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Abstract

It is proposed to identify the behavior of steel beams prior to and after the inception

of local buckling by using Digital Image Correlation. Full field measurements are

used to evaluate kinematic and static fields for determining constitutive laws. It

enables for the detection of local buckling inception and the evaluation of the post-

buckled behavior. Constitutive models are tuned by using measured Euler-Bernoulli

kinematics.
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1 Introduction

The description of the local behavior of steel beams in buildings, bridges,

off-shore platforms or other civil engineering structures is desirable when de-

signed against in-service or earthquake loadings. This task is performed by

utilizing various numerical techniques. The finite element method [1] is one

of the classical tools to analyze civil engineering structures. 2D [2,3] or even

3D [4,5] codes are run. Very detailed analyses are possible and require full

3D constitutive models. Simplified or semi-global analyses are another class of

methods in which the kinematic fields are described by resorting to generalized

degrees of freedom (e.g., displacements and section rotations in beams). The

(non linear) constitutive laws are then integrated over the height of the ele-

ment. Special, so-called multi-fiber, beam elements are then implemented [6–

9]. Lumped damage mechanics (LDM) is another way to describe the local

behavior of steel beams. It is based on an extension of the concept of plas-

tic hinges in beam calculations. For instance, it is able to account for local

buckling [10]. Up to now, the parameters of the constitutive law of hinges,

and more generally of beams, relied upon global data such as displacements

at few prescribed measurement points [11]. It is proposed to use full-field mea-

surement techniques tailored for the description of these structures as a set of

beams and joints to determine the constitutive behavior of steel beams.

Digital Image Correlation (DIC) is a photomechanical technique [12] allowing

for the measurement of displacement fields based on a series of digital images

of the surface of a specimen subjected to a specific loading history [13]. Re-

cent advances have been achieved through a novel formulation that enables
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one to decompose the searched displacement field onto a suited library of

such fields when dealing with beams (e.g., directly measuring the degrees of

freedom associated with Euler-Bernoulli kinematics [14]). The interest of this

experimental tool is that it provides full kinematic fields expressed in stan-

dard form for beam theories. Due to the fact that beam flexure is a statically

determinate problem, static fields are also accessible when the behavior of

the analyzed region is elastic. In particular, the exact loading conditions are

obtained directly, and not inferred from the information given by the stroke

and load transducers of the jack. The kinematics used herein is based upon

an Euler-Bernoulli hypothesis applied to different discretizations of the region

of interest. This hypothesis was also made in models, for instance developed

by Sohal and Chen [15] to analyze local buckling of tubes by using inertia

variations.

In the following, the procedure is illustrated by analyzing a flexural test on

a steel beam. In Section 2, the general principle used in digital image cor-

relation is briefly summarized and then particularized to an Euler-Bernoulli

kinematics. A priori measurement uncertainties of the correlation algorithm

are evaluated when applying a constant vertical displacement to the actual

analyzed region. Kinematic and static fields are deduced by considering two

different regions of interest in Section 3. Constitutive laws associated with

local buckling are then determined by using two different descriptions (Sec-

tion 4), namely, a global model in terms of generalized degrees of freedom and

a non-local model accounting for inertia variations.
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2 Kinematic measurements by DIC

Figure 1a shows a reference picture of a cantilever beam loaded at its end

section by an actuator. The beam has a length of 1.5 m, a square cross-section

of outer size 120 mm and inner size 112 mm. It is made of a conventional con-

struction steel (ASTM-A-500). The pictures were shot with a digital CMOS

camera (resolution: 3888 × 2592 pixels, digitization: 8 bits). Figure 1b corre-

sponds to the last deformed shape of the considered beam. A random texture

was applied onto the observed surface of the beam prior to the experiment to

improve the measurement uncertainty by creating local gray level fluctuations.

