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LOW RANK MULTIVARIATE REGRESSION

CHRISTOPHE GIRAUD

Abstract. We consider in this paper the multivariate regression problem, when the
target regression matrix A is close to a low rank matrix. Our primary interest in on the
practical case where the variance of the noise is unknown. Our main contribution is to
propose in this setting a criterion to select among a family of low rank estimators and
prove a non-asymptotic oracle inequality for the resulting estimator. We also investigate
the easier case where the variance of the noise is known and outline that the penalties
appearing in our criterions are minimal (in some sense). These penalties involve the
expected value of the Ky-Fan quasi-norm of some random matrices. These quantities
can be evaluated easily in practice and upper-bounds can be derived from recent results
in random matrix theory.

1. Introduction

We build on ideas introduced in a paper of Bunea, She and Wegkamp [7] for the multi-
variate regression problem

(1) Y = XA+ σE

where Y is a m× n matrix of response variables, X is a m× p matrix of predictors, A is
p×n matrix of regression coefficients and E is a m×n random matrix with i.i.d. entries.
We assume for simplicity that the entries Ei,j are standard Gaussian, yet all the results
can be extended to the case where the entries are sub-Gaussian.

An important issue in multivariate regression is to estimate A or XA when the matrix
A has a low rank or can be well approximated by a low rank matrix, see Izenman [12].
In this case, a small number of linear combinations of the predictors catch most of the
non-random variation of the response Y . This framework arises in many applications,
among which analysis of fMRI image data [9], analysis of EEG data decoding [2], neural
response modeling [6] or genomic data analysis [7].

When the variance σ2 is known, the strategy developed by Bunea et al. [7] for estimating

A or XA is the following. Writing ‖.‖ for the Frobenius norm and Âr for the minimizer

of ‖Y −XÂ‖ over the matrices Â of rank at most r, the matrix XA is estimated by XÂr̂,
where r̂ minimizes the criterion

(2) Critσ2(r) = ‖Y −XÂr‖2 + pen(r)σ2.
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Bunea et al. [7] consider a penalty pen(r) linear in r et provide clean non-asymptotic

bounds on ‖XÂr̂ −XA‖2, on ‖Âr̂ − A‖2 and on the probability that the estimated rank
r̂ coincides with the rank of A.

Our main contributions are first to exhibit a minimal sublinear penalty for the Criterion (2)
and second to propose and analyze a criterion to handle the case where σ2 is unknown.
Let us denote by q the rank of X and by Eq×n a q×n random matrix with i.i.d. standard
Gaussian entries. The penalties we introduce involve the expected value of the Ky-Fan
quasi-norm of the random matrix Eq×n, namely

Sr(Eq×n) =

√√√√
r∑

k=1

σ2
k(Eq×n)

where σk(Eq×n) stands for the k-th largest singular value of Eq×n. More precisely, in
the case where σ2 is known, we show that the penalty pen(r) = E[Sr(Eq×n)]

2 is minimal
(in some sense) for the Criterion (2). For the case of unknown variance, we prove a
non-asymptotic oracle-like inequality for the criterion

(3) Crit(r) = log(‖Y −XÂr‖2) + pen(r).

when

pen(r) ≥ − log

(
1−K

E(Sr(Eq×n))
2

nm− 1

)
, with K > 1.

The study of multivariate regression with rank constraints dates back to Anderson [1]
and Izenman [11]. The question of rank selection has only been recently addressed by
Anderson [1] in an asymptotic setting (with p fixed) and by Bunea et al. [7] in an non-
asymptotic framework. We refer to the latter article for additional references. In parallel,

a series of recent papers study the estimator Âℓ1

λ obtained by minimizing

‖Y −XÂ‖2 + λ
∑

k

σk(Â)

see among others Yuan et al. [18], Bach [3], Neghaban and Wainwright [15], Lu et al. [14]

and Rohde and Tsybakov [16]. Due to the ”ℓ1” penalty
∑

k σk(Â), the estimator Âℓ1

λ
has a small rank for λ large enough and it is proven to have good statistical properties
under some hypotheses on the design matrix X. We refer to Bunea et al. [7] for a detailed

analysis of the similarities and the differences between Âℓ1

λ and their estimator.

Our paper is organized as follows. In the next section, we give a few results on E(Sr(Eq×n))
2

and on the estimator XÂr. In Section 3, we analyze the simple case where the variance
σ2 is known, which gives us some insights for the Section 4 where the case of unknown
variance is tackled. In Section 5, we comment on the extension of the results to the case
of sub-Gaussian errors and we outline that our theory provides a theoretically grounded
criterion (in a non-asymptotic framework) to select the number r of components to be kept
in a principal component analysis. Finally, we carry out an empirical study in Section 6.
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2. A few facts on E(Sr(Eq×n))
2 and XÂr

2.1. Bounds on E(Sr(Eq×n))
2. The expectation E(Sr(Eq×n)) can be evaluated numer-

ically with a few lines of R-code. From a more theoretical point of view, we have the
following bounds.

