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ABSTRACT

Early results from the Herschel Space Observatory revealed the water cation H2O+ to be an abundant ingredient of the interstellar medium. Here
we present new observations of the H2O and H2O+ lines at 1113.3 and 1115.2 GHz using the Herschel Space Observatory toward a sample
of high-mass star-forming regions to observationally study the relation between H2O and H2O+. Nine out of ten sources show absorption from
H2O+ in a range of environments: the molecular clumps surrounding the forming and newly formed massive stars, bright high-velocity outflows
associated with the massive protostars, and unrelated low-density clouds along the line of sight. Column densities per velocity component of H2O+

are found in the range of 1012 to a few 1013 cm−2. The highest N(H2O+) column densities are found in the outflows of the sources. The ratios of
H2O+/H2O are determined in a range from 0.01 to a few and are found to differ strongly between the observed environments with much lower
ratios in the massive (proto)cluster envelopes (0.01−0.1) than in outflows and diffuse clouds. Remarkably, even for source components detected in
H2O in emission, H2O+ is still seen in absorption.
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1. Introduction

One of the unique ESA Herschel Space Observatory (Pilbratt
et al. 2010) science fields is the observation of thermal lines of
interstellar water and other hydrides. Hydrides have small re-
duced masses, so their rotational lines lie at short submillimeter
wavelengths, which are almost unobservable from the ground
(Phillips & Vastel 2003). Early results from the first months of
observations show the scientific potential of these studies (e.g.
van der Tak et al. 2010, for water in a massive star-forming re-
gion). Interestingly, these early results also revealed the water
cation H2O+, which was seen by Herschel for the first time, as
an abundant ingredient of the interstellar medium (Ossenkopf
et al. 2010; Gerin et al. 2010). The ortho ground-state line
of H2O+ was even detected in external galaxies and found to
be stronger than the para ground-state water line (Weiss et al.
2010; Van der Werf et al. 2010). These early results indicate that
H2O+ originates mainly from low-density gas of diffuse inter-
stellar clouds.

� Herschel is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and with im-
portant participation from NASA.

Within the “Water In Star-forming regions with Herschel
(WISH)” (Van Dishoeck et al., in prep.) Herschel key program,
a sample of about 20 massive star-forming regions (SFR) cov-
ering a wide range of evolutionary stages is observed in a vari-
ety of water lines. One of the H2O+ ortho ground-state doublet
lines lies close in frequency to the H2O para ground-state line
and is observed as well. This allows us to present here a detailed
comparison of water and ionized water column densities in a
larger sample of sources to study relative abundance variations
of H2O+ and H2O in different interstellar environments.

2. Observations and data reduction

The sources were observed with the Heterodyne Instrument
for the Far-Infrared (HIFI, de Graauw et al. 2010) onboard
the Herschel Space Observatory (Pilbratt et al. 2010) on
2010 March 3−5 and April 17. Double-beam switch observa-
tions (throw of 2.5 arcmin) have been performed in the dou-
ble sideband mode using the 4b receiver band. The point-
ing coordinates of the observed sample are given in Table 1.
Data were taken in two polarizations with the acousto-optical
wide band spectrometer (WBS), which covers 4−8 GHz in four
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Table 1. Sources observed in the 1110 GHz setup.

Source Ra (J2000) Dec Vlsr Lbol

(h m s) (◦ ′ ′′) (km s−1) (L�/104)
AFGL 2591 20 29 24.7 +40 11 19 −5.5 2.0
DR21(OH) 20 39 00.8 +42 22 48 −4.5 1.7
G29.96−0.02 18 46 03.8 −02 39 22 +98.7 12
G31.41+0.31 18 47 34.3 −01 12 46 +98.8 18
G34.26+0.15 18 53 18.6 +01 14 58 +57.2 28
NGC 7538-IRS1 23 13 45.3 +61 28 10 −57.4 20
W3-IRS5 02 25 40.6 +62 05 51 −38.4 17
W33A 18 14 39.1 −17 52 07 +37.5 1.0
W43-MM1 18 47 47.0 −01 54 28 +98.8 2.3
W51N E1 19 23 40.0 +14 30 51 +59.0 10–100

sub-bands, each approximately 1.1 GHz wide. Its Nyquist
resolution is approximately 1.1 MHz (0.30 km s−1). Four
species have been observed simultaneously with the WBS:
p-H2O (1113.3 GHz, USB) and p-H2

18O 111−000 (1101.7 GHz,
LSB), 13CO 10−9 (1101.3 GHz, LSB), and o-H2O+ 111−000
(1115.2 GHz for the strongest HF component, USB).