2.1 General principle

DIC allows for the measurement of displacement fields from the registration

(i.e., matching) of two pictures (Figure 1). The reference image, f (gray level

as a function of position xxx), and that of the beam in a given deformed state g

are related by

g(xxx + uuu(xxx)) = f(xxx) + b(xxx) (1)

where b(xxx) is noise induced by image acquisition, and uuu(xxx) an in-plane dis-

placement field. In the sequel, it is assumed that the noise level, b, is negligible

either because of its low amplitude with respect to those of f and g, or because

of its scale separation with significant components of the displacement field.

When b(.) = 0, Equation (1) is the local form of the “brightness conservation.”

The problem to address is the identification of the displacement field uuu from

the sole knowledge of pictures f and g. As such, the problem is ill-posed, unless

additional assumptions are made on the regularity of the displacement field so
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that the information is sufficient to determine uuu with a reasonable accuracy.

Let us introduce the following objective functional Φ operating on a priori

chosen displacement fields vvv

Φ2(vvv) =
∫∫

[g(xxx + vvv(xxx))− f(xxx)]2dxxx (2)

In the present case, the trial displacement vvv will be chosen as that corre-

sponding to an Euler-Bernoulli kinematics [14]. Functional Φ is non linear

with respect to the unknown displacement field uuu. Therefore, an iterative pro-

cedure is followed to evaluate uuu. A Taylor expansion of g up to the first order

is introduced in Equation (2)

Φ2
lin(vvv) =

∫∫
[g(xxx)− f(xxx) + vvv(xxx).∇∇∇g(xxx)]2dxxx (3)

Equation (3) corresponds to the linearized correlation residuals associated

with the brightness conservation. The displacement field is decomposed as a

linear combination of basis functions ηηηi(xxx)

vvv(xxx) = viηηηi(xxx) (4)

where Einstein’s convention is used, so that Φ2
lin is a quadratic form in the

unknown amplitudes vi. The extremality condition thus dictates, for all j,

[∫∫
(∇∇∇g.ηηηj)(xxx)(∇∇∇g.ηηηk)(xxx)dxxx

]
vk =

∫∫
(f − g)(xxx)(∇∇∇g.ηηηj)(xxx)dxxx (5)

This system is written in a matrix form as

[M ]{v̌} = {m} (6)

where {v̌} is a vector containing all the unknown components vi, [M ] and

{m} are known quantities dependent upon f , g, and ηηη. Successive iterations

consist in evaluating the displacement field vvv, correcting the deformed picture
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g by using the current estimate vvv until no significant change of the degrees of

freedom is observed. The evaluation of deformed images g(xxx + vvv(xxx)) requires

gray level interpolations, which in the present case are chosen to be bilinear.

2.2 Euler-Bernoulli Kinematics: Beam-DIC

In the following, the kinematics of a single beam is addressed. Let us con-

sider a straight bar (i.e., a beam element) of uniform cross section and length

`, which is loaded by axial forces and flexural moments about one axis of

its cross section. Six degrees of freedom are considered for the bar, namely,

two axial displacements (v1, v4), two vertical displacements (v2, v5) and two

rotations (v3, v6) about one axis of the cross section. The local coordinate

system (x, y, z) coincides with the principal axes of the cross section, with the

x-axis representing the centroidal axis of the beam element, and the z-axis

corresponding to the direction of the flexural moment.

The (chosen) displacement field in a beam element then reads

vvv(xxx) = [NNN e(xxx)]{v} (7)

where NNN e are the shape functions (N1, . . . N6) associated with the degrees of

freedom {v}t = {v1, . . . v6}

N1(x) = 1− x

`
, N2(x) = (2x3 − 3`x2 + `3)/`3

N3(x) = (x3 − 2`x2 + `2x)/`2 , N4(x) =
x

`
N5(x) = −(2x3 − 3`x2)/`3 , N6(x) = (x3 − `x2)/`2 (8)
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The rotation field θ is only caused by flexure

θ(x) =

[
dN̂

dx
(x)

]
{v̂} (9)

where v̂t = {v2 , v3 , v5 , v6} and [N̂(x)] = [N2(x) , N3(x) , N5(x) , N6(x)], and

the corresponding curvature κ reads

κ(x) =

[
d2N̂

dx2
(x)

