) has
finite diameter, so that 3; := tanh (% Diam Tj(D)) < 1. Set By := max;—;.... v 3;. Then,
Bo < 1.
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uyk

Set fr(&) = I ij( T o) = al'® ay(€) == o'®. For all € fi(6) € D and

a(€),aq(§) € Cy — {O} The above formula for ®(§) writes:

— _In lim <()41(£),Tj1(£)" Jk— 1(£)fk(£)>
© 2O = I i O T @ Ty O F0)

Proposition 4.5. Fixz p € P. The function § — ®(§) is Holder continuous on OF.

Proof. Let &, &' be two points of OF with 6(£,¢') < exp(—((n+1)r+1)). The points £ and
¢’ have the same first (n + 1)r + 1 coordinates. In particular, Vi(§) = V4(¢') for 1 < s < n.
By using (ff), we see that <I>(§/ ) — ®(§) is given by the limit, as k goes to infinity, of

(1(8), T (§) - - T, () fe(8)) (&), T, (£) - ]k () fr(€))
(1 (&), T3, (&) -+~ T, (€) (€)) {(€), T50 (&) -+ T, (E)fr(€))
We have a1(§) = a1(§) = a1,a(§) = () = a and T}, (&) = T;,(¢') =: Tj, for s =
1,--- ,n. Moreover, for any f, f' € D,

% (le (5) o ]k 1(£)fv J1 (5 ) T Tjk 1(5/)]0/) = (le o Tjnflgk’le t En—lg;ﬂ)

for g, = T Tjn+1 (f) : Tjkfl(g)f, g;g = T Tjn+1 (5 ) T Tjk—1(£/)f/-

In

We have 9(gx, g}.) < Diam T}, D < oo and, by repeated application of (f]),
(7) 0 (le Ty gk, Ty Tjnqg;g) < 58_119 (gk,gg) < Cpy.
Using all the above notations, we get

. <O‘17Tj1"'Tj —1gllg> <alejl'“Tj 7lgki>

(8) P(¢) — ®(¢') = Inlim = z .

k <041,le ...I—jjnflgk> <a7le '..]}nflg;g>
As ¢ varies, a and «; belong to a finite family of vectors of Cyp — {0}. It then follows
from ([) that, as soon as 6(&,&') < exp(—((n+1)r +1)), |[P(§) — (&) < CBY. O

Let us choose 3, ﬁé/ " < B < 1, and consider the space I'g of functions ¢ on OF such that
there is a constant C with the property that, if the points £ and ¢ have the same first
n coordinates, then |¢(§) — ¢(&')| < Cgp™. For ¢ € I'g, denote ||¢||g the best constant Cg
in this definition. The space I'g is a Banach space for the norm ||¢|| := ||¢[|g + maxpr |4|.
Proposition [L.H says that for p € P(B), the function ®,(¢) = —In K¢(&;) belongs to I'g.

5. REGULARITY OF THE MARTIN KERNEL

We want to extend the mapping p — ®, to a neighborhood O, of p in CB. Firstly,
we redefine I' as the space of complex functions ¢ on 0F such that there is a constant
C, with the property that, for all n > 0, if the points £ and { have the same first n
coordinates, then |¢(§) — ¢(&’)| < Cy7". The space I, is a complex Banach space for the
norm |[|¢|| := |||, + maxyr |¢|, where @[/, the best possible constant C.,. In this section,
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we find a neighborhood O, and a v = v(p),0 < v < 1, such that formula (§) makes sense
on O, and defines a function in I'.

In recent papers, Rugh ([Rd]) and Dubois ([[D1]]) show how to extend (f) to the complex
setting. In a complex Banach space X, they define a C-cone as a subset invariant by
multiplication by C, different from {0} and not containing any complex 2-dimensional
subspace in its closure. A C-cone C is called linearly convex if each point in the complement
of C is contain in a complex hyperplane not intersecting C. Let K < 4+00. A C-cone C is
called K-regular if it has some interior and if, for each vector space P of complex dimension
2, there is some nonzero linear form m € X™* such that, for all u € CN P,

[mlflull < K[(m, u)l.

Let C be a linearly convex C-cone. A projective distance ¥¢ on (C — {0}) x (C — {0}) is
defined as follows ([D1]], Section 2): if f and g are colinear, set Jc(x,y) = 0; otherwise,
consider the following set E(f,g):

E(f7g) = {272 € (C7Zf_g¢C}7
and then define

b
Ue(f,9) =In—, whereb=sup|E(f,g)| € (0, +oc],a = inf |E(f, )| € [0, +-00).