The system temperatures for our data were around 350 K.
Integration time was 601 s. Calibration of the raw data onto
TA scale was performed by the in-orbit system (Roelfsema et al.
2010); the conversion to TMB was done with a beam efficiency
of 0.7. The Herschel full-beam-at-half-maximum at this fre-
quency was assumed to be the theoretical one (20′′). Currently,
the flux scale is accurate to 5%. An rms of 90 mK has been
reached.

Data calibration was performed in the Herschel interactive
processing environment (HIPE) version 2.8. The velocity uncer-
tainty in the current version of the pipeline is up to 2 km s−1, de-
pending on target direction and observation epoch. Further anal-
ysis was done within the CLASS package. After inspection, the
data from the two polarizations were averaged together. The con-
tinuum level in the data was divided by two, because the original
calibration was done for the line emission originating from only
one receiver sideband.

3. Results

In Fig. 1 the DSB WBS spectrum towards G34.26+0.15 is shown
as a typical example for the data that are analyzed in this study.
H2O+ is detected in all sources except NGC 7538 IRS1 and in
all cases seen in absorption, similar to the previous detections
(Ossenkopf et al. 2010; Gerin et al. 2010). H2O and H18

2 O on
the other hand show in many cases both absorption and emis-
sion line components. Many sources show several velocity com-
ponents owing to absorption from diffuse clouds from differ-
ent spiral arms on the lines of sight (LOS), which complicates
the interpretation of the H2O+ spectra because of its complex
hyperfine structure (HFS, see Strahan et al. 1986; Mürtz et al.
1998, for details). Several sources show saturated H2O absorp-
tion down to the 0 K level (e.g. Figs. 1−3), demonstrating that
the continuum level in the spectra is measured reliably and that
the sideband gain ratio is 1. This is especially important be-
cause most of the analysis is based on the detected absorption
features for which the line-to-continuum ratio is the relevant ob-
serving parameter. Most of the sources show broad wing emis-
sion (ΔV > 10 km s−1) as an indication of powerful outflows,
in H2O mostly seen in emission, while in H2O+ outflows are de-
tected as broad (due to the blended HFS) blueshifted absorption
features in front of the strong dust continuum emission.

Fig. 1. Example DSB spectrum at 1110 GHz towards G34.26 showing
all lines covered in this spectral setup at the VLSR of the source. The
redshifted H2O and H2O+ features are caused by the line-of-sight ab-
sorption components. The lower and upper scales give the LSB and
USB frequency scales, respectively.

Fig. 2. XCLASS fits to the water (lower panel) and water ion line pro-
files (upper panel) in W43 MM1 shown in red solid lines. The fit to
the H18

2 O line (blue spectrum) is shown in green. An H2O+ fit without a
broad outflow component is shown with red dots. The systemic velocity
of the source is indicated by a dotted line. The strong emission line in
the H2O+ spectrum is 13CO (10−9) from the other sideband.

4. Analysis

Because all lines for a given source are observed simultaneously
in the DSB spectra, they will only have a small relative error
in their intensities and velocities independent of the calibration.
Here, the rest frequencies from Mürtz et al. (1998) are used,
which have a quoted accuracy of 2 MHz. A comparison of the
H2O and H2O+ velocities from LOS absorption features shows
a small scatter of ±2 km s−1, hence the resulting accuracy of the
measured H2O+ velocities is sufficient to associate them with
known velocity components of the observed sources.

To separate the various and often blended velocity compo-
nents and the H2O+ HFS, we used the XCLASS fitting tool
(Comito et al. 2005, and references therein), which allows us
to obtain multi-component LTE fits of emission and absorption
components and which takes the HFS – which extends over
40 km s−1 (Mürtz et al. 1998) – into account. The input parame-
ters for the fits are the excitation temperature, column density,
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Fig. 3. Same as Fig. 2 for W51N E1.

source size, source velocity and velocity width. For the ab-
sorption components, a background brightness temperature of
15−25 K was derived from the measured continuum tempera-
tures assuming source sizes as given in Table 2.