]
{v̂} (10)

Last, the longitudinal strain field is expressed as

εxx(x, y) = [Be(x, y)]{v} (11)

where Be = {B1, . . . B6} reads

B1(x, y) = −1

`
, B2(x, y) = − y

`3
(12x− 6`)

B3(x, y) = − y

`2
(6x− 4`) , B4(x, y) =

1

`

B5(x, y) =
y

`3
(12x− 6`) , B6(x, y) = − y

`2
(6x− 2`) (12)

Therefore, the generalized degrees of freedom {v} give access to the displace-

ment, rotation, curvature and strain fields at any point of the element without

any additional post-processing step.

In practice, a region of interest (ROI) is chosen on the reference picture by

the user. The ROI is then subdivided into smaller elements. The proposed

approach is based upon first order Taylor expansions (3). When the (vertical)

displacements are large, it will not be robust. An initial field is needed to start

the calculation. A first evaluation of the vertical displacement field is obtained

by performing a classical correlation analysis in which, for each correlation

window, a uniform displacement is sought. An FFT algorithm is used and

a sub-pixel value is determined by interpolating the correlation function in
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the vicinity of its maximum [16]. At least four windows are used so that

the displacement field is interpolated by a cubic polynomial, or equivalently

by using decomposition (7). Each pixel of the ROI is then moved by the

estimated displacement. The subsequent displacement residuals are small so

that the first order approximation used in Equation (3) is robust enough. The

linear system (6) is implemented and solved. Convergence is reached when the

correction of each measured degree of freedom {ṽ}t = {v1, v2, `v3, v4, v5, `v6}
is less than 10−3 pixel between two iterations.

2.3 Performances of Beam-DIC

One way of evaluating the performance of a correlation algorithm (i.e., dis-

placement, rotation, curvature uncertainties) is to artificially move the ROI

by translation increments of sub-pixel value, and to assess the standard un-

certainty of measured quantities. By using the shift / modulation property of

Fourier transforms [17], sub-pixel values are prescribed. In the present case,

three quantities are evaluated, namely, the displacement, rotation and cur-

vature fields. The same ROI (ROI 2 of Figure 1, size: 2048 × 256 pixels) is

analyzed with different discretizations (i.e., the length of the element is var-

ied, and its height is constant) and for a vertical displacement of 0.5 pixel.

This last value generally leads to higher uncertainties when compared to other

sub-pixel values [18].

Figure 2 shows the standard uncertainties for the three considered quantities.

In the present case, the displacement uncertainty σu is independent of the el-

ement length ` and reaches very low values (of the order of 10−3 pixel). This

is due to the fact that many pixels are available to measure the displacement
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field described by very few degrees of freedom. The rotation uncertainty σθ

decreases as the element size increases. Being the first derivative of the vertical

displacement [see Equation (9)], this result is to be expected by dimensional

analysis (σθ ∝ σu/`). The linear fit shown in Figure 2 confirms this result.

Similarly, the curvature uncertainty σκ decays with the square of the element

size. This is due to the fact that the curvature is the second derivative of the

displacement field [see Equation (10)] and therefore σκ ∝ σu/`
2 (this trend

is depicted by the straight solid line in Figure 2). These results illustrate the

fact that it is not possible to capture very fine kinematic details (i.e., dis-

placement changes) with a high accuracy. There is always a trade-off between

displacement uncertainty and spatial resolution (i.e., element size), provided

the measured kinematics is well captured by the chosen kinematic basis [19].

3 Kinematic and static fields

The experiments are performed in such a way that the stroke of the jack is

controlled. The applied force is also measured by a load cell close to the jack.