Proposition 5.1 ([D1], Theorem 2.7). Let X1, X5 be complex Banach spaces, and let
C1 C X1,Cy C Xy be complex cones. Let A : X1 — Xo be a linear map with A(C; — {0}) C
(Ca — {0}) and assume that

A= s do(Af Ag) < +oo.

Then, for all f,g € Cq,

Q e, (Af. Ag) < tanh (2 )i, (£.0).

Proposition 5.2 ([DI], Lemma 2.6). Let C be a K -regular, linearly convex C-cone and
let f ~ g if, and only if, there is A, A # 0 such that A\f = g. Then 9¢ defines a complete

projective metric on C/ ~. Moreover, if f,g € C,||f]| = |lgll = 1, then there is a complex
number p of modulus 1, p = p(f,g), such that
(10) lof =gl < Kde(f,9)-

Proposition 5.3 ([Ru], Corollary 5.6, [D1]], Remark 3.6). For m > 1, the set
CP ={ueC™: Re(u;wj) >0,Vi,j} = {u e C™: |u; + uj| > |uy — uj|, Vi, j}
1 a reqular linearly convex C-cone. The inclusion
m: (Co — {0}, 9) — (C}F — {0}, Jem)

is an isometric embedding.
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Moreover, [DI]] studies and characterizes the m x m matrices which preserve C7". We
need the following properties. Let A be a m x m matrix with all 0 entries in m’ full columns
and Ay, -+, Ay, the (m —m/)-line vectors made of the nonzeros entries of the line vectors
of A. Set:

. A, T
Ont = Vpm—m' (A ), Apy = DlamRHP{< b >
+

Doy € Cy e £ 0],

where Diamgyp denotes the diameter with respect to the Poincaré llrnetric of the right
half-plane. Observe that DiamgCT (A(Cp —{0})) = DiamgCT (A(C™™ —{0})). Then, we
have (D], Proposition 3.5):

(11) DiamgCT (A(CT —{0})) < Hllc?lx O + QH}EIX Ay < 3Diam19(CT (A(CT —{0})).

From the proof of Proposition 3.5 in [D1], in particular from equation (3.12), it also follows
that for a real matrix A:

Diamgcil (A(CT —{0})) < 3Diamy(A(RT —{0})).
Fix p € P(B). We choose v = v(p) < 1 such that
9(tanh) "1y < (tanh)~1(y%").
Then for the real matrices A = Ai(p), -+, An(p),

(12)
3Diam19(cT (A(CT - {0})) < 9Diam 4(A(RT — {0})) < 36(tanh) ' By < 4(tanh)*(*").

Proposition 5.4. Fiz p € P(B). There is a neighborhood O, of p in CEB such that the
mapping p — @, extends to an analytic mapping from O) into L', .

Proof. We first extend Aj,7 =1,--- , N analytically on a neighborhood O, by Proposition
4. Set S =82t ={f:fe€ (Cm,HfH = 1}. For each A;(q),j =1,---N,q € O, and each
f € S such that A;(q)f # 0, we define again 7}(q) f by:

_ Ailof
L@ = Ta@a

For p € P(B), the function ®,, is given by the limit from formula ([):

— _In lim (Oél(f),le(f) ]k 1(£)f0>
() =~ o O T () Ty @)

where fo € S the column vector {1/+/|B|,---,1/+/|B|}: we use the fact that the limit of
T5,(&) -~ Ty, , (&) f does not depend on the initial point f.
We have to show that this limit extends on some neighborhood O, of p to an analytic

function into I'y. Set

(1(); 45, (§) -~ Aji_, (§) o)

@p,k(f) = —In <a(§), Ajl (f) cee Ajk,l(g)f0> .
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We are going to find O, and ky such that, for & > kg, the functions ®, 1 (§) extend to
analytic functions from O, into I'; and, as k — oo, the functions @, ;(§) converge in I,
uniformly on O,,.

The functions g <a1(§)7Aj1(§) ’ ch 1(§)f0> <a(§)7Aj1(§) ’ ]k 1(§)f0> are

polynomials in ¢ and depend only on a ﬁmte number of coordinates of . Therefore if we
can find a neighborhood O, and a k such that these two functions do not vanish, then @, ;,
extends to an analytic function from O, to I',.

