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ON THE FREE VIBRATION OF SANDWICH PANELS WITH A 

TRANSVERSELY FLEXIBLE AND TEMPERATURE DEPENDENT 

CORE MATERIAL – PART II: NUMERICAL STUDY 

 

Y. Frostig1a and O.T. Thomsen2b 

aFaculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology,  
Haifa, 32000, Israel 

b Department of Mechanical Engineering, Aalborg University, Aalborg, Denmark 
 

ABSTRACT 

  This paper, the second of two, presents a numerical study of a simply-supported 

sandwich panel that is based on the mathematical formulation that appears in part I. The 

solution of the unknowns   in the case of a simply-supported panel is based on a trigonometric 

series solution and it converts the set of PDE’s into an algebraic set of equations that are 

described by stiffness and mass matrices. In addition, it studies numerically, for a specific 

sandwich panel construction, the effects of the degradation of the mechanical properties of 

the core as a result of the thermal field on the free vibration response of the two 

computational models. The results of the mixed formulation model, denoted by MF, and the 

displacement formulation, denoted by DF, reveal a significant reduction of the 

eigenfrequencies as well as a shifting of the eigen-modes from higher modes to lower ones 

with increasing temperature.  
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Simply-Supported Panel –Mixed Formulation 

The considered sandwich panel is simply-supported at the edges of the upper and the 

lower face sheets, and the vertical displacements of the core through its depth are prevented  

at the edges using a specific edge beam, see Fig. 1a. Furthermore, the face sheets are assumed 

to be isotropic or laminated composite with a symmetric layup. For this case an analytical 

closed-form solution exists which consists of a Fourier sine series in the space coordinates, 

which fully satisfies the boundary conditions of a simply-supported panel multiplied by a 

harmonic time function. In addition, since each coefficient of the Fourier series is 

independent, a one-term solution is used. The series solution reads (j=t,b): 

 

 

 

(1) 

where M are the number of terms in the truncated series;  (fj = uot, wt, uob, wb, τ) are the 

constants of the series solution; /m m Lα π=  where m is the wave numbers, L is the length of 

the panel, I is the imaginary unit (complex notation) and ω is the eigenfrequency of the panel.  

 The solution is determined through substitution of a general term of the series, Eqs. 

(1), into the equations of motion of the face sheets, see Eqs. (11) in first part, along with the 

force-displacements relations of isotropic face sheets, see Eqs. (13) in first part, and the 

compatibility equation, see Frostig and Thomsen (2007b). This yields a set of homogeneous 

algebraic equations for each wave number m that replaces the set of partial differential 

equations (PDEs). Thus, the solution of the PDE’s is replaced by an eigenvalue problem, with 
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a mass and a stiffness matrix, where the eigenfrequency equals to the eigenvalue and the 

series constants for each wave number m are the corresponding eigenvectors as follows: 

 (2) 

where Km  and Mm are the stiffness and the mass matrices that correspond to the m´th 

harmonic term in the series; ωm is the eigenfrequency that corresponds to the m´th term, 

 is the eigenvector, and 0 is a null vector. The mass matrix is 

similar to the one that appears in Frostig and Baruch (1994). The mass and the stiffness 

matrices are not presented for the sake of brevity. 

The dimension of the stiffness matrix is 5, and the dimension of the mass matrix is 

only 4 since no mass is related to the shear stress, but it has been extended to fit the 

dimension of the stiffness matrix. The matrices are not presented for the sake of brevity. The 

stiffness matrix consists of four equations for the face sheets that also include inertia terms, 

while the compatibility equations, which describe the perfect bonding condition in the 

longitudinal direction at the lower face-core interface under static or dynamic loadings, has no 

inertia loading. Hence, the eigenvalue problem yields only four eigenfrequencies for each 

value of m. 

Simply-Supported Panel - Displacement Formulation 

For a simply supported sandwich panels with isotropic face sheets or symmetrical lamination 

lay-up a closed-form solution in the form of a series of trigonometric functions, which 

satisfies the boundary conditions exist. The solution can be expressed as: 

 (3) 
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where  (fl = uot, wt, uob, wb, uo,1,2,3, wo,1,2) are the constants of the series solution.  

The solution is determined through substitution of a general term (the m´th wave 

number) of the series, see Eqs. (3) in Part I, into the equations of motion of the face sheets 

and the core, see Eqs. (16) to (18) in Part I, along with the force-displacements relations of 

isotropic face sheets, see Eqs. (13) in Part I, and the high-order stress resultants. This yields a 

set of homogeneous algebraic equations for each m-term that may be described by a mass and 

a stiffness matrix, see Eq. (2). Here it should be noticed that eight unknowns can be isolated 

through the solution of eight algebraic governing equations. These functions consist of four 

functions of the displacements within the core that are determined using the four 

compatibility equations, see Eqs. (18) in Part I, and the four Lagrange multipliers that are 

isolated analytically from the seven equations of the core, see Eqs. (17) in Part I. Hence, the 

number of unknowns reduces to seven, which corresponds to the real number of boundary 

conditions. Thus, although the full set of the governing equations consist of 15 equations, see 

Eqs. (16) to (18) in Part I, the actual number of eigenfrequencies is only 7. The condensed 

mass and the stiffness matrices of dimension 7, after substitution of the eight unknowns are 

not presented for the sake of brevity. 