Eleven pictures are shot, namely a reference picture and 10 load levels are

recorded. Figure 3a shows the corresponding global data. Since the present

situation is statically determinate, a first use of the correlation technique,

ironically, will yield the change of the flexural moment along the longitudinal

direction of the beam. This result is obtained by analyzing a ROI close to the

load application point (ROI 1, see Figure 1a). In a second step, by analyzing a

ROI containing the weld (ROI 2, see Figure 1a), the different fields introduced

in Section 2.2 are evaluated prior to and after local buckling inception.
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3.1 Elastic analysis: Load gauge

The measured displacement field, and more importantly, the curvature field

enable us to evaluate the flexural moment for any considered section of the

beam (as for any classical load cell). This is possible provided the behavior

of the region of interest remains elastic. In that sense, it is a “stress gauge”

as already developed to analyze a Flamant problem [20]. Consequently, a first

analysis consists in considering a ROI close to the zone where the load is

applied (ROI 1, see Figure 1a). The chosen kinematics corresponds to the

exact solution of a cantilever beam when the local behavior remains elastic.

In the present case, a single element (height: 256 pixels, length: 2048 pixels)

is considered. The advantage is that the measurement uncertainty is minimal

(see Figure 2) and therefore the sought degrees of freedom are estimated more

accurately. The curvature field then gives access to the flexural moment M as

a function of the local coordinate x

M(x)

EI0

= κ(x) (13)

where E is the Young’s modulus of the material, and I0 the inertia moment of

the cross-sectional area. When the six degrees of freedom {v}t = {v1, . . . v6}
are measured, the curvature field is obtained directly by using Equation (10).

Furthermore, the results are extrapolated outside the ROI by assuming that the

beam behavior is elastic everywhere. This hypothesis is not necessarily true,

and some deviations will be observed especially after local buckling inception.

Figure 3b shows the change of the curvature field for the ten load levels. Two

regimes are observed. For the first six levels, there is a gradual increase in

the slope of the curvature. Thereafter, the latter levels off and decreases. This
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phenomenon is in direct relationship with the change of the applied load with

the stroke (Figure 3a). The derivative of the curvature field is proportional to

the applied load normal to the beam. In Figure 4a, the latter is compared with

the force measured by the load cell. Even though there is a good correlation,

a non-linear relationship exists between the two quantities. This first result

shows that the closer the measurement region to the sample, the more relevant

the information obtained by a transducer, be it a load cell or a “stress gauge”

associated with a Beam-DIC procedure.

Two other outputs of this first analysis are given. First, the location of the

point for which the flexural moment vanishes is sought. Figure 4b shows the

change of the axial location of that point with the applied load. There is a

general correlation between the two data. However, the location clearly moves

and neglecting this effect would over-estimate the value of the flexural mo-

ment by a factor up to about 10%. The average correlation residual is shown

in Figure 5 for the ten analyzed pictures. Even though there is a gradual

degradation of its level, the order of magnitude remains the same. Therefore,

the previous measurements are deemed trustworthy.

3.2 Hinge detection

The rotation and deflection fields are analyzed in the sequel. One of the fea-

tures that will be analyzed concerns the results at the junction of the beam

with its base. This point corresponds to the location of the weld. Figure 6a

shows the change of the rotation field for the ten analyzed pictures. Two

regimes are observed. For the first five pictures, the rotation level close to

the weld is vanishingly small. Conversely, for the five last levels, there is a
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discontinuity of the extrapolated rotation at the junction. This phenomenon

corresponds to the effect of local buckling that is not fully captured by the

chosen kinematics. The displacement field is shown in Figure 6b. Again two

regimes are observed. The extrapolated displacement close to the junction is

first very small, i.e., continuous with respect to the kinematics of the base.

Later on, a deviation is observed and the point for which the extrapolated

displacement vanishes is shifted about 200 pixels away from the junction.

3.3 Kinematic field: Analysis of local buckling

The considered ROI is now moved close to the junction (ROI 2, see Figure 1a)

to analyze local buckling. The left edge of the ROI now coincides with the

estimated location of the junction (i.e., weld) between the beam and the base.

