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ON THE FREE VIBRATION OF SANDWICH PANELS WITH A 

TRANSVERSELY FLEXIBLE AND TEMPERATURE DEPENDENT 

CORE MATERIAL – PART I: MATHEMATICAL FORMULATION 

 

Y. Frostig1a and O.T. Thomsen2b 

a Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology,  
Haifa, 32000, Israel 

b Department of Mechanical Engineering, Aalborg University, Aalborg, Denmark 
 

ABSTRACT 

 The free vibration analysis of sandwich panels with a core that is flexible and compliant in 

the vertical direction and with temperature dependent mechanical properties is presented in two parts. 

The first part presents the mathematical formulation while the second deals numerically with the 

effects of the degrading properties of the core on the free vibration response. The analysis is based on 

the high-order sandwich panel theory approach (HSAPT), and the equations of motions along with 

the appropriate boundary conditions are derived using the Hamilton’s principle. The study 

investigates the role of increasing temperature, through the degradation of the mechanical properties 

of the core, on the free vibration response of structural sandwich panels. The mathematical 

formulation uses two types of computational models. At first, following the HSAPT approach, the 

unknowns include the displacements of the face sheets as well as the shear stress in the core. 

Secondly, it is assumed that the through-thickness distributions of the vertical and horizontal core 

displacements can be represented as polynomials, following the results of the HSAPT static case, and 

the effect of the variable mechanical properties are implemented directly.  

                                                 

1�Professor of Structural Engineering, ASHTROM Engineering Company Chair in Civil Engineering. 
2 Professor, Head of Department of Mechanical Engineering, AAU. 
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INTRODUCTION 

Sandwich structures are being used extensively in aerospace, naval, transportation and civil 

engineering industries. Structural sandwich panels can be considered as a special type of composite 

laminate where two thin, stiff, strong and relatively dense face sheets, which are often by themselves 

composite laminates, are separated by and bonded to a thick, lightweight and compliant core material. 

Such sandwich structures are being used as primary and secondary structural members due to their 

superior qualities in terms of: high strength and stiffness to weight ratios, ease of manufacturing, 

acoustic and thermal insulation, and flexibility in design. Sandwich structures panels are often 

subjected to aggressive service conditions which may include elevated temperatures, which lead to 

thermally induced deformation loads and degradation of the mechanical properties. 

The material properties of the constituents of a sandwich structure generally depend on the 

temperature field imposed. However, this dependency is usually ignored in the design process, even 

for applications where the induced temperature field causes the material properties to degrade 

significantly as the temperature increases. In many modern sandwich panel applications, the core 

material is made of a polymer foam where significant changes in the properties may occur in the 

operating range of the temperatures. A PMI type of foam such as Rohacell® looses its heat distortion 

resistance at about 200oC, see Rohacell Data (2004), while a PVC foam core such as Divinycell 

looses its strength at about 80-100oC , see DIAB reports (2003 and 2005). Hence, it becomes 

extremely important to understand how the degradation of the core properties affects the mechanical 

response including the load and the free vibration response. 

The load response including non-linear thermo-mechanical interactions and buckling (global 

and local) was recently treated by Frostig and Thomsen (2007a and 2007b). However, the vibration 

response and its dependency of temperature has hitherto no been considered in open literature. The 

free vibration response of a sandwich structure with a compliant core, is associated with both overall 

and through-thickness modes (the latter being denoted as local modes). In general the overall or 

global modes correspond to lower eigenfrequencies, and the local modes to higher eigenfrequencies. 
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However, as the mechanical properties of the core degrade as a result of the elevated temperature, the 

rigidity of the core is reduced and the local modes may shift from higher frequencies into lower ones. 

The principal objective of this investigation is to investigate how the eigenfrequencies and the 

corresponding eigenmodes change as the temperature is increased and the mechanical core properties 

degrade. 