Lemma 1. Assume that q ≤ n. Then for any r ≤ q, we have E(Sr(Eq×n))
2 ≥ r(n− 1/q)

and

E(Sr(Eq×n))
2 ≤ min

{
r (

√
n+

√
q)2 , nq −

q∑

k=r+1

(
√
n−

√
k)2, r +

r∑

k=1

(√
n+

√
q − k + 1

)2
}
.

When q > n the same result holds with q and n switched. In particular, for r = min(n, q),
we have

qn− 1 ≤ E(Smin(n,q)(Eq×n))
2 = E(‖Eq×n‖)2 ≤ qn.

Figure 1. In red r → E(Sr(Eq×n))
2, in black r → r (

√
n+

√
q)2, in blue

the upper-bound of Lemma 1, in green the lower bound. Left: q = n = 200.
Right: q = 200 and n = 1000.

Proof. For notational simplicity we write E′ = Eq×n. The case r = 1 follows from
Slepian’s Lemma, see Davidson and Szarek [8] Chapter 8. For r > 1, we note that

E(Sr(E
′))2 ≤ min

{
rE(S1(E

′))2 ,
r∑

k=1

E(σ2
k(E

′))

}
.
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The first upper bound E(Sr(Eq×n))
2 ≤ r(

√
n+

√
q)2 follows. For the second upper bound,

we note that
r∑

k=1

E(σ2
k(E

′)) ≤ E(‖E′‖2)−
q∑

k=r+1

E(σk(E
′))2.

The interlacing inequalities [10] ensure that σk(E
′
k) ≤ σk(E

′) where E′
k is the matrix made

of the k first rows of E′. The bound then follows from E(σk(E
′
k)) ≥

√
n−

√
k, see [8].

Let us turn to the third bound. The map E′ → σk(E
′) is 1-Lipschitz so, writing Mk for

the median of σk, the concentration inequality for Gaussian random variables ensures that
(Mk − σk(E

′))+ ≤ ξ+ and (σk(E
′)−Mk)+ ≤ ξ′+ where ξ+ and ξ′+ are the positive part of

two standard Gaussian random variables. As a consequence we have

E(σ2
k(E

′))− E(σk(E
′))2 + (Mk − E(σk(E

′)))2 = E
(
(σk(E

′)−Mk)
2
+

)
+ E

(
(Mk − σk(E

′))2+
)

≤ E(ξ
′2
+ ) + E(ξ2+) = 1,

and thus E(σ2
k(E

′)) ≤ E(σk(E
′))2 + 1.

Furthermore, the interlacing inequalities [10] ensure that σk(E
′) ≤ σ1(E

′
q−k+1). We can

then bound E(σk(E
′)) by

E(σk(E
′)) ≤

√
n+

√
q − k + 1

which leads to the last upper bound.

For the lower bound, we start from Sk(E
′)2 ≥ ‖E′‖2k/q (sum of a decreasing sequence)

and use again the Gaussian concentration inequality to get

E(‖E′‖2)− 1 = nq − 1 ≤ E(‖E′‖)2

and concludes that k(nq − 1)/q ≤ E(Sk(E
′))2. �

Finally, we mention that for large values of q and n asymptotics are provided by the
Marcenko-Pastur law. Actually, assume that q, n and r go to infinity with q/n → β < 1
and r/q → α < 1. Then, we have

E[Sr(Eq×n)]
2 ∼ nq

∫ (1+
√
β)2

xα

xfβ(x) dx

where

fβ(x) = (2πβx)−1
√

(x− (1−
√

β)2)((1 +
√

β)2 − x) 1[(1−
√
β)2,(1+

√
β)2]

and xα fulfills
∫ (1+

√
β)2

xα

xfβ(x) dx = α.
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2.2. Computation of XÂr. Next lemma provides a useful formula for XÂr.

Lemma 2. Write P for the projection matrix P = X(X∗X)+X∗, with (X∗X)+ the

Moore-Penrose pseudo-inverse of X∗X. Then, for any r ≤ q we have XÂr = (PY )r
where (PY )r minimizes ‖PY −B‖2 over the matrices B of rank at most r.