To discuss the choice of the discretization used hereafter, the last loading case

is first analyzed; local buckling has already occurred. First, only one element is

chosen and the kinematic field is sought. By analyzing the correlation residual

field (Figure 7), there is a clear deviation from the average level for the first

250 pixels. This is an indication that the measurement results in that zone

are not reliable. The main reason is that the kinematic hypothesis is not

consistent with the experimental phenomenon (i.e., local buckling) in this

localized region. When studying the rotation field (Figure 8a), a discontinuity

is again observed as in the case of extrapolated quantities of Section 3.1.

The reason for the observed discrepancy between measured and actual dis-

placements is mainly due to the fact that the chosen (Euler-Bernoulli) kine-

matics (with uniform elastic and geometric properties) is not able to properly

describe the phenomena occurring close to the junction. One alternative is
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then to only use measurements outside of this zone, as shown in Section 3.1,

and extrapolate the results up to the junction. Another choice is to resort to

more detailed analyses of the local field by using stereovision [21,22] since out

of plane motions may cause in-plane distorsions. It was followed to analyze

buckling in composite materials [23]. A last choice is to still use Euler-Bernoulli

kinematics, but not with the usual constraints related to the assumption of

elastic behavior. The last route is followed herein. It consists in discretizing the

ROI by using more than one element. Consequently, more degrees of freedom

are measured, i.e., the displacement field is richer. However, the measured

displacement field does not necessarily satisfy static admissibility. The latter

is recovered when the curvature and its derivative are continuous from one

element to the next one. Let us emphasize that the correlation algorithm only

enforces continuities of the displacements and rotations thanks to the chosen

degrees of freedom. The curvature, derivative of the curvature and normal

strains are not necessarily continuous functions when more than one beam

element is considered in the ROI.

In the following, the measured displacement field will be regularized by en-

forcing the continuity of the curvature field over the whole ROI. Moreover,

a continuity of the rotation and displacement at the weld is prescribed for a

discretization with more than two elements. This is possible by measuring the

rigid body motion of the base with the same type of correlation scheme as

that discussed in Section 2.1. Last, over one part of the ROI where elasticity

is likely to occur, additional constraints are prescribed to describe the conti-

nuity of the curvature derivative and normal strains. The regularization of any

quantity is performed by using Lagrange multipliers. All the choices discussed

above have to be validated.
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The performance of the correlation algorithm is evaluated by following the

same procedure as in Section 2.3, namely, for a constant vertical displacement

of 0.5 pixel. In Figure 2, the results show that the same level of uncertainty

is achieved for displacements, rotations and curvature, irrespective of the ele-

ment size `. This is to be expected since the additional constraints lead to an

equivalence of any discretization when the continuity of the curvature, its first

derivative and the normal strains are continuous over the whole length of the

ROI. The fact that this property is recovered validates the implemented regu-

larization. Last, when only the curvature is constant over the whole ROI, the

displacement uncertainty level is virtually constant. The rotation uncertainty

decays approximately with the square root of the element size (σθ ∝ 1/
√

`),

and the curvature with the element size raised to the power −1.2 (σκ ∝ 1/`1.2).

Both uncertainties reach the same level as in the two other analyzed cases

when the element length is equal to 2048 pixels. Therefore, an intermediate

response is observed between the two limit cases analyzed previously. These

last results are not shown in Figure 2 for the sake of clarity. It is concluded

that the higher the number of implemented continuity conditions, the less un-

certain the measurements, provided the kinematic basis contain the field to be

evaluated.

The first analysis concerns the choice of the discretization when the displace-

ment field is not “regularized” over the whole length of the ROI. This is a cru-

cial step since the smaller the element, the better the description of a complex

displacement field, yet the higher the uncertainty level (Figure 2). Figure 8b

shows the rotation field when the ROI is discretized with 1 to 16 elements.

When less than two elements are used, no regularization is implemented. The

consequence is that the rotation at the left end of the ROI is not equal to the
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value corresponding to the rotation of the base. Moreover, the derivative of

the rotation (i.e., the curvature) is not continuous at the middle of the ROI

when two elements are used. When 4 or 8 elements are used, virtually the

same rotation field is obtained. Last, when 16 elements are used, fluctuations

occur, thereby indicating that the evaluation is no longer trustworthy. When

the correlation residuals are analyzed (Figure 9), there is a continuous de-

crease of the average residual over the whole ROI. Conversely, there is a slight

increase when the average is performed over the first 256 pixels for 4 elements.

