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SUPPORT VECTOR MACHINES REGRESSION FOR ESTIMATION OF FOREST
PARAMETERS FROM AIRBORNE LASER SCANNING DATA

J.-M. Monnet*, F. Berger

Cemagref, UR EMGR
2 rue de la Papeterie-BP 76
F-38402 St-Martin-d’Heres, France

ABSTRACT

Estimation of forest stand parameters from airborne laser
scanning data relies on the selection of laser metrics sets and
numerous field plots for model calibration. In mountainous
areas, forest is highly heterogeneous and field data collection
labour-intensive hence the need for robust prediction meth-
ods. The aim of this paper is to compare stand parameters
prediction accuracies of support vector machines regression
and multiple regression models. Sensitivity of these tech-
niques to the number and type of laser metrics, and use of
dimension reduction techniques such as principal component
and independent component analyses are also tested. Results
show that support vector regression was less accurate but
more stable than multiple regression for the prediction of
forest parameters.

Index Terms— Support vector regression, airborne laser
scanning, forest parameters estimation

1. INTRODUCTION

Numerous studies have shown the accuracy and efficiency of
airborne laser scanning (ALS) for estimation of forest stand
parameters [1]. One of the widely-used processing method is
the so-called area-based method. It consists in relating for-
est parameters to several height and density metrics derived
from the laser point cloud in fixed areas [2]. Whatever the
forestry context, most of the studies relied on ordinary least
squares to establish relationships between laser metrics and
forest parameters. However parametric methods reach their
limits when dealing with a small number of field observations
combined with high dimensional data. Such cases tend to
occur frequently when laser scanning data is acquired over
mountainous forests. Indeed, the lack of accessibility ham-
per field inventories whereas numerous laser metrics may be
extracted from the point cloud.

k-most similar neighbor method has been successfully
tested for species-specific stand attributes estimation from
laser data [3], opening ways to investigate the potential of
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other non parametric methods, such as multilayer perceptron,
self-organizing map and support vectors regression [4]. Sup-
port vector machines are a training approach based on the
framework of statistical learning theory. They have proved
their robustness to dimensionality and generalization abilities
[5] and thanks to the kernel trick non-linear relationships can
be accounted for. Mainly used for the purpose of hyperspec-
tral images classification, they have also been successful for
continuous parameters estimation [6].

The main objective of this paper is to compare accuracies
of forest parameters estimates obtained with ordinary least
squares multiple regression and support vector regression
(SVR). The sensitivity of these techniques to the number of
laser metrics combined with dimension reduction by principal
component analysis (PCA) or individual component analysis
(ICA) has also been investigated.

2. MATERIAL

The study area is a 4 km? hillside situated in the French Alps
(town of Saint Paul de Varces, 45°04’17”N, 05°38’25”E).
The forest is mainly constituted of coppice stands and de-
ciduous stands on poor quality sites. From September to
November 2009, 31 circular field plots were inventoried.
All trees with diameter at breast height larger than 5 cm
and located within 10 m radius from the plot center were
calipered. Maples (mainly Acer opalus), downy oak (Quer-
cus pubescens) and common whitebeam (Sorbus aria) rep-
resented nearly 60 % of the stems. Ten tree heights were
sampled on each plot. The following forest parameters were
then computed for each plot: dominant height (H 4,,,,), basal
area (G), stem density (/V) and mean diameter at breast
height (dbh) (Table 1). Plot centers were georeferenced with
a Trimble GPS Pathfinder Pro XRS receiver. After differen-
tial correction horizontal position accuracies (95% confidence
interval) ranged from 0.6 to 1.5 m.

Laser data was acquired with an airborne RIEGL LMS-
Q560 scanner on August 271 2009. Laser footprint was
0.3 m and scan angle £30°. Average scanning density was
2.8 pulses.m? with 50% overlap between adjacent flight
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Parameters  Hgom G N, dbh

Unit (m) (m%.ha') (ha') (cm)
Mean 17.8 34.8 1735 14.5
Min 8.1 4.6 764 8.3
Max 28.5 59.7 2833 22.7
o 5.3 11.4 577 3.6

Table 1. Forest stand parameters statistics (31 field plots)

strips. The resulting point cloud was classified by the contrac-
tor into ground and non-ground echoes using the TerraScan
software. Final echo density was 10 m™.

