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For a large class of absolutely continuous probabilities P it is shown that, for r > 0, for n-optimal L r (P )-codebooks α n , and any Voronoi partition V n,a with respect to α n the local probabilities P (V n,a ) satisfy P (V a,n ) ≈ n -1 while the local L r -quantization errors satisfy Vn,a x -

as long as the partition sets V n,a intersect a fixed compact set K in the interior of the support of P .

Introduction

The theory of quantization of probability distributions has its origin in electrical engineering and image processing where it plays a decisive role in digitizing analog signals and compressing digital images (see ). More recently it has also found many applications in numerical integration (see, e.g., [START_REF] Chernaya | An asymptotic sharp estimate for the remainder of weighted cubature formulas that are optimal on certain classes of continuous functions[END_REF], [START_REF] Chernaya | On the optimization of weighted cubature formulae on certain classes of continuous functions[END_REF], [START_REF] Pagès | Voronoi Tessellation, space quantization algorithms and numerical integration[END_REF], [START_REF] Pagès | A space quantization method for numerical integration[END_REF]) and mathematical finance (see, e.g., [START_REF] Pagès | Optimal quantization for finance: from random vectors to stochastic processes[END_REF] for a survey).

Optimal (vector) quantization deals with the best approximation of an R dvalued random vector X with probability distribution P by R d -valued random vectors which attain only finitely many values. If r > 0 and x r dP < ∞ and n ∈ N then the n th -level L r (P )-quantization error is defined to be (1.1) e n,r = e n,r (P ) = inf xq(x) r dP (x)

1/r q : R d → R d
Borel measurable with card(q(R d )) ≤ n

where . is a norm on R d and card(A) stands for the cardinalility of A.

It is known that the above infimum remains unchanged if the Borel functions q : R d → R d are chosen to be projections onto their range α := q(R d ) ⊂ R d with card(α) ≤ n which obey a nearest neighbour rule, i.e. q(x) = The above infimum is in fact a minimum which is attained at an optimal "codebook" α n (see [START_REF] Graf | Foundations of quantization for probability distributions[END_REF], Theorem 4.12). If P is absolutely continuous with density h ≥ 0 and x r+δ dP (x) < ∞ for some δ > 0 then

(1.2) lim n→∞ n 1/d e n,r (P ) = Q r (P ) 1/r for a positive real constant Q r (P ) (see Zador [START_REF] Zador | Asymptotic quantization error of continuous signals and the quantization dimension[END_REF], Bucklew-Wise [START_REF] Bucklew | Multidimensional asymptotic quantization theory with r-th power distortion measures[END_REF] and Graf-Luschgy [START_REF] Graf | Foundations of quantization for probability distributions[END_REF], Theorem 6.2). Thus the sharp asympotics of the sequence e r n,r n∈N is completely elucidated up to the numerical value of the constant Q r (P ).

A famous conjecture of Gersho [START_REF] Gersho | Asymptotically optimal block quantization[END_REF] states that the bounded Voronoi-cells of L r -optimal codebooks α n have asymptotically the same L r -inertia and a normalized shape close to that of a fixed polyhedron H as n tends to infinity.

In particular, this conjecture suggests that the local L r -quantization errors (= L r -local inertia) satisfy (1.3) Vn,a

xa r dP (x) ∼

1 n e r n,r , a ∈ α n , where a n ∼ b n abbreviates a n = ε n b n with lim

n→∞ ε n = 1.
So far, this last statement has only been proved for certain parametric classes of one dimensional distributions P (see Fort-Pagès [START_REF] Fort | Aymptotics of optimal quantizers for some scalar distributions[END_REF]).