The approaches used by many researchers for the analysis of sandwich structures can be 

describe following one of two categories; the core is considererd as vertically incompressible, or the 

core is considered as compressible or compliant in the through-thickness direction. Many of the 

classical works on sandwich structures assume that the core material is vertically incompressible, see 

for Allen (1969), Plantema (1966), Zenkert (1995) and Vinson (1999). Usually, the models adopted 

for predicting the response of such sandwich structures are based on the “equivalent single layer” 

approach (ESL), where the layered sandwich panel (beam, plate or shell type) is replaced by an 

equivalent single layer with equivalent mechanical properties, see Mindlin´s (1951) first-order shear 

deformation theory, and Reddy's high-order theories (1984). Recently, Carrera and Demasi (2003), 

and Carrera and Ciuffreda (2005) and Carrea (2005) have presented ESL and layer-wise models with 

various plate theories for the analysis of sandwich panels with and without vertical normal strain. The 

classical and the ESL models, in general, usually disregard the changes in the height of the core (i.e. 

the vertical compressibility) when the panel is deformed. Hence, when using these approaches, for 

the free vibration response, the through-thickness modes of the core cannot be detected. Examples of 

research following these approaches include Kant and Mallikarjuna (1989), Senthilnathan et al. 

(1988) and Kant and Swaminathan (2001) who used a high-order model but with an incompressible 

core, and Meunier and Shenoi (2001) and Nayak et al. (2002); Bardell et al. (1997) and Lee and Fan 

(1996) who used different finite elements analysis approaches adopting various pre-assumed 

displacement distributions.  

 An extensive literature search reveals that only a limited number of research works are 

available in open literature that take into account the temperature dependent core properties in their 

analyses. Moreover, the available research works are based on the assumption of an incompressible 
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core, and they adopt the ESL approach along with various finite element analysis formulations. 

Examples of such research works include Pradeep and  Ganesan (2007), and Pradeep et al. (2006) 

who assumed a viscoelastic core and used a finite element formulation, Shiau and  Kuo (2006) who 

used the splitted rigidity approach due to Allen (1969) and Plantema (1966), Ibrahim et al. (2006) 

discuss the case of a sandwich panel made of a functionally graded material (FGM), Kim (2005) dealt 

with an FGM panel, Hao and Rao (2005) assumed a core made of a pressure sensitive adhesive 

(PSA), and Duan et al. (2000) dealt with a sandwich panel utilizing shape memory alloys (SMA) at 

elevated temperatures. Generally, the classical sandwich theories, based on the ESL and high-order 

models, mentioned above, disregard the changes in the height of the core (vertical compressibility) 

during the deformation of the sandwich panel. Accordingly, they are unable to detect the high-order 

modes that are associated with deformations through the thickness of the core.  

A different approach that models the sandwich panel as a layered structure made of two face 

sheets and a core layer that are interconnected through fulfillment of equilibrium and compatibility 

conditions, and thus accounts for the vertical core flexibility, has been implemented into the so-called 

High-Order Sandwich Panel Theory (HSAPT), see Frostig et al. (1992). It has been successfully used 

by the authors and by others for the analysis of various linear and non-linear applications; Frostig and 

Baruch (1994) for high-order vibration of sandwich panels; Bozhevolnaya and Frostig (2001) dealt 

with the vibration of curved sandwich panels; Frostig and Thomsen (2004) treated the vibration of 

sandwich plates; Yang and Qiao (2005) and Qiao and Yang (2007) used the HSAPT model and its 

modification for impact problems; Schwarts-Givli et al. (2007a, 2007b, 2007c and 2007d) dealt with 

free and forced vibrations of delaminated sandwich panels; and recently Frostig and Thomsen (2007a 

and 2007b) treated the non-linear response of sandwich panel with temperature-dependent properties.     

 In this two parts paper, the dynamic governing equations, including rotary inertia and the 

required boundary conditions are derived explicitly using the Hamilton’s principle. The mathematical 

formulation follows the high-order theory (HSAPT) approach, and it incorporates the effects of the 

flexible core into the equations of motion and the boundary conditions as well as the temperature-

dependent mechanical properties of the core into the governing equations. The sandwich panel is 
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assumed to be linear elastic with small displacements and consists of a core and two thin face sheets. 

The face sheets are modeled as beams or panels with in-plane and flexural rigidities and negligible 

shear strain. The core is assumed to possess vertical normal and shear stiffnesses, wheras the in-plane 

and flexural rigidities are assumed to be negligible. Moreover, perfect bonding is assumed for the 

interfaces between the core and the face sheets, i.e. the core/face interfaces can resist shear and 

vertical normal stresses.  