As a consequence, writing PY = UΣV ∗ for the singular value decomposition of PY , the
matrix XÂr is given by XÂr = UΣrV

∗, where Σr is obtained from Σ by setting (Σr)i,i = 0
for i ≥ r + 1.

Proof of Lemma 2. We note that that ‖PY − P (PY )r‖2 ≤ ‖PY − (PY )r‖2 and

rank(P (PY )r) ≤ r, so P (PY )r = (PY )r. In particular, we have (PY )r = XÃr, with

Ãr = (X∗X)+X∗(PY )r. Since the rank of XÂr is also at most r, we have

‖Y −XÃr‖2 = ‖Y − PY ‖2 + ‖PY − (PY )r‖2

≤ ‖Y − PY ‖2 + ‖PY −XÂr‖2 = ‖Y −XÂr‖2.
Since the rank of Ãr is not larger than r, we then have Ãr = Âr.

3. The case of known variance

In this section we revisit the results of Bunea et al. [7] for the case where σ2 is known.
This analysis will give us some insights for the case of unknown variance. Next the-
orem states an oracle inequality for the selection Criterion (2) with penalty fulfilling
pen(r) ≥ KE(Sr(Eq×n))

2 for K > 1. Later on, we will prove that the penalty pen(r) =
E(Sr(Eq×n))

2 is minimal in some sense.

Theorem 1. Assume that for some K > 1 we have

(4) pen(r) ≥ KE(Sr(Eq×n))
2 for all r ≤ min(n, q).

Then, when r̂ is selected by minimizing (2) the estimator Â = Âr̂ satisfies

(5) E

(
‖XÂ−XA‖2

)
≤ c(K) min

r

{
E(‖XA −XÂr‖2) + pen(r)σ2 + σ2

}

for some positive constant c(K) depending on K only.

The risk bound (5) ensures that the risk of the estimator Â is not larger (up to a constant)

than the minimum over r of the sum of the risk of the estimator Âr plus the penalty
term pen(r)σ2. This risk bound bears some similitude with the bound (4) of Theorem 6
in Bunea et al. [7]. Let us comment on the two main differences between the above
theorem and Theorem 6 in [7]. First, in Theorem 6 of [7], the condition on the penalty
is pen(r) ≥ 32(n + q)r for the Gaussian case. According to Lemma 1, our Condition (4)
is weaker and more importantly Proposition 1 below proves that it is minimal in some
sense. The second difference lies in the nature of the bound (5). Theorem 6 in [7] provides
a clean bound which holds with high probability, but the size of the latter probability is
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directly tuned by parameter µ of the penalty pen(r) = µ(n+ q)r. As a consequence, the
bound in Theorem 6 of [7] cannot be integrated to obtain a risk bound as (5). Theorem 1
is then an improvement of Theorem 6 of Bunea et al [7], and its proof is interesting since
its paves the way for the unknown variance case.

Proof of Theorem 1. The inequality Critσ2(r̂) ≤ Critσ2(r) gives

(6) ‖XÂ −XA‖2 ≤ ‖XÂr −XA‖2 + pen(r)σ2 + 2σ < E,XÂ −XÂr > −pen(r̂)σ2.

Next lemma provides an upper bound for the scalar product.

Lemma 3. Fix r ≤ min(n, q) and η > 0. Then, writing Ar for the best approximation of
A with rank at most r, we have for any k ≤ min(n, q)

2σ | < E,XÂk −XAr > | ≤ 1

1 + η
‖XÂk −XA‖2 + 1 + 1/η

(1 + η)2
‖XA−XAr‖2(7)

+(1 + η)2(1 + 1/η)σ2Ur + (1 + η)3σ2Sk(PE)2

where P = X(X∗X)+X∗ as in Lemma 1 and Ur is a random variable such that E(Ur) ≤
rmin(n, q).

Iterating twice the inequality ab ≤ a2/c+ cb2 gives

2σ | < E,XÂk −XAr > |

≤ 1

1 + η
‖XÂk −XA‖2 + 1 + 1/η

(1 + η)2
‖XA −XAr‖2 + (1 + η)2σ2< E,XÂk −XAr >

2

‖XÂk −XAr‖2
.

We write XAr = UΓrV
∗ for the singular value decomposition of XAr, with the convention

that the diagonal entries of Γr are decreasing. Since the rank of XAr is upper bounded by
the rank of Ar, the m× n diagonal matrix Γr has at most r non zeros elements. Assume
first that n ≤ q. Denoting by Ir the m×m diagonal matrix with (Ir)i,i = 1 if i ≤ r and

(Ir)i,i = 0 if i > r and writing I−r = I − Ir and B̂k = U∗XÂkV , we have

< E,XÂk −XAr >
2

‖XÂk −XAr‖2
=

< U∗PEV, B̂k − Γr >
2

‖B̂k − Γr‖2

=

(
< U∗PEV, Ir(B̂k − Γr) > + < U∗PEV, I−rB̂k >

)2

‖Ir(B̂k − Γr)‖2 + ‖I−rB̂k‖2

≤ (1 + η−1)
< U∗PEV, Ir(B̂k − Γr) >

2

‖Ir(B̂k − Γr)‖2
+ (1 + η)

< U∗PEV, I−rB̂k >2

‖I−rB̂k‖2
.