In the present paper we will investigate the asymptotic behaviour for n → ∞ of P (W (a | α n )) and W (a|αn) xa r dP (x) for a large class of distributions on R d including the non-singular normal distributions. To derive a conjecture for the asymptotic size of P (W (a | α n )), one can use the following heuristics. The empirical measure theorem (see [START_REF] Graf | Foundations of quantization for probability distributions[END_REF], Theorem 7.5) states that the empirical probabilities 1 =⇒ P as well (see [START_REF] Pagès | Voronoi Tessellation, space quantization algorithms and numerical integration[END_REF][START_REF] Pagès | A space quantization method for numerical integration[END_REF] but also [START_REF] Chernaya | An asymptotic sharp estimate for the remainder of weighted cubature formulas that are optimal on certain classes of continuous functions[END_REF][START_REF] Chernaya | On the optimization of weighted cubature formulae on certain classes of continuous functions[END_REF] or [START_REF] Graf | Foundations of quantization for probability distributions[END_REF], Equation (7.6)), it is reasonable to conjecture that We were not able to prove this asymptotical behavior of P (V n,a ) in its sharp and general form. But we will show that, for a large class of absolutely continuous distributions P , there are real constants c 1 , c 2 , c 3 , c 4 > 0 only depending on P such that

∀ K ⊆ R d , compact, ∃ n K ∈ N, ∀ n ≥ n K , ∀ a ∈ α n K ∩ W (a | α n ) = ∅ =⇒ c 1 n essinf h |W 0 (a | αn) r r+d ≤ P (V n,a ) ≤ c 2 n esssup h |W (a | αn) r r+d , (1.6) where (1.7) W 0 (a | α n ) = x ∈ R d | x -a < d(x, α n \ {a}) ,
and

(1.8) c 3 n e r n,r ≤ Vn,a
xa r dP (x) ≤ c 4 n e r n,r .

The proofs mainly rely on the following two ingredients:

⊲ A "differentiated Zador's theorem" (1.9) e r n,r -e r n+1,r ≈ n -(1+ r d )
(where a n ≈ b n means that the sequence an bn is bounded and bounded away from 0) and ⊲ Two micro-macro inequalities which relate the pointwise distance of a quantizer to the global mean quantization error induced on a distribution P by this quantizer: For b ∈ 0, 1 2 fixed, there is a constant c 5 > 0 with

(1.10) ∀ n ∈ N, ∀ x ∈ R d , c 5 e r n,r -e r n+1,r ≥ d(x, α n ) r P (B(x, bd(x, α n )))
and

(1.11) ∀ n ≥ 2, e r n-1,r -e r n,r ≤ Vn,a d(x, α n \ {a}) r -x -a r dP (x).
We have stated and established these inequalities in earlier papers: see especially [START_REF] Graf | Distortion mismatch in the quantization of probability measures[END_REF]; for a preliminary version of (1.11), see [START_REF] Graf | Rates of convergence for the empirical quantization error[END_REF] and for a one-sided first version of (1.9), see Lemma 3.2 in ( [START_REF] Pagès | Asymptotics of the maximal radius of an L r -optimal sequence of quantizers[END_REF]). They were somewhat hidden as technical tools inside proofs but their full impact will become clear here.

The remaining part of the introduction contains a sketch of the contents of the paper. In Section 2 we indicate the proofs of the above micro-macro inequalities and the (weak) asymptotics of quantization error differences. In Section 3 we show that absolutely continuous probabilities P on R d , which have a peakless, connected and compact support as well as a density which is bounded and bounded away from 0 on the support, have asymptotically uniform local quantization errors (Theorem 3.1). In Section 4 we show that absolutely continuous probabilities whose densities are the composition of a decreasing function on R + and a norm or a quasi-concave function outside a compact set satisfy a sharpened first micro-macro inequality of the following type:

There exist a constant c > 0 such that, for every K ⊂ R d compact,

∃n K ∈ N, ∀n ≥ n K , ∀x ∈ K, c n -1/d h(x) -1 r+d ≥ d(x, α n ).
Assuming this inequality we derive asymptotic estimates for the probabilities of the quantization cells and local quantization errors (Theorem 4.1). Section 5 deals with the local quantization behaviour of certain Borel probabilities P in the interior of their support. The results are stated for arbitrary absolutely continuous probabilities with density h satisfying the moment condition

x r+δ h(x) dλ(x) < +∞ for some δ > 0. They are particularly useful if the density h is bounded and bounded away from 0 on each compact subset of the interior of the support of P . Under these very general assumptions the results are quite similar to those given in Section 4 but the given constants are a little bit less effective (Theorem 5.1). 