This effect is due to the regularization that is performed starting with four

elements. The average residual then decreases again. Both averages level off

for discretizations with more than 8 elements when the curves showing the

trends are studied. Consequently, the number of elements is chosen equal to 8

elements in all subsequent analyses to limit spurious fluctuations.

Another question to address concerns the zone where the regularization is

applied. On the one hand, if the zone is too large, a deviation is to be expected.

On the other hand, if the zone is too small, the measurements might be noisier.

In the present case, 8 elements are considered and different lengths of the

right part of the ROI are regularized, namely, the curvature, its derivative

and the normal strains are continuous. In that part, it is assumed that the

beam behavior is elastic. Over this zone, it would be equivalent of using a

single Euler-Bernoulli beam element. Figure 10a shows the measured rotation

field as a function of the fraction of regularized ROI. The results are very close

when up to 75% of the ROI is regularized. Beyond this value, there is a clear

change of the measured rotation field. The corresponding correlation residuals

also start to increase, especially in the left part of the beam. In the following,

a regularization over 75% of the ROI is chosen.
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The rotation field is now studied for the ten analyzed load levels (Figure 10b).

As the stroke increases, a gradual deviation from an elastic response is ob-

served. For the last four levels, there is a rotation localization induced by lo-

cal buckling. This result illustrates the fact that the rotation capacity of steel

beams is undermined by the inception and development of local buckling. The

measured rotation fields are now used to identify different constitutive laws.

To perform the analysis, two inputs are needed, namely, the rotation field and

extrapolated curvature field in an elastic region, which is proportional to the

flexural moment.

4 Constitutive law of a beam subject to local buckling

The previous measurements are now used to identify two different constitutive

equations depending on the type of hypothesis made to describe local buckling.

4.1 First model: Lumped constitutive law

If the experiments are performed in order to analyze the beam behavior when

used in frames, a simple yet powerful model consists in “lumping” all the

non-linear processes induced by plasticity and local buckling onto the weld

section. This type of assumption is made in the framework of Lumped Dam-

age Mechanics [24–26]. It corresponds to an extension of the concept of plastic

hinges for which constitutive laws describe the flexural moment / section ro-

tation relationship. This analysis is possible in the present case by using the

extrapolated rotation (Figure 6a) and the corresponding curvature fields (Fig-

ure 3b). For the section rotation at the weld, the value of the base rotation is
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subtracted from its extrapolated value. The corresponding flexural moment is

proportional to the value of the extrapolated curvature field at the location of

the weld.

Figure 11 shows the results obtained with the present procedure. Two regimes

are observed. For the first five load steps, the rotation level is very small and

believed to be in the uncertainty range associated with the extrapolation pro-

cedure. Conversely, for the last five load levels, there is a clear change of the

rotation level induced by local buckling. With this type of information, there

is no clear indication of a plastic regime prior to local buckling. However, it

clearly shows the degradation of the rotation capacity of steel beams induced

by local buckling. When compared with Figure 3a, there is a significant differ-

ence in terms of behavior, in particular for the load levels where local buckling

occurs.

In more quantitative terms, the following model can be used to describe the

loading part of the experiment. The elastic part is such that

M = EI0κ and Θ = 0 (14)

where Θ denotes the section rotation at the clamp. These relationships are

true as long as M < Mu, Mu being the ultimate flexural moment. When the

flexural moment becomes equal to Mu, a plastic hinge develops due to local

buckling. Beyond a critical angle Θ0, softening occurs. This last part of the

behavior is described by a damage variable D lumped at the clamp

M = Mu(1−D) when Θ > 0 (15)

with

D = ∆〈Θ−Θ0〉 (16)
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where 〈.〉 are Macauley’s brackets. By using a least squares fit, the following

values are determined: Mu/EI0 = 26.2 × 10−6 ± 0.4 × 10−6 pixel−1, Θ0 =

0.02±0.004, and ∆ = 9±4. The identification result is shown in Figure 11. The

lumped model is able to capture the main features observed experimentally.