The first term is upper bounded by

< U∗PEV, Ir(B̂k − Γr) >
2

‖Ir(B̂k − Γr)‖2
≤ ‖IrU∗PEV ‖2 = Ur
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and the expected value of the right-hand side fulfills

E(Ur) = n‖IrU∗PU‖2 = n‖U∗PUIr‖2 ≤ nr.

Since the rank of I−rB̂k is at most k, the second term can be bounded by

< U∗PEV, I−rB̂k >2

‖I−rB̂k‖2
≤ sup

rank(B)≤k

< U∗PEV,B >2

‖B‖2 = Sk(U
∗PEV )2 = Sk(PE)2.

Putting pieces together gives (7) for n ≤ q. The case n > q can be treated in the same
way, starting from

B̂k − Γr = (B̂k − Γr)Ir + B̂kI−r

with Ir and I−r two n× n diagonal matrices defined as above. �

Combining the inequalities (6) and (7) with η = ((1 +K)/2)1/3 − 1 > 0, we obtain

η

1 + η
‖XÂ−XA‖2 ≤ ‖XÂr −XA‖2 + 2

1 + 1/η

(1 + η)2
‖XA −XAr‖2 + 2pen(r)σ2

+2(1 + η)2(1 + η−1)σ2Ur +
K + 1

2
σ2Sr(PE)2 − pen(r)σ2

+σ2

min(n,q)∑

k=1

(
K + 1

2
Sk(PE)2 − pen(k)

)

+

.

The map E → Sk(PE) is 1-Lipschitz and convex, so there exist a standard Gaussian
random variable ξ such that Sk(PE) ≤ E(Sk(PE)) + ξ+ and then

E

(
K + 1

2
Sk(PE)2 − pen(k)

)

+

≤ 1 +K

2
E

(
ξ2+ + 2ξ+E(Sk(PE)) − K − 1

K + 1
E(Sk(PE))2

)

+

≤ c1(K) exp(−c2(K)E(Sk(PE))2).

Since Sk(PE) is distributed as Sk(Eq×n), Lemma 1 gives that E(Sk(PE))2 ≥ kmax(n, q)−
1 and the series

min(n,q)∑

k=1

E

(
K + 1

2
Sk(PE)2 − pen(k)

)

+

can be upper-bounded by c1(K)ec2(K)
(
1− e−c2(K)

)−1
e−c2(K)max(n,q). Finally, E(Ur) ≤

rmin(n, q) is bounded by 1+pen(r) and ‖XA−XAr‖2 is smaller than E(‖XA−XÂr‖2),
so there exists some constant c(K) > 0 such that (11) holds. �

Next proposition shows that choosing a penalty pen(r) = KE(Sr(Eq×n))
2 with K < 1 can

lead to a strong overfitting.
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Proposition 1. Assume that A = 0 and that r̂ is any minimizer of the Criterion (2) with

pen(r) = KE(Sr(Eq×n))
2 for some K < 1. Then, setting α = 1 −

√
(1 +K)/2 > 0 we

have

P

(
r̂ ≥ 1−K

4
× nq − 1

(
√
n+

√
q)2

)
≥ 1− eα

2/2 e−α2 max(n,q)/2

1− e−α2 max(n,q)/2
.

A direct consequence of Proposition 1 is that the risk bound (5) cannot hold when Condi-
tion (4) is replaced by pen(r) = KE(Sr(Eq×n))

2 with K < 1. In this sense, Condition (4)
is minimal.

Proof Proposition 1. For simplicity we consider first the case where m = q. We set

Ω0 = {‖E‖ ≥ (1 − α)E(‖E‖)}
min(n,m)⋂

r=1

{Sr(E) ≤ (1 + α)E(Sr(E))} .