 The free vibration analysis of a unidirectional sandwich panel with a compliant temperature-

dependent core is investigated using two well known computational models, see Frostig and Thomsen 

(2004). It is assumed that the core is subjected to a non-uniform temperature field, which yields a 

core with coordinate dependent moduli as a result of the temperature-dependent mechanical core 

properties,  

The first model adopts the approach of the HSAPT model, see Frostig and Baruch (1994) and 

Bozhevolnaya and Frostig (2001), where the unknowns consist of the displacements of the face 

sheets and the shear stresses in the core. This is denoted as a mixed formulation, and according to this 

approach the stress and the displacements fields of the non-uniform core are derived in the form of a 

closed-form solution using a least-square curve-fitting procedure.  The second model assumes that the 

distribution of the in-plane and vertical core displacements can be represented as cubic and quadratic 

polynomials, respectively, following the results of the HSAPT model (for core displacements see 

Frostig et al. (1992)). The unknowns in this model consist of the displacements of the face sheets and 

the coefficients of the polynomials in the core. In this formulation, the effects of the non-uniform 

stiffness of the core are implemented following a straight forward approach. Here, the high-order 

stress resultants of the non-uniform core are determined using a direct integration process. It should 

be noticed that this approach involves higher-order core stress resultants that have no physical 

interpretation, and the model yields higher-order modes that involve vibrations through the depth of 

the core that the HSAPT model cannot detect.  
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The first part manuscript outlines the mathematical formulation including the derivation of 

the temperature-dependent governing equations of motion along with the associated boundary condi-

tions for the two computational models.  

MATHEMATICAL FORMULATION 

 The mathematical formulation consists of a general section that presents the dynamic 

equations that are applicable to two computational models followed by the field/governing equations 

of motions along with the boundary conditions for each model.  

 The equations of motions of the free vibration response are derived through the Hamilton 

principle which extremizes the Lagragian that consists of the kinetic and the internal potential energy 

as follows: 

 

(1) 

where T is the kinetic energy, t is the time coordinate that varies between the times  t1 and t2; and U 

and V are the internal and external potential energies. 

The first variation of the kinetic energy for the sandwich panel reads: 

 

(2) 

where ρj (j=t,b,c) �is the density of the upper and lower face sheets and the core, respectively; uj,t  and 

wj,t, (j=t,b,c) are the velocities in the longitudinal and vertical directions, respectively, of the 

sandwich panel constituents; ,t

f
f

t
∂=
∂

 is the first derivative of the function f with respect to the time 

coordinate; Vj (j=t,b,c) is the volume of upper and lower face sheets and the core, respectively, and 

dV is the volume of a differential segment. 

The internal potential energy reads: 

 

(3) 
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where σxxj  and εxxj  (j=t,b)  are the in-plane normal stresses and strains in the upper and the lower face 

sheets; τxz  and γxz are the vertical shear stresses and strains in the core; and σzz and εzz are the  normal  

stresses and strains in the vertical direction of the core.  

 The displacements pattern of the face sheets (j=t,b) following the classical Bernoulli 

assumptions, the kinematic relations corresponding to small linear displacements of the face sheets 

and the core, and the compatibility conditions at the upper and the lower face-core interfaces equal: 

 (4) 

 (5) 

, 
 (6) 

 (7) 

 

(8) 

where zj (j=t,b) are the vertical coordinates of each face sheet (measured downwards from the 

centroid of each face); uc(x,zc) and wc(x,zc) are the in-plane and vertical displacements of the core, 

respectively; c is the height of the core, dj (j=t,b) are the thicknesses of the upper and the lower face 

sheets, respectively;
kcz (k=I,II) is the vertical coordinate of the core (measured downwards from 

upper core-face interface for the first model (I). and from mid-height of core for the second model 

(II)) (see Fig. 1a), αk and Tk(x,zk) (k=t,b,c) are the coefficients of thermal expansion (CTE’s) and the 

temperature fields of the face sheets and the core respectively (see Fig. 1b), and finally ( ),k (k=x or 

zc) denotes a partial derivative with respect to an independent variable k. 

 The first variation of the kinetic energy, assuming homogeneous initial conditions and after 

integration by parts with respect to the time, coordinate reads: 
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(9) 

where uj,tt and wj,tt (j=t,b,c) are the accelerations in the longitudinal and vertical directions, 

respectively, of the sandwich panel constituents, and 
2

, 2tt
f

f
t

∂=
∂

 denotes the second derivative of the 

function f with respect to the time coordinate. 

