

Removal of nickel and cadmium from aqueous solutions by sewage sludge ash: study in single and binary systems

Zouheir ELOUAER

10th WWW YES, Arcueil, France, 31 May - 4 June 2010

Outlines

I. Introduction

II. Material and methods

III. Results and discussion

IV. Conclusion

Overview of Heavy Metals

A metal having a density greater than 5 g/cm^3 Some notion of toxicity

Essential Elements (low [])

(Micronutrients) = Fe, Zn, Ni, Cu, Mn,...

Essential for cellular functions

Toxic from a certain threshold

Non Essential Elements

= Cd, Pb, Hg, Sn,...

- Have not known biological function
- Toxic at lower[] than essential elements

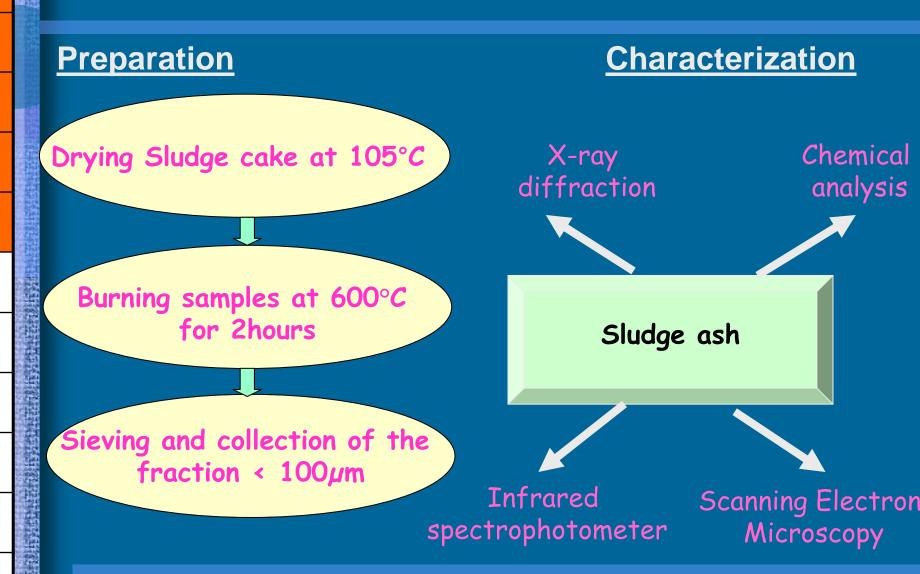
Treatment process of heavy metals wastewater

In the case of wastewater, several treatments process:

- > Membrane processes
- > ion exchange
- > précipitation and co-précipitation
- <u>adsorption</u> (sludge ash, phosphate rock, activated carbon, iron oxide,...)

Adsorption?

Adsorption is a physicochemical phenomenon resulting in a change in concentration at the interface of two immiscible phases, namely solid / liquid.


Sorption is interesting:

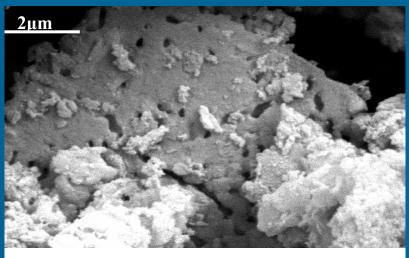
- > Fixed systems
- > simple technique
- > Feasible regeneration
- > Stable waste

Sorbent

- > Porous materials
- > A high specific surface area
- > Regenerable

Material and methods

Material and methods

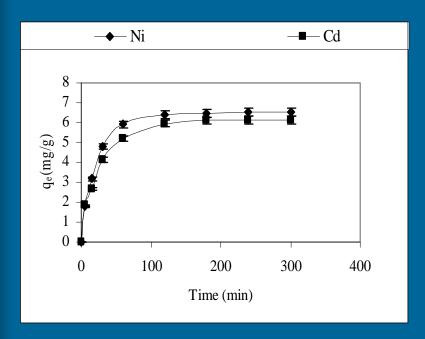

The methodology of batch study:

- ✓ Contact time necessary to get equilibrium
- ✓ The influence of pH on the sorption of Cd and Ni
- ✓ Effect of temperature on the sorption
- Establishment of sorption isotherms
- ✓ Effect of competition between different pollutants

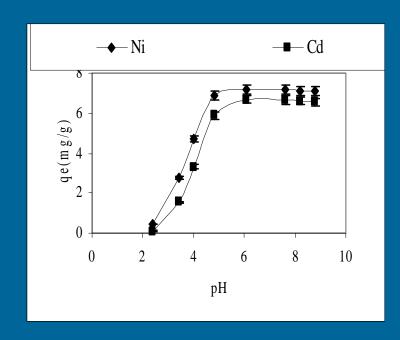
Characterizations of the sorbent

Chemical composition

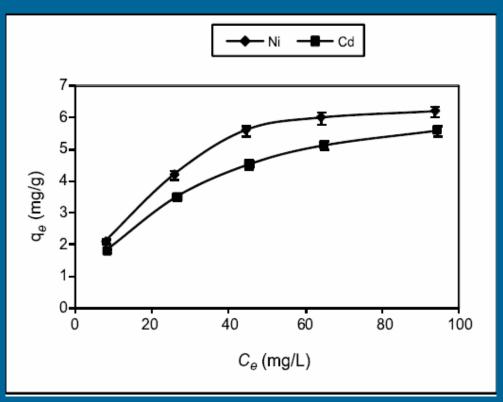
Rich in silica (20%) and in alumina (10%) (sorption function) and in Ca oxide (20%) and K (4-23%)


Figure. Scanning electron micrograph of sewage sludge ash.

 $SS: 51 \text{ m}^2/g$


Porous structure

Kinetic study


The optimum time for both Cd and Ni removal was 120 min

pH effect

The maximum sorption of Ni and Cd was found to occur at pH 6

Sorption isotherms

Ni(II) and Cd(II) sorption isotherm on sewage sludge ash at $20^{\circ}C$

Langmuir and Freundlich constant for Ni(II) and Cd(II) sorption in single system

	Langmuir model			Freundlich model		
	q _{max} (mg/g)	b (L/mg)	R ²	K _f	1/n	R ²
Ni (single-metal)	7.65	0.051	0.99	0.87	0.45	0.95
Cd (single-metal)	7.1	0.039	0.98	0.69	0.47	0.93

Conclusion

The results obtained in this study clearly demonstrated the potential use of sewage sludge ash for the removal of Ni(II) and Cd(II) from aqueous solutions.

- > The kinetic studies indicated that equilibrium was reached in 2 h
- > The optimum pH corresponding to the maximum adsorption was found to be 6
- > The enhanced sorption at higher temperature indicates endothermic sorption process
- > The affinity of the sewage sludge ash for Ni(II) ions was greater than that for Cd(II), from both single-component and the binary solutions

Thank you for your attention