According to the Gaussian concentration inequality we have

P(Ω0) ≥ 1−
min(n,m)∑

r=1

e−α2
E(Sr(E))2/2

≥ 1− eα
2/2

min(n,m)∑

r=1

e−α2rmax(n,m)/2

where the last bound follows from Lemma 1. Furthermore, Lemma 2 gives that XÂr =
Yr(= Er), where Yr is the matrix M minimizing ‖Y −M‖2 over the matrices of rank at
most r. As a consequence, writing m∗ = min(n,m), we have on Ω0

Critσ2(m∗)− Critσ2(r) = KE(Sm∗(E))2 − (Sm∗(E)2 − Sr(E)2)−KE(Sr(E))2

≤
(
(1 + α)2 −K

)
E(Sr(E))2 −

(
(1− α)2 −K

)
E(Sm∗(E))2

≤ 2E(Sr(E))2 − 1−K

2
E(Sm∗(E))2

< 2r(
√
n+

√
m)2 − 1−K

2
(nm− 1).

We then conclude that on Ω0 we have r̂ ≥ 1−K
4 × nm−1

(
√
n+

√
m)2

.

When q < m, we start from ‖Y − XÂr‖2 = ‖Y − PY ‖2 + ‖PY − XÂr‖2 with P =
X(X∗X)+X∗ and follow the same lines, replacing everywhere E by PE and m by q. �

4. The case of unknown variance

4.1. Main results. We consider now the case where the variance σ2 is unknown. For
a given rmax ≤ min(n, q), we propose to select r̂ ∈ {1, . . . , rmax} by minimizing over
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{1, . . . , rmax} the Criterion (3), namely

Crit(r) = log(‖Y −XÂr‖2) + pen(r).

We note that the Criterion (3) is equivalent to the criterion

(8) Crit′(r) = ‖Y −XÂr‖2
(
1 +

pen′(r)
nm

)
,

with pen′(r) = nm(epen(r) − 1). This last criterion bears some similitude with the Crite-
rion (2). Indeed, the Criterion (8) can be written as

‖Y −XÂr‖2 + pen′(r)σ̂2
r ,

with σ̂2
r = ‖Y −XÂr‖2/(nm), which is the maximum likelihood estimator of σ2 associated

to Âr. To facilitate comparisons with the case of known variance, we will work henceforth
with the Criterion (8). Next theorem provides an upper bound for the risk of the estimator

XÂr̂.

Theorem 2. Assume that for some K > 1 we have both

(9) KE(Srmax
(Eq×n))

2 + 1 < nm

(10) and pen′(r) ≥ KE(Sr(Eq×n))
2

1− 1
nm(1 +KE(Sr(Eq×n))2)

, for r ≤ rmax.

Then, when r̂ is selected by minimizing (8) over {1, . . . , rmax}, the estimator Â = Âr̂

satisfies

(11) E(‖XÂ−XA‖2)

≤ c(K) min
r≤rmax

{
E(‖XÂr −XA‖2)

(
1 +

pen′(r)
nm

)
+ (pen′(r) + 1)σ2

}
.

for some constant c(K) > 0 depending only on K.

Theorem 2 is proved in the next subsection. Let us compare Theorem 2 with Theorem 1.
The two main differences lie in Condition (10) and in the form of the risk bound (11).
Condition (10) is more stringent than Condition (4). More precisely, when r is small
compared to q and n, both conditions are close, but when r is of a size comparable to
q or n, Condition (10) is much stronger than (4). In the case where m = q, it even
enforces a blow up of the penalty pen′(r) when r tends to min(n,m). This blow up
is actually necessary to avoid overfitting, since in this case the residual sum of squares

‖Y −XÂr‖2 tends to 0 when r increases. The second major difference between Theorem 2
and Theorem 1 lies in the multiplicative factor (1 + pen′(r)/nm) in the right-hand side
of the risk bound (11). We mention that such a term also appears in the univariate
regression framework with unknown variance, see Theorem 2 in Baraud et al. [4]. Due to
this term, the bound (11) is not (strictly speaking) an oracle bound. To obtain an oracle
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bound, we have to add the condition that there exists some positive constant C such that
pen′(r) ≤ Cnm for all r ≤ rmax. With such a condition, the bound (11) becomes an oracle

inequality which ensures that the risk of Â can be upper bounded (up to a constant) by

the minimum over r of the sum of the risk of Âr plus the penalty term pen′(r)σ2.

Let us discuss in more details the Conditions (9) and (10) and the condition pen′(r) ≤
Cnm. We have E(Sr(Eq×n))

2 < r(
√
n+

√
q)2 so the Conditions (9) and (10) are satisfied

as soon as

rmax ≤ nm− 1

K(
√
n+

√
q)2

and pen′(r) ≥ Kr(
√
n+

√
q)2

1− 1
nm(1 +Kr(

√
n+

√
q)2)

, for r ≤ rmax.