The differences between the two sandwich models are a result of the description of the 

accelerations and the displacements in the core, as well as the solutions for the core stress and the 

displacements fields.  

HSAPT Computational Model – Mixed Formulation (Model I) 

 The core, in this model, is regarded as a medium that transfers its inertia loads to the face 

sheets rather than resisting them by itself. Hence, the distributions of the accelerations through the 

depth of the core are assumed to follow the distributions of the static displacements under fully 

distributed loads, see Frostig et al. (1992). This approach is commonly used in many dynamic 

analyses of ordinary beams, plates and shells, see Shames and Dym (1973). Thus, the dynamic stress 

and displacements fields of the core are assumed to be identical with the static stress and 

displacements fields without inertia loads terms. The distributions of the static displacements through 

the depth of the core are non-linear; quadratic for the vertical displacement, see Frostig et al.(1992), 

and cubic for the in-plane displacements when the mechanical properties of the core are uniform 

through its depth. These (non-linear) polynomial patterns (through the depth of the core) are usually a 

result of gradients of the vertical shear stresses, and they differ significantly from the linear 

distributions when localized loads or restrictive constrains are imposed on the sandwich structure. 

However, when fully distributed loads, such as inertia loads, are applied to the face sheets, the 

localized effects diminish leading to displacements distributions with small non-linearities. Hence, it 
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can be rationally assumed that these distributions are linear rather then non-linear. Thus, the 

distributions of the accelerations, through the depth of the core, are assumed to be linear as follows: 

, , ,

, , ,

( , , ) ( , / 2, )(1 ) ( , / 2, )

( , , ) ( , , )(1 ) ( , , )

c c
c tt c t tt t t b tt b b

c c
c tt c t tt t b tt b

z z
u x z t u x z d t u x z d t

c c
z z

w x z t w x z t w x z t
c c

= = − + = −

= − +
 (10) 

Notice that this simplification is applied to the kinetic inertia terms only.  

 The equations of motion are derived using the Hamilton’s principle, Eq. (1); the expression 

for the kinetic energy, see Eq. (9), along with the presumed accelerations with  linear through-

thickness distributions, Eqs. (10); the expression for the internal potential energy, Eq. (3), along with 

the kinematic relations of the face sheets and the core, Eqs. (5) and (6); and finally the compatibility 

conditions at the face-core interfaces, see Eqs. (7) and (8). The results are similar to those that appear 

in Frostig and Baruch (1994), except that herein the vertical normal stresses are undefined. Hence, 

the equations for the fa11ce sheets read: 

 
 

 

 

(11.1)

 

 

  (11.2) 

(11.3)

(11.4)
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where Mj, Imj (j=t,b) are the mass and the rotary inertia per area unit length, respectively, of the upper 

and the lower face sheets; Mc is the mass per area unit length of the core; τ(x,t) is the shear stress in 

the core; σzzj(x,t), (j=i,t) are the vertical normal stresses at the upper and the face-core interfaces, 

respectively, and (),itt denotes a partial derivative with respect to i and t where the indices refer to the 

longitudinal coordinate of the panel and the time coordinate. For sign conventions see Fig. 1. Notice 

that all stress resultants and displacements are function of the spatial coordinates and time. 

 The equations of motion for the core coincide with those of the static case, see Frostig et al. 

(1992) and Frostig and Thomsen (2007b) and they yield that the shear stress through the depth of the 

core are uniform, and the vertical normal stresses are linear.  

 In order to achieve an explicit description of the equations of motion of the face sheets in 

terms of the unknowns of the core the fields of the core must be determined first. The fields of the 

core are determined assuming that the core is orthotropic with the following constitutive relations: 

 

 

(12)

where Ezc(T(x,zc)) and Gxzc (T(x,zc)) are the vertical modulus of elasticity and the shear modulus of the 

core that are known functions of the temperature distribution. 

 The description of the stress and the displacements fields of the core appear in Frostig and 

Thomsen (2007b) using special integrals. It should be noticed, that the non-uniform moduli of the 

core yield a closed-form analytical solution only when these moduli have a linear or quadratic 

distribution. In other cases a different approach tat is based on the approach that appears in Frostig 

and Thomsen (2007b) is required. In addition, the temperature distribution through the depth of the 

core is assumed to be linear with a gradient between the two face sheets.   