3. METHODS

For each plot, laser points within 10 m horizontal distance
form the plot center were extracted. Their relative heights
were computed by subtracting the terrain height at their ortho-
metric coordinates. Terrain surface was estimated by bilinear
interpolation of points classified as ground points. Points with
relative height lower than 2 m were excluded. Three point
groups were then constituted according to the return position
of the echoes: single echoes (only one echo for a given pulse),
first echoes and last echoes. For each group two types of laser
metrics were calculated. Height metrics correspond to break-
points of height bins containing an equal number of points,
plus mean height. Density metrics were computed as the val-
ues of the cumulative density in height bins of equal width.
For the whole point cloud, entropy metrics were calculated as
the entropy of the orthometric distribution of points included
in height bins of equal width.

A set of independent predictors (v;)ic(1,....n,} iS thus
composed of n, = 3 X (np + ng) + n. laser metrics,
where nj is the number of height breakpoints plus one
(for mean height), ng the number of density bins and n.
the number of entropy bins. When the number of obser-
vations N = 31 was greater than the number of variables
n,, PCA and ICA were performed to reduce dimension.
The obtained principal and independent components were
also used as sets of predictors. For each dependent variable
y € {dbh,G, Ny, Hyom, } and each predictors set (v;), the
resulting training data {(z1,41), ..., (zn,yn)} C R™ x R
was used to fit a multiple regression model:

Ny

y=b+ a;xv (1)
=1

by ordinary least squares, with (v;);cq1,...,n,} @ set of pre-
dictors and ((a;)ieq1,...n,}, 0) the model parameters. Models
including a maximum of four predictors were tested by ex-
haustive search. Models which did not fulfill the linear model
assumptions or including a predictor with a partial p-value
greater than 0.05 were discarded. For each predictors set the

model with the highest adjusted coefficient of determination
(adjusted R?) was selected.

The data sets were also used to train an e-SVR. The algo-
rithm approximates a function f : y = f(v) with a solution
of the form:

F) =) ajk(v,z;) + B 2)
j=1

where (();eq1,....n}, 8) are parameters determined during
the training process, () e{1,....n} samples from the training
set, and k£ a kernel function. Linear and radial basis kernels
were tested. Hyperparameters were selected by tuning over a
range of a priori values.

Multiple and e-SV regression accuracies were evaluated
in leave-one-out cross validation by computing the root mean
square error and its coefficient of variation:

CVrymsE =

where y; and ¢; are the observed and predicted values, and N
the number of observations.

To evaluate the effect of the number and type of laser met-
rics on prediction accuracy, we tested predictors sets obtained
by combination of (ny,, n4,ne) € ({6,8}x{0, 1,3} x{0,2}).
For each of these predictors sets, derived sets were computed
by extracting subsets of components obtained by ICA [7] and
PCA.

4. RESULTS AND DISCUSSION

Table 2 summarizes the best results obtained with multiple
and e-SV regressions for the predictors sets derived from the
27 laser metrics with (np, ng, n.) = (6, 3,0). Prediction esti-
mates by multiple linear regression yield satisfactory results.
The coefficient of variation of the RMSE ranges from 13.9
to 21.2%. The highest and lowest accuracies are respectively
achieved for dominant height and stem density. Mean diame-
ter and basal area yield intermediate values (18.8 and 21.2%
respectively). These results are similar to those obtained in
a study carried on 34 deciduous plots located in the Bavar-
ian Forest National Park (Germany) [8]. Dimension reduc-
tion slightly improves the accuracy for dominant height only
(CVrymse = 13.5% with 12 components from PCA). Apart
from mean diameter, multiple regression performs better than
e-SVR. However values are rather close, except for basal area.