NUMERICAL STUDY 

 The numerical study investigates the role of the degrading core properties as a result 
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of elevated temperature on the free vibration response of a simply-supported unidirectional 

sandwich panel using the two developed high-order sandwich models. A symmetric sandwich 

panel with a light PVC foam core has been considered, and the results include the non-

dimensional eigenfrequencies for m=1, the first sinus halfwave along with the corresponding 

eigen-modes at room temperature level, T=20oC, and at the highest elevated temperature. In 

addition, the degradation curves of the non-dimensional eigenfrequencies versus the 

temperature are presented for the various eigenmodes.  

The considered unidirectional sandwich panel is assumed to be 60 mm wide, see Fig. 

1a, and to consist of two identical laminated face sheets and a PVC foam core. The face 

sheets are laminated composites made of glass fibers with a thickness of 6 mm each and an 

equivalent modulus of elasticity of 18000 MPa and a density of 2000 kg/m3. The foam core of 

PVC HD 100, is 60 mm thick with a modulus of elasticity of 85 MPa and a shear modulus of 

16 MPa at room temperature, and its density is 100 kg/m3. The temperature field within the 

core is assumed to vary linearly across the height, see Fig. 1a. The moduli of the core are 

temperature-dependent, and the Ecz(T), Gxzc(T) vs. temperature (T) plots appear in Fig. 1b, in 

the temperature range of 20-80oC, based on the data in DIAB (2003). The through-thickness 

distribution of the core appears in Fig. 1c for the case of thermal gradient of ∆T=50 oC across 

the core height. Two different types of temperature distributions have been considered, see 

Fig. 1a. In the first one the distribution is uniform and changing from 20o to 75o C, while in 

the second one the temperature distribution is linear with a gradient ∆T across the core height, 

where the temperature at the lower face sheets remains at 20o C and the temperature at the 

upper face sheet changes from 20o to 75o C. 

The non-dimensional eigenfrequencies that correspond to the first sinus half wave, 

m=1, at room temperature, T=20oC and at T=75oC, with a uniform and a linear temperature 
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field, of the two models appear in Table 1. The eigenfrequencies have been normalized with 

respect to the fundamental bending eigenfrequency of an equivalent single layer sandwich 

panel with a bending rigidity that equals the overall flexural rigidity of the sandwich panel. In 

Fig. 2, the first four eigenmodes predicted by the two computational models for the uniform 

temperature distribution at the low, T=20oC, and the high temperature, T=75oC, are 

presented.  

The eigenfrequencies results for the first wave number, see Table 1, reveal that the 

values decrease significantly as a result of the elevated temperature that causes degradation of 

the mechanical properties of the core. In addition, the results of the two models coincide at 

the lower eigenfrequencies, and for the higher modes the results of the second model are 

always smaller then those of the first model, which reflects that model II is more flexible than 

the model I. The eigenmodes, see Fig. 2, are arranged in increasing order of the corresponding 

eigenfrequencies, see Table 1. In Fig. 2, MF stands for Mixed formulation (Model I), whereas 

DF stands for Displacement Formulation (Model II). In general, a typical sandwich panel with 

uniform mechanical properties has four typical eigenmodes. The first one is an overall mode 

where the two face sheets undergo a vertical displacement in phase, see mode no. 1 in Fig. 2a. 

The second mode corresponds to identical in-plane displacement of the two face sheets, see 

mode 2, denoted as axial mode. The third mode consists of in-plane displacements of the face 

sheets that are out of phase, see mode 3, denoted as out of phase axial mode. Finally, the 

fourth mode, see mode no. 4 in Fig. 2a, corresponds to vertical displacements of the face 

sheets that are in opposite directions, also denoted as the pumping mode. However, when the 

uniform temperature increases to 75 oC , see Fig. 2b, the first eigen-mode coincides with the 

global mode, while the second eigen-mode corresponds to the pumping mode rather then to 

the axial mode, which reflects shifting of the higher mode to the lower ones as the 

temperature is increased and the vertical rigidity of the core degrades. The third and the fourth 
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modes correspond to the axial modes in phase and out of phase, respectively.  