Furthermore, if

rmax ≤ α
nm− 1

K(
√
q +

√
n)2

for some 0 < α < 1,

then the penalty pen′(r) chosen by taking equality in (10) fulfills pen′(r) ≤ Cαnm with
Cα = α(1− α)−1. In terms of the Criterion (3), the Condition (10) reads

pen(r) ≥ − log(1−KE(Sr(Eq×n))
2/(nm− 1)).

When pen(r) is defined by taking equality in the above inequality, we have pen(r) ≈
Kr(

√
n+

√
q)2/(nm) for small values of r, see Figure 2. Finally, next proposition, shows

Figure 2. In green pen(r) = − log(1− E(Sr(Eq×n))
2/(nq − 1)), in black

pen(r) = r (
√
n +

√
q)2/(nq), in red pen′(r)/(nq) = E(Sr(Eq×n))

2/(nq −
1− E(Sr(Eq×n))

2)). Left: q = n = 200. Right: q = 200 and n = 1000.

that the Condition (10) on pen′(r) is necessary to avoid overfitting.
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Proposition 2. Assume that A = 0 and that r̂ is any minimizer of Criterion (8) over
{1, . . . ,min(n, q)− 1} with

(12) pen′(r) =
KE(Sr(Eq×n))

2

1− K
nmE(Sr(Eq×n))2

for some K < 1.

Then, setting α = (1−K)/4 > 0 we have

P

(
r̂ ≥ 1−K

8
× nq − 1

(
√
n+

√
q)2

)
≥ 1− 2eα

2/2 e−α2 max(n,q)/2

1− e−α2 max(n,q)/2
.

The proof of Proposition 2 is postponed to the end of the section. A direct consequence
of this proposition is that Theorem 2 cannot hold with Condition (10) replaced by (12).
In this sense, Condition (10) is minimal.

4.2. Proof of Theorem 2. To simplify the formulaes, we will note pen(r) = pen′(r)/(nm).
The inequality Crit′(r̂) ≤ Crit′(r) gives

‖XÂ−XA‖2(1 + pen(r̂))

≤ ‖Y −XÂr‖2 − σ2(1 + pen(r))‖E‖2 + pen(r)‖Y −XÂr‖2 + pen(r)‖E‖2σ2

+2(1 + pen(r̂))σ < E,XÂ−XA > −pen(r̂)‖E‖2σ2

≤
(
2σ < E,XAr −XÂr > −pen(r)σ2‖E‖2

)
+
+ (1 + 2pen(r))‖XA −XÂr‖2 + 3pen(r)‖E‖2

+(1 + pen(r̂))

(
2σ < E,XÂ−XAr > − pen(r̂)

1 + pen(r̂)
‖E‖2σ2

)

+

+ 2σpen(r̂) < E,XAr −XA > .

Dividing both side by 1 + pen(r̂), we obtain

‖XÂ−XA‖2 ≤ (1+2pen(r))‖XA−XÂr‖2+3pen(r)‖E‖2+2σ| < E,XA−XAr > |+∆r+∆r̂

where

∆k =

(
2σ| < E,XÂk −XAr > | − pen(k)

1 + pen(k)
‖E‖2σ2

)

+

.

We first note that E(‖E‖2) = nm and 2σE(| < E,XA−XAr > |) ≤ σ2 + ‖XA−XAr‖2.
Then, combining Lemma 3 with η = (K1/6 − 1) and the following lemma with δ = η gives

E(‖XÂ−XA‖2) ≤ c(K)
(
E(‖XA−XÂr‖2)(1 + pen(r)) + (1 + nmpen(r))σ2

)
,

for some c(K) > 0.

Lemma 4. Write P for the projection matrix P = X(X∗X)+X∗, with (X∗X)+ the
Moore-Penrose pseudo-inverse of X∗X. For any δ > 0 and r ≤ min(n, q) such that
(1 + δ)E(Sr(PE)) ≤

√
nm− 1, we have

(13)

E
(
(Sr(PE)2 − (1 + δ)3E(Sr(PE))2‖E‖2/(nm− 1))+

)
≤ 4 (1 + 1/δ) eδ

2/4e−δ2rmax(n,q)/4.
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As a consequence, we have

E

(
sup

r≤rmax

(
Sr(PE)2 − (1 + δ)3E(Sr(Eq×n))

2‖E‖2/(nm− 1)
)
+

)

≤ 4 (1 + 1/δ) eδ
2/4 e−δ2 max(n,q)/4

1− e−δ2 max(n,q)/4
.

Proof of the Lemma.

Writing t = (1+δ)E(Sr(PE))/E(‖E‖) ≤ 1, the map E → Sr(PE)− t‖E‖ is
√
2-Lipschitz.