4.2 Second model: Piece-wise constant inertia

In the present approach, it is assumed that local buckling is described by a

change of the beam inertia, to be determined, over an unknown length `lb close

to the weld (Figure 12). An Euler-Bernoulli hypothesis is made to analyze the

experiments. It is assumed that the rotation and curvature fields are both

continuous, in a similar way as during the measurement stage. Some of these

hypotheses can also be found in Refs. [15,27]. In the first part of the beam

where the inertia is denoted by Ĩ ≤ I0 (i.e., 0 ≤ x ≤ `lb), the rotation field

reads

θ(x) =
P

EĨ

(
Lpx− x2

2

)
+ θ0 (17)

where θ0 denotes the rotation of the base, and Lp the length leading to a

continuous curvature field. In the second part (x > `lb), the rotation field

becomes

θ(x) =
P

EI0

[
L(x− `lb)− x2 − `2

lb

2

]
+

P

EĨ

(
Lp`lb − `2

lb

2

)
+ θ0 (18)

where the continuity of the curvature when x = `lb yields the additional con-

straint

L− `lb

I0

=
Lp − `lb

Ĩ
(19)

For each load level, two unknowns (Ĩ and `lb) are tuned by least squares mini-

mization between the measured rotation field (Figure 10b) and that described
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by Equation (18). The length L is deduced from the static analysis of Sec-

tion 3.1, see Figure 4b, and the value P/EI0 from the analysis of the rotation

in the zone where it is assumed to be elastic. In the present case, the value for

`lb varies from 0.26LROI for the fifth load level to 0.24LROI for the last one,

where LROI denotes the length of the region of interest (here 2048 pixels).

This last value is assumed to be valid for the whole analysis, and is about

twice the distance of the skeletal point shown in Figure 6b.

Figure 13a shows the results obtained with the present procedure. There is a

very good agreement between the measured and identified rotation fields. The

results obtained so far are recast as a non-local damage model for which the

inertia degradation is directly described by a damage parameter D̃

Ĩ = I0(1− D̃) (20)

so that when D̃ = 0, there is no buckling, and when D̃ = 1, the rotation

capacity of the beam is completely degraded. The quantity `lb is then the

“internal length” of the non-local model, here assumed to be constant. Within

this new framework, it is also possible to identify the change of the damage

parameter D with the average curvature κ̃ over the length `lb (Figure 13b).

Moreover, the following law is used to fit the data

D̃ = 1− exp

[
−

(〈κ̃− κth〉
κ0

)m]
(21)

where κ0 is a scale parameter, and κth a threshold value below which no

degradation (i.e., local buckling) occurs. A very good description of the ex-

perimental data is obtained by using this expression when κ0 = 2.2× 10−6 ±
10−6 1/pixel, κth = 1.9× 10−5 ± 2× 10−6 1/pixel, and m = 0.34 ± 0.05. The

latter ones were determined by resorting to a least squares fit.
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5 Summary

The analysis of Euler-Bernoulli displacement fields based on digital image

correlation is used to identify constitutive models of steel beams prior and

after the inception of local buckling. When the local behavior is elastic, it

allows one to measure the flexural moment. Otherwise, this kinematics is able

to describe local buckling, in particular in terms of rotation field. With this

information at hand, two models are identified. The first one corresponds

to a “lumped” point of view that may be used to model frames within the

framework of lumped damage mechanics. The second model is non-local for

which the growth law of the damage variable is determined, as well as the

internal length, which is virtually constant during the whole development of

local buckling.

The definition of a suited library (i.e., with mechanical content as close as pos-

sible to the real experiment) of displacement field reveals to be a key ingredient

for an accurate and reliable evaluation of the beam kinematics in terms of gen-

eralized degrees of freedom. When applied to a real experiment, the feasibility

is demonstrated by using pictures obtained with a semi-professional camera.