Stepl: Contraction
By (1)), ([?) and Proposition [[.4, we can choose a neighborhood O, such that for
q € Op, the diameter A of A;(q)CT is smaller than 4(tanh)~1(y?") for all j = 1,--- , N
The set D := SN (U;j Aj(p)C}) is compactly contained in the interior of S. We choose a
smaller neighborhood O, such that, if ¢ € O,,
A < 4(tanh) ' (y*) and 0¢ A;(DU{fo}) for j=1,---,N.

For ¢ € O,, the projective images Tj,(§)--- T}, ,(&)fo are all defined and we have, by

repeated application of (f]) e
I (T3 (€) Ty (€)F0 Ty (€) - Ty, (O frw () < P*E70(fo, frw (6)),
where ¥ > k and fip (&) = Tj,(§) T}, (§)fo. The fri(§) are all in D. Then,

Ik’ —1

Ie(fo, frp(§)) < C for all € € OF, all k, k" > 1. Set

g:le(g) ’ Jk 1(5)]007 9'27}1(5)" Jk— 1(£)fkk’(£)

For all £ € OF, all k, k' > 1, consider the number p(¢, k, k') associated by Proposition .9
to g and ¢’. We have, by ([[0):

p(&, kKN =1 and |p(& kK )g— g < KCy*".
Since a(p, &) and aq(p, &) take finite many values, it follows that
|<Oé(p, 5)7 g> <O[1(p, 5)7 g/> - <Oé(p, 5)7 g,><a1(p7 5)7 g>|

= [(a(p, &), p(& kK )g) a1 (p,€),9") — (a(p,€), ¢ ) (c1(p, &), p(&, K, k) g)]
< KO~

Since g and ¢’ are in the compact set D U {fo}, we can, by Proposition B.3, choose a
neighborhood O), such that, for all ¢ € O,, all £ € OF, all k < K/

{<a(§)7frjl(§)'”T’jkfl(f)f0><al(§)7jjj(6)" w1 (&) fo)
—(@(€), T3 (&) -+ Ty, (€) fo) (1 (€), Ty, (&) -+~ Ty, () fo)| < KO

Step 2: The @, extend
Recall that D is the set of unit vectors in the positive quadrant. For g,¢" € U;T;(p)(D)U
{fo}, (a(p, &), 9){c1(p,&),d’) is real positive and bounded away from 0 uniformly in &, g and

1One can also use directly , Theorem 4.5.
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g'. Recall the isometric inclusion 7 : D — S of Proposition f.d. There is a neighborhood Cy
ofﬂ(UjTj(p)(D)U{fo}) in S and § > 0 such that for g, ¢’ € Cy, |<a(p,§),g> (a1 (p, §),g’>| > 4.
Of course, we can take Cy invariant by multiplication by all z with |z| = 1. Then, there exists
€ > 0 such that if 1907+n (g,ﬂ(UjTj(p)(D) U {fg})) < 5,196@ (g’,ﬂ(UjTj(p)(D) U {fg})) <e
then [{a(p.€), 9){c1(p,€),9')| > §/2.

For ¢ € O, and kg > 1+ In(e/2)/2rIn~, the Ugm-diameter of each one of the sets
T;, (q,f)---TjkOfl(q,ﬁ)S is smaller than ¢/2, for all £&. As £ varies, there is only a fi-
nite number of mappings Tj, (¢, &) - --Tjkoil(q,f). By continuity of ¢ — Tj (where the
Tjs now are considered as mappings from C/ ~ into itself), there is a neighborhood O,
such that for ¢ € O,, the Hausdorff distance between T}, (¢,§) - ~Tjk071(q,£)5/ ~ and
T, (p, &) -~ Ty, 1(p, )S/ ~ is smaller than /2. It follows that if ¢ € O,, and g, ¢’ are in
the same Tj, (¢, ) - - Tj,,_, (¢, §)S for some &, then

[{a(p,€), g) (o (p,€),g')| > 6/2.

By taking a possibly smaller O,, we have that if ¢ € O,, and g,¢ are in the same
T5,(q: &) -~ Tjy,, 1 (q,€)S for some &, then

[(a(q,€), 9)(a1(q.€), 9")| > 6/4.

In particular this last expression does not vanish and ®,; is an analytic function on O,
for k > ko.