 

 

 

ACCEPTED MANUSCRIPT 

 

 11

 The governing equations are derived by substitution of the force-displacements relations of 

the isotropic face sheets into the equations of motions that consist of Eqs. (11) and the compatibility 

equations, see Frostig and Thomsen (2007b). The force-displacements relation of the isotropic face 

sheets (j=t,b) read:  

 

 

where 

 

 

(13) 

where EAj and EIj  (j=t,b) are the axial and the flexural rigidity of each face sheet, respectively, 

  and 
 
are the equivalent axial force and moment due to temperature and Ej is the 

modulus of elasticity of the face sheets.  

The governing equations consist of a set of partial differential equations expressed in terms 

of space coordinates and time of the order of fourteen. Notice that due to the thermal terms in the face 

sheet equations, Eqs. (13), and the vertical normal stresses at the face-core interfaces the panel 

undergoes static displacements, and the free vibration oscillations occur with respect to this static 

deformed configuration. The solution of the set of governing equations can be achieved numerically 

for general boundary conditions and external dynamic loads, or analytically in closed-form for the 

particular case of a simply-supported unidirectional panel.   

Displacements Formulation - Model II 

 The second computational model is used to investigate the accuracy of the results of the first 

model, which uses the linear distributions of the accelerations through the depth of the core, see 

Eqns. (10), as compared with the formulation that uses the quadratic and cubic polynomials to 

describe the accelerations. Hence, this formulation describes a sandwich panel that is more flexible 
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then that based on the first model. The advantage of this formulation is that the dynamic loads as well 

as its degrading mechanical properties are directly included in the equations of motion of the core, 

and that they are not a result of the interaction with the upper and the lower face sheets. It should be 

noticed that this is achieved at the expense of predicting higher-order bending moments and shear 

stress resultants in the core that lack any physical interpretation. In addition, this means that any 

constraint imposed on the core can be fulfilled only in the global sense, and not in the differential 

sense as is the case with the first model. Thus, Model I is overall more physically consistent than 

Model II.  

The formulation of Model II follows the same steps as Model I, using the same basic 

equations, Eqns. (1) to (9), but here the unknowns are the displacements of the face sheets and the 

core. In order to achieve this goal, the displacements fields of the core are assumed a priori, using the 

quadratic and cubic polynomial distribution of the static displacement fields of a core with uniform 

properties, see Frostig et. al. (1992). Here, the coefficients of these polynomials are the unknowns, 

and they are determined through the variational principle.  

 The pre-assumed displacement fields of the core read: 

 

 
(14) 

where uk (k=o,1,2,3) are the unknowns of the in-plane displacements of the core, and wl (l=o,1,2) are 

the unknowns of the core vertical displacements, respectively. The distributions of the accelerations 

and the velocities of the core are assumed to follow the static displacements, similar to the general 

approach that ignores the effect of the inertia terms, see Dym and Shames (1973), and they equal 

their second and first derivatives with respect to the time coordinate. The compatibility conditions at 

the upper and the lower face-core interfaces, see Eqs. (7) to (8), are enforced through the use of four 

Lagrange multipliers. Thus, the variation of the potential energy, see Eq. (3), reads: 
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(15) 

where λkj (k=x,z and j=t,b) are the Lagrange multiplier in the horizontal and vertical directions at the 

upper and the lower face–core interfaces, respectively. For sign conventions see Fig. 1a. 

 The equations of motion and the boundary conditions are derived using the Hamilton’s 

principle, Eqs. (1), the expression of the kinetic energy, Eq. (9) along with the acceleration 

distribution, see Eqs. (14); the expression of the internal potential energy, Eq. (15); the displacements 

distributions of the face sheets, see Eqs. (4); the kinematic relations of small deformations in the 

faces and the core, see Eqs. (5) and (6); the compatibility conditions corresponding to perfect 

bonding at the face-core interfaces, Eqs. (7) and (8); the stress resultants of the face sheets, see Fig. 