It is also shown that when one departs from the kinematic hypotheses made

herein, the correlation residuals are a good error indicator. In present case, it

allows for the detection of local buckling and its effect on the rotation capacity

of steel beams. By moving artificially pictures, a displacement uncertainty of

the order of one µm is achieved with the chosen parameters.

The same approach can be applied to other types of structures such as frames,

or other types of materials such as reinforced concrete or wood. When de-
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parting from beam kinematics, the approach developed herein is generic and

is applicable to cases where closed-form solutions exist [28,29], or numerical

solutions [30] are computed. The key ingredient is to taylor the measured

kinematics as closely as possible to the experiment, and to the (non linear)

constitutive law.
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Displacement Measurement Technique for Euler-Bernoulli Kinematics, Opt.

Lasers Eng. 47 (2009) 495-503.

[15] I. S. Sohal and W.-F. Chen, Local buckling and sectional behavior of fabricated

tubes, ASCE J. Struct. Eng. 113 [3] (1987) 519-533.

[16] F. Hild, B. Raka, M. Baudequin, S. Roux and F. Cantelaube, Multi-Scale

Displacement Field Measurements of Compressed Mineral Wool Samples by

Digital Image Correlation, Appl. Optics IP 41 [32] (2002) 6815-6828.
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Fig. 1. Cantilever beam in its reference (a) and deformed (b) state for the last load

level. The two regions of interest (ROIs) analyzed herein are shown on the reference

picture. The picture resolution is 3888× 2592 pixels with an 8-bit digitization. The

physical size of 1 pixel is 0.39 mm.
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correlation algorithms are compared. The first one (solid line and solid symbols) is
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Fig. 3. Applied load versus stroke for the analyzed experiment (a). Each measure-

ment point is labeled by a letter. Curvature fields for the ten applied load levels

analyzed herein (b). The location of ROI 1 is shown and the fields are extrapolated

outside the ROI by assuming an elastic behavior.
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Fig. 4. Derivative of the curvature vs. measured load (a). Location of the point

where the flexural moment vanishes vs. measured load (b).
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Fig. 5. Average correlation residuals Φ as a function of the applied load.
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Fig. 6. Rotation fields for the ten load levels (a). The location of ROI 1 is shown

and the fields are extrapolated outside the ROI by assuming an elastic behavior.

The location of the weld is also depicted by the dashed line on the left. Deflection

fields for the ten load levels (b). The location of ROI 1 is shown and the fields are

extrapolated outside the ROI by assuming an elastic behavior.
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Fig. 7. Residual field for the last load level for ROI 2 containing the zone where

local buckling occurs.
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Fig. 8. Rotation field for the last load level (a). A rotation discontinuity is observed

on the left end of the ROI. The location of the weld is depicted by the dashed line.

Rotation field for the last load level when different numbers of elements are used

(b). When at least four elements are used, the measurement is regularized on 75%

of the beam length and the base rotation is prescribed on the left part of the ROI.
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Fig. 9. Average residuals (in gray levels) as a function of number of beam elements.

Two zones are considered, the first 256 pixels and the whole 2048-pixel ROI to

evaluate the average value. The curves depict trends in terms of change of the

correlation residual with the chosen discretization.

37



-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0 0.2 0.4 0.6 0.8 1

0.25

0.5

0.625

0.75

0.875

Normalized ROI coordinate

R
o
ta

ti
o
n

(a)

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0 500 1000 1500 2000

ROI coordinate (pixels)

R
o
ta

ti
o
n

a

b

c

d

e

f

g

h

i

j

(b)

Fig. 10. Rotation field for the last load level when different percentages of the right

part of the ROI length are regularized (a). Rotation fields for the ten analyzed load

levels (b). The dashed line depicts the location where the regularization starts.
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Fig. 13. Rotation fields for the ten analyzed load levels (b). Comparison between ex-

perimental and predicted rotations when a constant inertia degradation is assumed
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dashed line corresponds to the best fit with the damage law (21).
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