Step3: The @), converge uniformly on OF

Take a neighborhood O, and kg such that for ¢ € O, the conclusions of Steps 1 and 2
hold. We claim that for all € > 0, there is k; such that for k, &' > ki, ¢ € Op, maxg [P 1 (&) —
D, 1(§)] < e. Suppose ki > kg. We have to estimate

max | In <a(§)7T]1(§) ' ]k 1(€)f0> <041(§),T]1(§) : ]k/ (g)f0>
3 (@(€), Ty (&) -+~ Ty, (&) fo) (1(§), Ty, (&) -~ Ty, (§) fo) I

By the conclusions of Steps 1 and 2, this quantity is smaller that C' max{~y%*", 2’“/’"}. This
is smaller than ¢ if k; is large enough

Step 4:The @4y converge in norm |||,

With the same Op, ko, we now claim that for all € > 0, there is ks = max{ko,In~y/rlne}
such that for k, k' > ko and ¢ € Op, [|[®q1(§) — Pyi(§)lly < e. Let &,& be two points
of OF with §(&,&") < exp(—((n + 1)r 4+ 1)). We want to show that there is a constant C
independent on n, such that, for all ¢ € Op, all k, k" > ko:

[@4,1(€) = Py (€) = Pyi(€) + Ry ()] < CHIHIH e,
Since k, k" > ko, the difference @, ;(§) — g (£) is given by:

(alv e Jk/ f0> <a=Tj1' ]k 1f0>

Dy k(§) = Py (§) = <a1, . ]k71f0> (o, Ty, --- Ty, fo)
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For k, k' <n+1, ®;1(&) — Py i (§) = Py (&) — Py ir(§), and there is nothing to prove.

Assume k' > k > n+1, Step 3 shows that both [®, 1 (§) =P, 4 (§)] and [P, (§') — Py i (&)
are smaller than Cy2F" < Cy™~kr < Cy™e,

The remaining case, when kg < k < n + 1 < k/, clearly follows from the other two and
this shows Step 4.

Finally we have that the functions ®,, ;, are analytic and converge uniformly in I'y on a
neighborhood O,, of p. The limit is an analytic function on O,.
O

6. PROOF OF THEOREM [L.]]

In this section, we consider OF as a subshift of finite type and set 7 for the shift trans-
formation on OF:

TE=mnz--- with 79y, = &g
For v <1 and ¢ € I'y with real values, we define the transfer operator L4 on I'y by

Lop(€) = Y e?Dy(n).
ner—1¢
Then, L4 is a bounded operator in I'y and, by Ruelle’s transfer operator theorem (see

e.g. [Bd]), there exists a number P(¢), a positive function hy € I'y and an unique linear
functional v4 on I', such that:

Lyhg = ep(¢)h¢7 521/45 = ep(¢)u¢ and 1/¢(1) =1.

The functional v4 extends to probability measure on OF and is the only eigenvector of ﬁ;
with that property. Moreover, ¢ — L is a real analytic map from I'; to the space of linear
operators on I, ([RY], page 91). Consequently, the mapping ¢ > vy is real analytic from
I'y into the dual space I'} (see e.g. [Cd], Corollary 4.6). By Proposition p.4, the mapping
p + Vg, is real analytic from a neighborhood of p in P(B) into the space ny(p).

The main observation is that, for all p € P(B), L3 p> = p>; this implies that P(®,) =0
and that the distribution vg, is the restriction of the measure p> to any I'y such that
®, € I'y. Indeed, we have:

AT p™
dp>
so that, for all continuous :

Jcspar= [ Bl vno = [ i

Recall the equations ([[]) and (f]) for hy, and £,. ¢, is given by a finite sum (in x) of integrals
with respect to p> of the functions { +— 6¢(x). Since these functions only depend on a
finite number of coordinates in OF, they belong to I'; for all v < 1. Since p + vg, is real

_ d(gl)*poo

ol = K (6) = e

©)

a
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analytic from a neighborhood of p into Ff/(p), p — £, is real analytic on a neighborhood of
p. Since this is true for all p € P(B), the function p — ¢, is real analytic on P(B).

The argument is the same for h,, since the function In dwjpi{foo (§) =InK¢(x') eI, for
all z and for all 7,3 < v < 1 and the mappings p — In K¢(z7!) are real analytic from a
neighborhood of p into I, ). Indeed, In K¢(£1) € I'g by Proposition [F and p — In K¢(&1)
is real analytic into I';(,) by Proposition B.-4. Moreover, if a is a generator different from
&1, nK¢(a) = —InK,-1¢(a™!) also lies in T'g and p — In K¢(a) is also real analytic into
Iy For a general x € F', x = ay - - - a;, write

Ke(a™) = Kelag'--a7) = Ke(ag ) Kaelaly) - Kagaelar ).
This achieves the proof of Theorem [L.1].

Y
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