Gaussian concentration inequality then ensures that

Sr(PE) ≤ t‖E‖ + E(Sr(PE) − t‖E‖) + 2
√

ξ

≤ t‖E‖ +
(
2
√

ξ − δ E(Sr(PE))
)
+
,

with ξ a standard exponential random variable. We then get that

Sr(PE)2 ≤ (1 + δ)t2‖E‖2 + 4(1 + 1/δ)
(√

ξ − δ E(Sr(PE))/2
)2

+

and

E
(
(Sr(PE)2 − (1 + δ)t2‖E‖2)+

)
≤ 4(1 + 1/δ)E

((√
ξ − δ E(Sr(PE)/2

)2

+

)

≤ 4 (1 + 1/δ) e−δ2E(Sr(PE))2/4.

The bound (13) then follows from E(Sr(PE))2 ≥ rmax(n, q)− 1 and E(‖E‖)2 ≥ nm− 1.

4.3. Proof of Proposition 2. As in the proof of Proposition 1, we restrict for simplicity
to the case where q = m, the general case being treated similarly. We write pen(r) =
pen′(r)/(nm) and for any integer r∗ ∈ [min(n,m)/2,min(n,m)− 1], we set

Ω∗ = {Sr∗(E) ≥ (1 − α)E(Sr∗(E))}
min(n,m)⋂

r=1

{Sr(E) ≤ (1 + α)E(Sr(E))} .

According to the Gaussian concentration inequality we have

P(Ω∗) ≥ 1− 2

min(n,m)∑

r=1

e−α2
E(Sr(E))2/2

≥ 1− 2eα
2/2

min(n,m)∑

r=1

e−α2rmax(n,m)/2
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where the last bound follows from Lemma 1. For any r ≤ r∗, we have on Ω∗

Crit′(r∗)− Crit′(r) = ‖E‖2(pen(r∗)− pen(r)) + Sr(E)2(1 + pen(r))− Sr∗(E)2(1 + pen(r∗))

≤ (1 + α)2(E(‖E‖)2(pen(r∗)− pen(r)) + E(Sr(E))2(1 + pen(r))(1 + α)2

−E(Sr∗(E))2(1 + pen(r∗))(1 − α)2.

Since (E(‖E‖)2 ≤ nm = KE(Sr(E))2(1 + pen(r))/pen(r), we have

Crit′(r∗)− Crit′(r) ≤ (1 + α)2(1−K)(1 + pen(r))E(Sr(E))2

−((1− α)2 − (1 + α)2K)(1 + pen(r∗))E(Sr∗(E))2

≤ (1 + α)2(1−K)(1 + pen(r∗))
[
E(Sr(E))2 − (1− (1 + α)−2)E(Sr∗(E))2

]
.

To conclude, we note that E(Sr(E))2 < r(
√
n +

√
m)2, E(Sr∗(E))2 ≥ (nm − 1)/2 and

1− (1 + α)−2 ≥ α, so the term in the bracket is smaller than

r(
√
n+

√
m)2 − 1−K

8
(nm− 1)

which is negative when r ≤ 1−K
8 × nm−1

(
√
n+

√
m)2

.

5. Comments and extensions

5.1. Link with PCA. In the case where X is the identity matrix, namely Y = A + E,
Principal Component Analysis (PCA) is a popular technique to estimate A. The matrix
A is estimated by projecting the data Y on the r first principal components, the number
r of components being chosen according to empirical or asymptotical criterions.

It turns out that the projection of the data Y on the r first principal components coincides

with the estimator Âr. The criterions (2) and (8) then provide a theoretically grounded
way to select the number r of components. Theorem 1 and Theorem 2 ensure that the risk

of the final estimate Âr̂ nearly achieves the minimum over r of the risks E(‖Âr −A‖2).

5.2. Sub-Gaussian errors. We have considered for simplicity the case of Gaussian er-
rors, but the results can be extended to the case where the entries Ei,j are i.i.d sub-
Gaussian. In this case, the matrix PE will play the role of the matrix Eq×n in the
Gaussian case. More precisely, combining recent results of Rudelson and Vershynin [17]
and Bunea et al. [7] on sub-Gaussian random matrices, with concentration inequality for
sub-Gaussian random variables [13] enables to prove an analog of Lemma 1 for E(Sr(PE))2

(with different constants). Then, the proof of Theorem 1 and Theorem 2 can be easily
adapted, replacing the Condition (4) by

pen(r) ≥ KE(Sr(PE))2, for r ≤ min(q, n),

and the Conditions (9) and (10) by KE(Srmax
(PE))2 < E(‖E‖)2 and

pen′(r) ≥ KE(Sr(PE))2

1−KE(Sr(PE))2/E(‖E‖)2 , for r ≤ rmax.
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Analogs of Proposition 1 and 2 also hold with different constants.