Additional notation:

• For x ∈ R d and ρ > 0 B(x, ρ) = B . (x, ρ) = {y ∈ R d y -x <

Important inequalities in quantization

In the following . denotes an arbitrary norm on R d and P is always an absolutely continuous Borel probability on R d which has density h with respect to the d-dimensional Lebesgue measure λ d . Let r ∈ (0, +∞) be fixed. We always assume that there is a δ > 0 with

x r+δ dP (x) < +∞. For every n ∈ N, let e n,r denote the n th -level L r (P )-quantization error. Then we have (2.12) e r n,r = e r n,r

(P ) = inf d(x, α) r dP (x) α ⊂ R d , card(α) ≤ n .
For each n ∈ N, we choose an arbitrary n-optimal set α n ⊂ R d , i.e. a set

α n ⊂ R d with card(α n ) ≤ n and (2.13) e r n,r = d(x, α n ) r dP (x).
It is well known that, under the above conditions, such a set exists and satisfies

(2.14) card(α n ) = n.
In this section we will state the fundamental inequalities which relate the behaviour of the distance function d(•, α n ) to the difference e r n,re r n+1,r of successive r-th powers of the quantization errors. Using these inequalities we will be able to determine the (weak) asymptotics of e r n,re r n+1,r .

Micro-macro inequalities

Proposition 2.1 (First micro-macro inequality). For every b ∈ 0, 1 2 , for all n ∈ N and all x ∈ R d

(2.15) e r n,r -e r n+1,r ≥ 2 -r -b r d(x, α n ) r P (B(x, bd(x, α n ))).
Proof. The proof can be found as part of the proof of Theorem 2 in [START_REF] Graf | Distortion mismatch in the quantization of probability measures[END_REF].

Remarks. (a) Inequality (2.15) holds for arbitrary Borel probabilities P on R d for which x r dP (x) < ∞. P need not be absolutely continuous.

(b) By the differentiation theorem for absolutely continuous measures P = hλ d and the fact (see [START_REF] Delattre | Quantization of probability distributions under norm-based distortion measures[END_REF]) that lim n→∞ d(x, α n ) = 0 for every x ∈ supp(P ), we know that, for λ d -a.e. x ∈ R d , (2. [START_REF] Pagès | Asymptotics of the maximal radius of an L r -optimal sequence of quantizers[END_REF])

lim n→∞ P (B(x, bd(x, α n ))) λ d (B(x, bd(x, α n ))) = h(x).
Having this in mind we can rephrase (2.15) as follows:

(2.17)

∀ n ∈ N, ∀ x ∈ R d , c 5 e r n,r -e r n+1,r ≥ d(x, α n ) r+d P (B(x, bd(x, α n ))) λ d (B(x, bd(x, α n )))
,

where c 5 = 2 -r -b r b d λ d (B(0, 1)) -1
(with the convention 0 • undefined = 0.) Suppose that there is a constant c 9 > 0 such that (2.18)

∃n 0 ∈ N, ∀n ≥ n 0 , ∀x ∈ R d , P (B(x, bd(x, α n ))) λ d (B(x, bd(x, α n ))) ≥ c 9 h(x).
Then, for c 10 = c 5 c -1 9 , we have

(2.19) ∀ n ≥ n 0 , ∀x ∈ R d , c 10 e r n,r -e r n+1,r ≥ d(x, α n ) r+d h(x).
Proposition 2.2 (Second micro-macro inequality). One has (2.20)

∀ n ≥ 2, ∀ a ∈ α n , e r n-1,r -e r n,r ≤ W 0 (a | αn) (d(x, α n \ {a}) r -x -a r ) dP (x).
where W 0 (a | α n ) is defined by (1.7).