1c, and the high-order stress resultants of the core. Hence, after integration by parts and some 

algebraic manipulation equations of motion read: 

For the face sheets: 

 

 

 

 

(16) 

For the core: 

 (17) 
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The compatibility conditions corresponding to perfect bonding bond equal: 

 

 

 

 

(18) 

where the high-order stress resultants in the core equal: 

 

 

(19) 

. 
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 The number of equations including the compatibility equations is fifteen. The set of 

governing equations consists of four equilibrium equations for the face sheets, Eqs. (16), seven 

equations for the core, Eqs. (17), and four compatibility equations, Eqs. (18). It should be noticed that 

some of the equations of the core are algebraic, which means that this set of equations is a DAEs 

(Differential-Algebraic Equations) set and not an ordinary PDEs set. The solution procedure consists 

of isolating four of the unknowns in the displacements of the core using the compatibility equations, 

Eqs. (18), followed by isolating the additional four Lagrange multipliers using four equations of the 

core, Eqs. (17). The isolated unknowns are substituted into the remaining seven equations.  

 The necessary and sufficient number of boundary conditions is nine, but two of the 

conditions are imposed on high-order displacement conditions, which yields that the corresponding 

natural conditions are null. Hence, the full set of boundary conditions here reads: 

For the face sheets (j=t,b): 

 

 

 

or 

or 

or 

 = ( )u
oj

,x
e

t ( )u
eoj

t
 

 = ( )w
,j x

,x
e

t ( )Dw
ej

t
 

 = ( )w
j

,x
e

t ( )w
ej

t
 

(20) 

where λ=1 when xe=L and -1 when xe=0, and the shear stress resultants equals: 

 where D1f=df(x,t)/dx. 

For the core: 

 

 

 

or 

or 

or 

 

 

 

(21) 

Where wek (k=o,1,2) are the imposed vertical displacement, its slope and curvature at the mid-height 

of the core. Notice that only the vertical displacement at mid-height of the core can be imposed. This 

yields that the first and the second higher-order moments of the shear stresses are null thus, 

. 



 

 

 

ACCEPTED MANUSCRIPT 

 

 16

 In order to determine the governing equations of motion the high-order stress resultant terms 

of the core must be defined first in terms of the displacements. The stress fields and the high-order 

terms are derived assuming that the core is isotropic, see Eqs. (12), with variable elastic moduli, 

using the pre-assumed displacements patterns, Eqs. (14), and the high-order terms, Eqs. (19).  

Hence, the core stresses are expressed in the form: 

 

 

(32) 

The core stress resultants are derived by substitution of Eq. (22) in Eqs. (19). They are not presented 

for the sake of brevity. 

 The governing equations of motion are formulated in terms of the following fifteen 

unknowns: the longitudinal in-plane and vertical displacements of the face sheets, the four Lagrange 

multipliers and the eleven polynomial coefficients of the core. They are derived by substituting: the 

force-displacement relations of the face sheets, Eqs. (13), into the governing equations for the face 

sheets, Eqs. (16), and the high-order stress resultants into the core equations, Eqs. (17). Also here the 

temperature induced deformation causes the sandwich panel to deform, and it oscillates with respect 

to the static deformed shape. Notice that this set of governing equations does not have a general 

closed-form analytical solution. However, for the particular case of a simply-supported sandwich 

panel a closed-form solution exists.   

CONCLUSIONS 

A rigorous systematic analysis of the problem of free vibrations of sandwich panels with 

compliant and temperature dependent core properties has been presented in this part. More 

specifically, the effect of degrading material properties with increasing temperature has been 

investigated. Two basic well known computational models for the analysis of sandwich structures 

have been discussed: The first one uses the HSAPT approach where the unknowns are the 

displacements of the face sheets and the shear stress of the core, and it is assumed that the 
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acceleration distribution is linear through the depth of the core. In this model the stress resultants can 

be attributed a clear physical interpretation, and any conditions on the core are imposed in the strict 

differential sense. The second model assumes that the through-the thickness displacements 

distributions of the core are quadratic and cubic for the vertical and horizontal displacements and 

accelerations, respectively. Hence, the unknowns in this model consist of the coefficients of these 

polynomial together with the face sheet displacements. This model implicates the existence of higher-

order stress resultants in the core, which cannot be associated with any meaningful physical 

interpretation. Moreover, any constraints that are impose on the core may be defined in the overall 

sense only. The advantage of this formulation is the straight forward implementation of the variable 

stiffness of the core without resorting to an equivalent distribution of the mechanical stiffness 

properties as used in mixed formulation.  
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Fig. 1: Geometry, temperature and stress resultants: (a) Geometry (model I and II); (b) Temperature 
Distribution; (c) Stress resultants (model I). 