The H2O absorption components with high velocity offsets,
which are likely diffuse LOS clouds, were fitted with an excita-
tion temperature of 2.7 K. However, the diffuse Galactic back-
ground radiation might increase the excitation temperatures of
the submillimeter lines to values of about 5 K. For absorption
components that are likely associated with the massive SFRs we
used a fixed value of 5 K, which is clearly below the background
temperature, to get an absorption in the fit. However, the corre-
sponding column densities for temperatures below 10 K depend
only weakly on the assumed TEX. For the emission components
we used a fixed value of 50 K. The source size is assumed to
be much bigger than the beam. Only for the 57.5 km s−1 compo-
nent toward W51N E1 a size of 35′′ is assumed. Judging from its
strong H18

2 O absorption, it has a very high H2O optical depth, but
still does not absorb the continuum down to 0 K and therefore
requires a filing factor smaller than one. For the column density
calculations we used an ortho-to-para ratio of 3:1 for H2O+.

The fit results obtained for H2O were used as the starting
point to fit the H2O+ spectra, which are more complex owing
to the H2O+ HFS. because no emission is seen in H2O+, we
changed any component seen in emission in H2O into an ab-
sorption component for H2O+ by lowering its excitation tem-
perature to 5 K. The physical parameters for each component
were then fine-tuned to fit the observed H2O+ spectra. In cases
where the corresponding component was not detected in H2O+,
the highest column density consistent with a non-detection was
chosen to derive an upper limit. In a few cases, the observed H2O
components were not sufficient to account for all the H2O+ ab-
sorption. In Fig. 2 e.g. there is no indication of an H2O outflow
component and the blue-shifted LOS absorptions are quite nar-
row, while the H2O+ absorption is very broad, even considering
its HFS, so that an additional blueshifted, broad “outflow” com-
ponent (ΔV > 10 km s−1) was added to reproduce the observed
H2O+ spectrum.

Two examples for the resulting fits are shown in Figs. 2
and 3. The corresponding fit parameters for these sources are
given in Table 2. The range in N(H2O+) of 1012 to a few
1013 cm−2 is much smaller than the range in N(H2O) of
a few 1012 to several 1014 cm−2. Similar results are obtained for

Table 2. H2O, H18
2 O and H2O+ fit results of velocity components asso-

ciated with the massive star-forming clumps W43 and W51 shown in
Figs. 2 and 3.

Mol./Source Tex N/1012 ΔV Vlsr

(K) (cm−2) (km s−1) (km s−1)
H2O/W43 MM1 2.7 6.0 2.0 7.0

2.7 9.0 2.0 10.5
2.7 5.0 2.0 13.0
2.7 3.0 2.0 66.5
2.7 2.0 2.0 70.0
2.7 7.5 2.0 78.0
2.7 3.5 2.0 81.0
5.0 3.0 20.0 87.0
5.0 200.0 4.0 97.0

H18
2 O 5.0 5.0 6.0 99.0

H2O+ 2.7 3.0 4.0 8.0
2.7 1.2 4.0 11.5
2.7 1.5 4.0 14.0
2.7 3.0 2.0 64.5
2.7 2.0 2.0 68.0
2.7 1.0 2.0 78.0
2.7 3.0 2.0 80.5
5.0 6.0 4.0 96.0
5.0 15.0 20.0 87.0

H2O/W51N E1 2.7 6.0 3.0 6.0
2.7 1.0 5.0 11.0
2.7 0.3 2.0 24.5
2.7 3.5 1.0 45.0
2.7 1.5 2.0 48.0
5.0 400.0 5.0 57.5

50.0 100.0 40.0 59.5
2.7 250.0 7.0 64.0

H18
2 O 5.0 3.0 5.0 57.5

2.7 1.5 7.0 64.0
H2O+ 2.7 6.0 5.0 6.0

2.7 2.0 5.0 11.0
2.7 0.5 2.0 22.5
2.7 0.3 1.0 45.0
2.7 1.0 2.0 48.0
5.0 17.0 20.0 50.0
5.0 0.3 5.0 57.5
2.7 4.0 4.0 64.0

other sources in our sample and will be discussed elsewhere and
in the following section.