Proof. The proof is part of the proof of [START_REF] Graf | Distortion mismatch in the quantization of probability measures[END_REF], Theorem 2.

Remark. Inequality (2.20) holds for arbitrary Borel probabilities P on R d with x r dP (x) < +∞.

A differentiated version of Zador's theorem

To use the preceding propositions for concrete calculations it is essential to know the asymptotic behaviour of the error differences e r n,re r n+1,r . We have the following result in that direction.

Proposition 2.3. If P is absolutely continuous on R d then e r n,r -e r n+1,r ≈ n -(1+ r d ) .
Proof. In the proof of Theorem 2 in [START_REF] Graf | Distortion mismatch in the quantization of probability measures[END_REF], it is shown that there is a constant c 11 > 0 such that ∀n ∈ N, e r n,re r n+1,r ≤ c 11 n -(1+r/d) .

To obtain the lower bound for e r n,re r n+1,r we proceed as follows. It follows from (2.16) and Egorov's Theorem (see [START_REF] Cohn | Measure Theory[END_REF], Proposition 3.1.3) that there exists a real constant c > 0 and a Borel set A ⊂ {h > c} of finite and positive Lebesgue measure such that the convergence of

P (B(x, bd(x, α n ))) λ d (B(x, bd(x, α n ))) to h is uniform in x ∈ A.
Hence, there exists an n 0 ∈ N with

(2.21) ∀ n ≥ n 0 , ∀ x ∈ A, P (B(x, bd(x, α n ))) λ d (B(x, bd(x, α n ))) > 1 2 c.
Combining (2.17) and (2.21) and integrating both sides of the resulting inequality with respect to the Lebesgue measure on A yields c 5 e r n,re r n+1,r ≥ 

1 λ d (A) 1 2 c A d(x, α n ) r+d dλ d (x) ≥ 1 2 c
(P ) = d r Q r [0, 1] d h d d+r , where Q r [0, 1] d ∈ (0, ∞) is as in [8], Theorem 6.2.
3 Uniform local quantization rate for absolutely continuous distributions with peakless connected compact support

As before, P is an absolutely continuous probability with density h. Let (α n ) n∈N be a sequence of optimal codebooks of order r ∈ (0, ∞) for P . We will investigate the asymptotic size of

W (a | α n ), P (W (a | α n ))
and

W (a | αn)
xa r dP (x)

under some compactness and regularity assumptions on supp(P ) and P .

The main result of this section is stated below. Its proof, which heavily relies on the following two paragraphs devoted to upper and lower bounds respectively, is postponed to the end of this section. Theorem 3.1. Suppose that P is an absolutely continuous Borel probability on R d whose density is essentially bounded, whose support is connected and compact, and which is "peakless" in the following sense:

∃ c > 0, ∃ s 0 > 0, ∀ s ∈ (0, s 0 ), ∀ x ∈ supp(P ), P (B(x, s)) ≥ cλ d (B(x, s)).
Let (α n ) be a sequence of codebooks which are optimal of order r ∈ (0, ∞).

For a ∈ α n let s n,a = sup{s > 0, B(a, s) ⊂ W (a | α n )} and s n,a = inf{s > 0, W (a | α n ) ∩ supp(P ) ⊂ B(a, s)}. Then (3.22) 1 n min a∈αn P (W 0 (a | α n )) ≤ max a∈αn P (W (a | α n )) 1 n , (3.23) e r n,r n min a∈αn W 0 (a | αn) x -a r dP (x) ≤ max a∈αn W (a | αn)
xa r dP (x) e r n,r n and

(3.24) n -1/d min a∈αn s n,a ≤ max a∈αn s n,a n -1/d .
(Here a n b n means that an bn is bounded from above). Remark. (3.24) was proved by Gruber in [START_REF] Gruber | Optimum quantization and its applications[END_REF] (Theorem 3(ii)) under an additional continuity assumption on h, but with a more general distortion measure.