In Fig. 3, the eigenfrequency values versus the uniform temperature within the core, is 

presented for the first wave number. In the first mode, see mode no. 1, the results of the two 

computational models coincide. In the second mode, see mode no. 2 in Fig. 3, the 

eigenfrequency of the first model (Mixed Formulation – MF) remains almost unchanged up to 

50oC after which it drops, while for the second model (Displacement Formulation – DF) the 

eigenfrequency reduces slightly up to 50oC. At temperatures above say 55 oC the two models 

coincide. In the third mode, see mode 3, there is a large difference between the results of the 

two models above 50oC. In the fourth mode the results almost coincide. The difference in the 

results is a result of the shifting of the higher eigenmodes to the lower ones. 

The results for the case of linear temperature distribution across the core thickness, 

where the lower face remains at 20oC while the temperature at the upper face sheet equals 

20+∆T, appear in Table 1 and Figs. 4 and 5. Here, the eigenmodes are not pure modes as a 

result of the coordinate-dependent core properties (degradation of elastic moduli with 

increasing temperature, see Fig. 1c). Hence, the eigenmodes in each model are not exactly the 

same as for the case of uniform temperature. The reduction in the eigenfrequencies, see Table 

1, between the thermal gradients of ∆T=10oC and ∆T=55oC are not as significant as observed 

for the uniform temperature case. Notice here that here the results of Model II in some cases 

are predicted to be higher then those predicted using Model I, although Model II models the 

sandwich panel as a more flexible structure. The difference is due to the fact that the eigen-

modes of the corresponding eigenfrequencies in the two models are not exactly the same as in 

the case with the uniform temperature distribution.  The corresponding eigenmodes, see Fig. 

4, follows in general the same trends as those obtained for a uniform temperature distribution 

of 20oC with some changes. At the lower gradient, at ∆T=10oC, (see Fig. 4a) the results almost 
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coincide with those of the uniform distribution, see Fig. 2a, but with minor changes. In the 

case of the highest gradient (∆T=55oC), where the upper face sheets reach a temperature of 

75oC, see Fig. 4b, there is a shift in the modes and the pumping mode again becomes the 

second one. However, as a result of the variable stiffness, the pumping mode of the second 

model does not correspond to the pure pumping mode, see mode no. 4 in Fig. 2a.  Here, the 

maximum displacements is that of the in-plane displacement of the core, u1(x,t), rather than 

the face sheet displacements.  

The eigenfrequencies versus the thermal gradient, for the various modes appear in Fig. 

5. A significant reduction in the eigenfrequency of the first eigenmode is observed, but the 

reduction is than observed for the uniform temperature case. The reduction in 

eigenfrequencies for the second mode, see mode no. 2 in Fig. 5, are similar to those of the 

uniform temperature case but at different values. Also here the predicted eigenfrequency 

corresponding to Model I is almost constant up to a gradient of 45oC after which it drops 

steeply. The results obtained using Model II differ from Model I, and they change throughout 

the range of temperature. However the entire changes here are about 10% of the maximum 

values. For the other two modes of vibration, see modes 3 and 4, the results of the two models 

are quite similar. The differences between the results of the two models are mainly a result of 

the shifting from higher to lower vibration modes.  

SUMMARY AND CONCLUSIONS 

A numerical study based on a rigorous systematic analysis of the problem of free 

vibrations of sandwich panels with compliant and temperature dependent core properties that 

appears in part I has been presented.  

Two different temperature distributions have been considered in this part. The first 

one is a uniform distribution where the temperature variation through the core thickness is 
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uniform, and where (accordingly) the thermal degradation of the core properties is also 

uniform. Secondly a linear through-thickness temperature distribution is assumed. In the 

examples presented herein, it is assumed that the temperature at the lower face sheet remains 

constant at 20oC, while the temperature at the upper face sheet changes as a result of a 

thermal gradient. The linear distribution yields a core with coordinate dependent mechanical 

properties.  The panel considered consists of a PVC foam core made by DIAB. The 

temperature range considered corresponds to a working range of temperature between 20oC  

to 80oC for the particular foam core considered.   

The results are presented in terms of: the eigenfrequencies normalized with respect to 

the fundamental eigenfrequency (bending) of an equivalent single layer sandwich panel with 

the same flexural rigidity. More specifically, the first four eigen-modes; and the curves of the 

eigenfrequencies versus temperature or thermal gradient have been studied. 

The elevated temperatures cause the modulus of elasticity and the shear modulus of 

the core to decrease. These two moduli affect the dynamic response of the overall panel in 

terms of eigenfrequencies and eigenmodes. The results of the two different structural models 

reveal that there is a decrease in the eigenfrequency as the temperature or thermal gradient 

increases. This decrease is significant, especially at the lowest vibration modes. Thus, the first 

eigenfrequency reduces to almost a one third at the upper temperature (T=75oC) compared 

with the first eigenfrequency at room temperature (T=20oC) for the case of uniform 

temperature. The first eigenfrequency reduces by about 50% for the linear thermal gradient 

case for a thermal gradient of ∆T=50oC across the core thickness and with a lower face 

temperature of 20 oC. These reductions are caused by the degradation of the core shear 

modulus with increasing temperature, which yields a flexible structure in the vertical 

direction as the temperature is raised. 