Figure 1 illustrates the effect of dimension reduction and
kernel selection on e-SVR accuracy for the predictors sets de-
rived from (np,nq,ne) € {(6,3,0),(6,0,2)} . Dimension
reduction always benefits to prediction accuracy, and the best
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Multiple regression e-SVR

CVrMSE Model Dimension reduction and CVirymsE Dimension reduction and
. Kernel
(%) predictors number of components (%) number of components
Haiom 13.5 4 PCA-12 14.5 linear PCA-4
G 18.8 4 none 25.9 linear PCA-2
N 21.2 3 none 24.2 radial ICA-2
dbh 15.0 1 none 14.8 linear PCA-2

Table 2. Best prediction accuracy obtained with multiple regression and e-SVR with the predictors sets derived from laser
metrics with (np, ng, n.) = (6, 3,0), and corresponding dimension reduction settings.
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Fig. 1. Accuracy of prediction (RMSE obtained by leave-one-out cross validation) of e-SVR with linear (o) and radial (e)
kernels, plotted against the number of predictors. Line types and colors refer to the method used for dimension reduction:
PCA (blue solid lines), ICA (green dashed lines) or none (dark magenta single symbols). Predictors sets are derived from
(np,ng,ne) = (6,3,0) (top row) and (6, 0, 2) (bottom row).
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Fig. 2. Influence of the number and type of laser metrics on the accuracy of prediction (RMSE obtained by leave-one-out cross
validation) of multiple regression (x) and e-SVR with linear (o) and radial (e) kernels. Triplets on the x-axis refer to the number
of laser height, density and entropy metrics (ny,, n4, n.) used to construct the predictors sets.



hal-00521400, version 1 - 27 Sep 2010

results are obtained with less than eight components, except
for basal area with predictors set (6, 0,2). PCA performs bet-
ter than ICA, except for stem density. Accuracy tends to de-
crease when the number of predictors increases further than
ten. However, e-SVR appears less sensitive to the number of
components when PCA is employed instead of ICA. On the
whole, radial kernel appears to be more robust regarding the
type and number of components included in the predictors
sets. Stem density turns out to be the most complex case to
interpret, as well as the most difficult parameter to estimate,
as pointed out in other studies [2, 8]. e-SVR best accura-
cies are quite similar for predictors sets (6,0, 3) and (6,0, 2):
CVgrymse = 14.5 and 14.2% for dominant height, 25.9 and
25.5% for basal area, 24.2% in both cases for stem density,
and 14.8 and 15.1% for mean diameter. However multiple re-
gression models for dominant height and stem density were
less precise when density metrics were replaced by entropy
values (from 13.5 to 14.9% and from 21.2 to 27.8% respec-
tively).

Figure 2 depicts the influence of the number and type of
laser metrics included in the predictors sets on prediction ac-
curacy. e-SVR is generally less accurate than multiple regres-
sion. However its results tend to be more stable, in particular
with radial kernel. An improvement in basal area estimation
by e-SVR can be observed when the number of height metrics
increases from six to eight but it is mitigated when other met-
rics are added. Stem density prediction by multiple regres-
sion improves when density metrics are added to predictors
sets. So does the accuracy of mean diameter estimates when
the number of height metrics is increased. Besides, accuracy
values for basal area, stem density and basal area are quite
stable. Dominant height estimates display no particular trend,
except that the increase in height metrics number combined
with the inclusion of entropy metrics yields better accuracy
with multiple regression. These findings are consistent with
multiple regression predictive models obtained for coniferous
stands [2], which always included density metrics for stem
density models whereas height models did not.

5. CONCLUSION

The results of the area-based method applied in this study to
predict forest parameters from airborne laser scanning data
showed that ordinary least squares multiple regression per-
forms slightly better than e-SVR. However, multiple regres-
sion accuracy is highly sensitive to the number and type of
laser variables included in the training sets, whereas e-SVR
displays greater stability. Besides, the effect of addition or re-
moval of laser metrics depends on the predicted forest param-
eter. Regarding dimension reduction effects, PCA improves
the e-SVR accuracy, whereas multiple regression performs
better on raw laser metrics.

Further research should focus on factors that may improve
support vector regression, such as finer tuning of hyperparam-

eters or use of other kernels or algorithms (v-SVR). Besides
advantage could be taken of SVR robustness when predicting
parameters for forest stands or laser data different from those
used to train the algorithm. The trade-off between accuracy
of estimates and intensity of field campaign is indeed a ma-
jor factor of concern when dealing with forest inventory at
operational scale in mountainous areas.
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