Upper bounds

The following proposition is essentially contained in Graf-Luschgy [START_REF] Graf | Rates of convergence for the empirical quantization error[END_REF] (Proposition 3.3 and the following remark). It has been independently proved by Gruber [START_REF] Gruber | Optimum quantization and its applications[END_REF], Theorem 3(ii). Proposition 3.1. Suppose that supp(P ) is compact and that there exist constants c 12 > 0 and s 0 > 0 such that

(3.25) ∀ s ∈ (0, s 0 ), ∀ x ∈ supp(P ), P (B(x, s)) ≥ c 12 λ d (B(x, s)).
Then there is a constant c 13 < +∞ such that

(3.26) ∀ n ∈ N, ∀ x ∈ supp(P ), d(x, α n ) ≤ c 13 n -1 d .
Proof. Let b ∈ 0, 1 2 be fixed. Since K := supp(P ) is compact it follows from [START_REF] Delattre | Quantization of probability distributions under norm-based distortion measures[END_REF], Proposition 1 that lim

n→∞ max x∈K d(x, α n ) = 0. Thus, there is an n 0 ∈ N with ∀ n ≥ n 0 , ∀ x ∈ K, d(x, α n ) < s 0
and, hence, by (3.25)

(3.27) ∀ n ≥ n 0 , ∀ x ∈ K, P (B(x, bd(x, α n ))) ≥ c 12 λ d (B(x, bd(x, α n ))).
By Proposition 2.3 there exists a constant c 11 > 0 such that

(3.28) ∀ n ∈ N, e r n,r -e r n+1,r ≤ c 11 n -(1+ r d ) .
Combining (2.17), (3.27), and (3.28) yields

c -1 12 c 11 c 5 n -(1+ r d ) ≥ d(x, α n ) r+d
for every x ∈ K and every n ≥ n 0 . Inequality (3.26) follows by setting

c 13 = max c -1 12 c 11 c 5 1 r+d , max d(x, α n )n 1/d , x ∈ K, n ∈ {1, . . . , n 0 } .
Proposition 3.2 (Upper-bounds). Suppose that the assumptions of Proposition 3.1 are satisfied and that, in addition, h is essentially bounded. Then there exist constants c 14 , c 15 ∈ (0, ∞) such that

(3.29) ∀ n ∈ N, ∀a ∈ α n ,          P (W (a | α n )) ≤ c 14 n , W (a | αn) x -a r dP (x) ≤ c 15 n -(1+ r d ) .
Proof. By Proposition 3.1, we have, for every n ∈ N and every a ∈ α n ,

W (a | α n ) ∩ supp(P ) = x ∈ supp(P ) x -a = d(x, α n ) ⊆ B a, c 13 n -1/d
which implies Remark. Thus Assumption (3.25) is satisfied if supp(P ) is peakless, i.e.

P (W (a | α n )) ≤ P B a, c 13 n -1/d = B(a,c 13 n -1/d ) hdλ d ≤ h R d λ d (B(0, 1)) c d 13 1 n where h B = esssup h |B . Likewise, we obtain W (a | αn) x -a r dP (x) ≤ B(a,c 13 n -1/d ) x -a r dP (x) ≤ c 13 n -1/d r P B a, c 13 n -1/d . Setting c 14 = h R d λ d (B(0, 1 
(3.30) ∃ c > 0, ∃ s 1 > 0, ∀ s ∈ (0, s 1 ), ∀ x ∈ supp(P ), λ d (B(x, s) ∩ supp(P )) ≥ c λ d (B(x, s)),
and h is essentially bounded away from 0 on supp(P ), i.e.

∃ t > 0, h(x) ≥ t for λ d -a.e. x ∈ supp(P ).

As an example, (3.30) holds for finite unions of compact convex sets with positive λ d -measure (see [START_REF] Graf | Foundations of quantization for probability distributions[END_REF], Example 12.7 and Lemma 12.4).