In addition, the degrading core properties also affect the order of the eigenmodes. 
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More specifically, the higher mode at room temperature becomes the second mode as the 

temperature is elevated. Thus, as the temperature increases, the pumping mode (where the 

phase sheets move vertically out of phase), which is the fourth mode at room temperature, 

shifts into the second vibration mode at elevated temperatures. This shifting is a result of the 

reduction of the elastic modulus of the core as the temperature is increased. 

In the case of a uniform temperature distribution, the basic eigenmodes of a sandwich 

panels, i.e. the overall mode, the axial mode, the axial out-of-phase mode and pumping mode, 

are preserved throughout the range of working temperatures. This situation is preserved to a 

certain extent when the temperature distribution is linear through the core thickness, except 

that the mentioned vibration modes are not pure any more (i.e. they interfere with each other). 

Also for this case, there is shifting of the higher modes to lower modes ones as the thermal 

gradient increases. 

Finally, modern sandwich structures often utilize compliant polymer foam core 

materials that display significant degradation of their mechanical properties with increasing 

temperatures. The degradation effects may be significant even within the working range of 

temperatures for realistic sandwich structures, and the results presented herein demonstrates 

that thermal fields imposed on such sandwich structures may influence the vibration response 

significantly. Thus, the eigenfrequencies may be reduced significantly, and vibration mode 

shifts may be experienced as well. Hence, a reliable design must take into account the effects 

of degrading core properties as a result of elevated temperature on the static and the dynamic 

sandwich panel responses.  
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Uniform Temp. Dist. Linear Temp. Dist.  
Mode 

Number Model I Model II Model I Model II 

1 
0.6479* 

0.2202** 

0.6479 

0.2202** 

0.6337* 

0.3246** 

0.6377 

0.3288** 

2 
11.5589* 

6.2785** 

11.4430* 

6.2764** 

11.5589* 

9.6875** 

11.4320* 

10.5967** 

3 
16.2939* 

11.5590** 

16.2701* 

8.2739** 

16.0428* 

11.5590** 

16.0221* 

10.9097** 

4 
24.2916* 

12.7115** 

24.2872* 

12.4318** 

23.3905* 

13.1102** 

23.3846* 

13.1313** 

5  
38.3922* 

13.725** 
 

36.8862* 

21.7500** 

6  
73.1858* 

19.3116** 
 

70.4385* 

52.0288** 

7  
87.6079* 

22.6428** 
 

84.2340* 

61.5314** 

 
Table No. 1: Non-dimensional eigenfrequencies, ω/ωclas, of the two computational models with 

m=1, at various temperatures and gradients for a uniform and a linear through-thickness 

distribution. 

Comments:  Uniform temperature: *at T=20 oC, ** at T=75oC (in italic) 

Linear through-thickness distribution: *at ∆T=10 oC (Tt=30,Tb=20), **at 

∆T=55oC (Tt=75, Tb=20). 
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FIGURE CAPTIONS 

Fig. 1: Layout of sandwich panel along with variable moduli of the core: (a) Panel layout and 

temperature distribution; (b) Moduli of core versus temperature; (c) Moduli 

distribution through the depth of core for a specific linear temperature distribution. 

Fig. 2: Four eigen-modes of first sinus half waves at various temperatures for a uniform 

distribution of the various models: (a) At 20oC; (b) At 75oC. Legend: Top – thick line, 

Bot - thin line, black- model I, blue – model II, ___ wt or wb,  - - -  uot or uob, 

…. uo,  -.-.-.u1,  __  _ __ wo,, MF – Mixed Formulation, DF – Displacement 

Formulation. 

Fig. 3: Eigenfrequencies versus temperature of the uniform temperature distribution for the 

first four modes corresponding to the two computational models. Legend: 

MF Mixed Formulation , DF  Displacement Formulation. 

Fig. 4: Four eigen-modes of first sinus half waves at various temperature gradients for a 

linear thermal through-thickness distribution of the various models: (a) At ∆T=10oC; 

(b) At ∆T=55oC. Legend: Top – thick line, Bot - thin line, black- model I, blue – model 

II, ___ wt or wb,  - - -  uot or uob, …. uo,  -.-.-.u1,  __  _ __ wo, MF – Mixed 

Formulation, DF – Displacement Formulation. 

Fig. 5: Eigenfrequencies versus gradient of the linear temperature distribution for the first 

four modes and of the two computational models. Legend: MF Mixed 

Formulation , DF  Displacement Formulation. 
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Fig. 3
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Fig. 5
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