5.3. Selecting among arbitrary estimators. Our theory provides a procedure to select

among the family of estimators {Âr, r ≤ rmax}. It turns out that it can be extended to
arbitrary (finite) families of estimators {Aλ, λ ∈ Λ} such as the nuclear norm penalized

estimator family {Âℓ1
λ , λ ∈ Λ}. The most straightforward way is to replace everywhere

Âr by Âλ and pen(r) by pen(λ), with pen(λ) = pen(rank(Âλ)). In the spirit of Baraud et
al. [5], we may also consider more refined criterions such as

Critα(λ) = min
r≤rmax

{
(‖Y −XÂλ,r‖2 + ‖XÂλ −XÂλ,r‖2)

(
1 +

pen′(r)
nm

)}
,

where α > 0 and Âλ,r minimizes ‖B− Âλ‖ over the matrices B of rank at most r. Analogs
of Theorem 2 can be derived for such criterions, but we will not pursue in that direction.

6. Empirical study

6.1. Simulation setting. We perform the same simulation study as the one described
in Section 4.1 of Bunea et al. [7]. Our goal is to compare the estimator introduced in

Section 4 with the estimator ÂBSW proposed by Bunea, She and Wegkamp [7]. The latter

estimator is given by ÂBSW = Âr̂ where r̂ minimizes the criterion

Critλ(r) = ‖Y −XÂr‖2 + λ(n+ rank(X))r

with λ chosen by V -fold cross validation on a fine grid (here we set V = 5).

We recall briefly the simulation setting. The rows of the matrixX are drawn independently
according to a centered Gaussian distribution with covariance matrix Σi,j = ρ|i−j|, ρ > 0.
For a positive b, the matrix A is given by A = bBp×rBr×n, where the entries of the B
matrices are i.i.d. standard Gaussian. For r ≤ min(n, p), the rank of the matrix A is then
r with probability one. In the first experiment, m = 100, p = n = 25, r = 10, ρ varies
in {0.1, 0.5, 0.9} and b varies in {0.1, 0.2, 0.3, 0.4}. In the second experiment, m = 20,
p = 100, n = 25, r = 10, ρ varies in {0.1, 0.5, 0.9} and b varies in {0.1, 0.2, 0.3, 0.4}.

6.2. Results. We consider henceforth the selection Criterion (8) with

pen′(r) =
KE(Sr(Eq×n))

2

1− 1
nq (1 +KE(Sr(Eq×n))2)

.

We have no theoretical hint concerning the choice of K > 1 and there is actually no reason
for the existence of a universal ”optimal” constant K. We then choose K by 5-fold cross-

validation among a small grid of values between 1 and 3. We write ÂK for the resulting

estimator Âr̂.
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The results of the first experiment are reported in Figure 3 and those of the second
experiment in Figure 4. In the first column the estimated risk ratio

R(ρ, b) = E(‖XA−XÂK‖2)/E(‖XA −XÂBSW ‖2)
are plotted for each value of ρ and b. The boxplots of the second column compare the

performances of estimators XÂK and XÂBSW to that of the estimator XÂ10 that we
would used if we knew that the rank of A is 10. The boxplots give for each value of ρ the
distribution of the ratios

(14) ‖XA−XÂBSW ‖2/‖XA −XÂ10‖2 and ‖XA−XÂK‖2/‖XA−XÂ10‖2.
Finally, we plot in the last column the mean estimated ranks E(r̂K) and E(r̂BSW ) for each
value of b and ρ.

In Experiment 1 (large sample size), both estimators ÂK and ÂBSW performs very simi-

larly. In Experiment 2 (small sample size), the estimator ÂK performs significantly better

than ÂBSW . Most of the estimated risk ratios R(ρ, b) are smaller than 0.8 and the boxplots

show that the estimator ÂK is more stable in this experiment.
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Figure 3. Experiment 1. Top to bottom ρ = 0.1, 0.5, 0.9. The index K

refers to ÂK , the index BSW to ÂBSW . Left column: risk ratio R(ρ, b).
Center: boxplots of (14). Right: mean estimated rank E(r̂K) and E(r̂BSW ).
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Figure 4. Experiment 2. Top to bottom ρ = 0.1, 0.5, 0.9. The index K

refers to ÂK , the index BSW to ÂBSW . Left column: risk ratio R(ρ, b).
Center: boxplots of (14). Right: mean estimated rank E(r̂K) and E(r̂BSW ).