Lower bounds

Lemma 3.1. If supp(P ) is connected then, for every n ≥ 2 and every a ∈ α n ,

(3.31) d(a, α n \ {a}) ≤ 2 sup({ y -a , y ∈ W (a | α n ) ∩ supp(P )}).
Proof. Let n ≥ 2 be fixed. First we will show that

(3.32) ∀ a ∈ α n , W (a | α n ) ∩ b∈αn\{a} W (b | α n ) ∩ supp(P ) = ∅.
Let a ∈ α n . Since the non-empty closed sets (see [START_REF] Graf | Foundations of quantization for probability distributions[END_REF], Theorem 4.1)

W (a | α n )∩ supp(P ) and b∈αn\{a} W (b | α n ) ∩ supp(P ) cover the connected set supp(P ), claim (3.32) follows. By (3.32), there exists b ∈ α n \ {a} with W (a | α n ) ∩ W (b | α n ) ∩ supp(P ) = ∅.
Let z be a point in this set. Then

z -a = d(z, α n ) = z -b and d(a, α n \ {a}) ≤ a -b ≤ a -z + z -b ≤ 2 z -a ≤ 2 sup{ y -a , y ∈ W (a | α n ) ∩ supp(P )}.
Proposition 3.3 (Lower bounds I). Suppose that supp(P ) is compact and connected, that P satisfies (3.25) and is absolutely continuous with an essentially bounded probability density h. Then there exist constants c 16 , c 17 > 0 such that

(3.33) ∀ n ≥ 2, ∀ a ∈ α n , d(a, α n \ {a}) ≥ c 16 n -1/d and (3.34) ∀ n ∈ N, ∀a ∈ α n , P (W 0 (a | α n )) ≥ c 17 n .
Proof. Let n ≥ 2 and a ∈ α n be arbitrary. By the second micro-macroinequality (2.20) we have

e r n-1,r -e r n,r ≤ W 0 (a | αn) (d(x, α n \ {a}) r -x -a r ) dP (x) ≤ W 0 (a | αn) ( x -a + d(a, α n \ {a})) r -x -a r dP (x). (3.35)
By Proposition 2.3, there exists a real constant c > 0 with

(3.36) c n -(1+ r d ) ≤ e r n-1,r -e r n,r .
Case 1 (r ≥ 1): Combining (3.35) and (3.36) and using the mean value theorem for differentiation yields

(3.37) c n -(1+ r d ) ≤ W 0 (a | αn) r( x-a + d(a, α n \ {a})) r-1 d(a, α n \ {a}) dP (x).
Using Lemma 3.1 and (3.26) we know that

(3.38) ∀ x ∈ W (a | α n ) ∩ supp(P ), x -a + d(a, α n \ {a}) ≤ 3c 13 n -1/d .
Combining (3.37) and (3.38) yields

(3.39) r -1 c (3c 13 ) -(r-1) n -1-1/d ≤ d(a, α n \ {a}) P (W 0 (a | α n )). Since P (W 0 (a | α n )) ≤ P (W (a | α n )) ≤ c 14 n -1 by (3.29), we deduce c -1 14 r -1 c(3c 13 ) -(r-1) n -1/d ≤ d(a, α n \ {a})
and, hence, (3.33) with c 16 = c -1 14 r -1 c(3c 13 ) -(r-1) . Since d(a, α n \ {a}) ≤ 2c 13 n -1/d , we deduce from (3.39) that

(2c 13 ) -1 r -1 c(3c 13 ) -(r-1) n -1 ≤ P (W 0 (a | α n ))
and, hence, (3.34) with c 17 = (2c 13 ) -1 r -1 c(3c 13 ) -(r-1) .