5. Discussion and conclusions

An overview of the fit results is shown in Fig. 4, in which we
plot for each velocity component the corresponding H2O and
H2O+ column densities. Some of the lower column densities
are upper limits while some of the high H2O column densities
are lower limits because of the saturation in the H2O absorption
lines. In these cases the true column density, estimated from the
observed H18

2 O lines and assuming a 16O/18O ratio in the range
from 250−560 (Wilson & Rood 1994) will be higher by up to a
factor 5. Figure 4 shows that compared to the properties of dif-
fuse clouds (see also Gerin et al. 2010; Ossenkopf et al. 2010;
Weiss et al. 2010), in which N(H2O+) is closer to N(H2O), sig-
nificantly higher N(H2O)/N(H2O+) is found for velocity com-
ponents likely originating from the envelopes and bright high-
velocity outflows of the massive star-forming clumps. Even in
the outflows and envelopes of the massive star-forming regions
there is still a variation of N(H2O+). The highest N(H2O+) col-
umn densities are found in the outflows.
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Fig. 4. Comparison of H2O and H2O+ column densities of different line
components in the spectra: the black squares give diffuse lines of sight,
red triangles the envelopes of the massive star-forming clumps, and
green filled dots the outflow components (ΔV > 10 km s−1). As a refer-
ence, the solid line shows N(H2O+) = N(H2O). Some of the low (high)
column densities are upper (lower) limits and are indicated by arrows.

After the first indication that H2O+ is present in the outflow
of DR21 (Ossenkopf et al. 2010), it is clearly detected here in
several outflows. Some outflows are even more prominent in
H2O+ than in H2O (e.g. outflow components above the diffuse
cloud region of Fig. 4), although in some cases it is difficult to
disentangle the blueshifted outflow and spiral arm absorption.

In Fig. 4 one cloud treated in the literature as diffuse
LOS cloud toward W51 (64 km s−1 component, Sollins et al.
2004) has a high H2O/H2O+ ratio of 50, which indicates that it
might rather be associated with the W51 clump envelope. Strong
ortho-water absorption of this component was already seen with
SWAS by Neufeld et al. (2002). Hence the H2O/H2O+ ratio
might be useful for the classification of absorption components.

A key result from our observation of a quite significant sam-
ple is that H2O+ is always seen in absorption, even when orig-
inating from outflows or envelopes, in which water is seen in
several cases in emission. This finding might point to the origin
of H2O+ from low-density environments, but alternatively, be-
cause H2O+ is a highly reactive molecular ion that reacts rapidly
with H2 and electrons, inelastic collisions are very ineffective at
exciting it into emission, regardless of the density.

The new detections of H2O+ toward Galactic star-forming
regions presented here together with the recent detection of OH+

from the ground (Wyrowski et al. 2010) and from space (Gerin
et al. 2010; Benz et al. 2010; Bruderer et al. 2010) are an im-
portant confirmation of the gas-phase route to water. The H2O+

lines are stronger than the H3O+ lines in the same sources (some
of is caused by differences in spectroscopic properties), which is
surprising, because H2O+ is expected to react fast with H2 into
H3O+, which recombines with electrons to produce H2O. This
puzzle is even more pronounced in recent Herschel/HIFI obser-
vations in diffuse clouds (Gerin et al. 2010) and active galactic
nuclei (Weiss et al. 2010), where H2O+ is even more abundant
than H2O itself. While for AGN strong X-ray and/or UV radi-
ation is likely to dominate the chemistry (Van der Werf et al.
2010), environments without radiation sources require other so-
lutions. One solution might be that in the outer envelopes of the
massive SFRs H2O is freezing out onto grains whereas – in the

case of positively charged grains – H2O+ is much less affected
by freeze-out.

The main destruction routes of H2O+ are dissociative recom-
bination (into OH) and reaction with H2 (into H3O+ and H2O).
The high H2O+/H2O ratio observed in the diffuse components
implies that the first channel is faster than the second. In gas
where all hydrogen is in molecular form, the electron fraction
is 10−4 at most when all carbon is ionized, which is not enough to
make recombination faster than the reaction with H2. Our obser-
vations therefore imply that a significant fraction of the hydrogen
in the outflows is in atomic form. The same conclusion applies
to diffuse clouds, where UV radiation causes partial dissociation
of H2 (Gerin et al. 2010), and also to AGN, where X-rays are
responsible (Van der Werf et al. 2010). For molecular outflows
the most likely mechanism to dissociate H2 is by fast (J-type)
shocks. The required shock velocities of 30−40 km s−1 are eas-
ily reached in the powerful outflows of the sources.

Models of dense PDRs (e.g. Sternberg & Dalgarno 1995)
predict OH+ + H2 → H2O+. In the outflow-walls scenario
(Bruderer et al. 2009) this leads to a thin PDR layer along the
outflow wall, where FUV heats and ionizes the gas. New mod-
eling of Bruderer et al. (2010, submitted) of hydrides including
H2O+ predicts the abundance of H2O+ to be enhanced by four or-
ders of magnitude along the outflow compared to the envelope,
which then could explain the high column densities of H2O+ in
the outflow components.
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