Case 2 (r < 1): In this case we have Since

( x -a + d(a, α n \ {a})) r ≤ x -a r + d(a, α n \ {a}) r for all x ∈ W 0 (a | α n ).
P (W 0 (a | α n )) ≤ c 14 /n by (3.29) we deduce c -1 14 c 1/r n -1/d ≤ d(a, α n \ {a})
and hence, (3.33) with

c 16 = c -1 14 c 1/r . Since d(a, α n \ {a}) r ≤ (3c 13 ) r n -r/d we obtain (3c 13 ) -r c n -1 ≤ P (W 0 (a | α n ))
and, hence, (3.34) with c 17 = (3c 13 ) -r c. Then there exists a constant c 18 > 0 such that

(3.40) ∀ n ∈ N ∀ a ∈ α n , B a, c 18 n -1/d ⊂ W 0 (a | α n ).
Proof. Set c 18 = 1 2 c 16 . . For n = 1 and a ∈ α n , the assertion is obviously true since W 0 (a | α 1 ) = R d . Now let n ≥ 2 and let a ∈ α n be arbitrary. We will show that B a,

c 18 n -1/d ⊂ W 0 (a | α n ). Let x ∈ R d with x -a < c 18 n -1/d . By (3.33) we know that x -a < 1 2 d(a, α n \ {a})
and, hence, for every b ∈ α n \ {a}:

x -b ≥ a -b -x -a ≥ d(a, α n \ {a}) -x -a > 1 2 d(a, α n \ {a}) > x -a . This implies x ∈ W 0 (a | α n ).
Proposition 3.4 (Lower bounds II). Let the assumptions of Proposition 3.3 be satisfied. Then there exists a real constant c 19 > 0 such that

(3.41) ∀ n ∈ N, ∀ a ∈ α n , W 0 (a | αn) x -a r dP (x) ≥ c 19 n -(1+ r d ) .
Proof. Let n ∈ N and a ∈ α n be arbitrary. By (3.34) we have This implies

P (W 0 (a | α n )) > 0. Let s a = inf{s > 0 | P (B(a, s)) ≥ 1 2 P (W 0 (a | α n ))}. Since s → P (B(a,
W 0 (a | αn) x -a r dP (x) ≥ W 0 (a | αn)\B(a,sa) x -a r dP (x) (3.43) ≥ s r a P (W 0 (a | α n ) \ B(a, s a )) ≥ s r a (P (W 0 (a | α n )) -P (B(a, s a ))) = 1 2 s r a P (W 0 (a | α n )).
On the other hand, since h is essentially bounded we have

P (W 0 (a | α n )) = 2P (B(a, s a )) ≤ 2λ d (B(a, s a )) h R d = 2λ d (B(0, 1)) s d a h R d .
Hence, 

(3.44) s r a ≥ 1 2λ d (B(0, 1)) h R d r/d P (W 0 (a | α n )) r/d . Setting c = 1 2 1 2λ d (B(0,1)) h R d
W 0 (a | αn) x -a r dP (x) ≥ c P (W 0 (a | α n )) 1+ r d . Since P (W 0 (a | α n )) ≥ c 17 1 n by (3.33) we deduce W 0 (a | αn)
xa r dP (x) ≥ c c 4 The local quantization rate for a class of absolutely continuous probabilities with unbounded support

First we will introduce a class of probability density functions for which a sharpened version of the micro-macro inequality (2.17) holds.

Definition 4.1. (a) A Borel measurable map f : R d → R satisfies the peakless sublevel property (PSP) outside B(0, R), R > 0, if there are real constants s 0 , c f > 0 such that

∀ x ∈ R d \B(0, R), ∀ s ∈ (0, s 0 ), (4.46) λ d ({f ≤ f (x)} ∩ B(x, s)) ≥ c f λ d (B(x, s)).
(b) A Borel measurable map f : R d → R has the convex sublevel approximation property (CSAP) outside B(0, R), R > 0, if there is a bounded convex set C ⊂ R d with nonempty interior such that

∀ x ∈ R d \ B(0, R), ∃ ϕ x : R d → R d , Euclidean motion, ∃ a x ≥ 1, such that x ∈ ϕ x (a x C) ⊂ {f ≤ f (x)}.
(By Euclidean motion we mean an affine transform of the form ϕ(y) = Ay+b, A orthogonal matrix and b ∈ R d .)

(c) A probability distribution P has the peakless sublevel tail property (PSTP) outside B(0, R), R > 0, if (i) P is absolutely continuous with an essentially bounded density h, (ii) h is bounded away from 0 on compacts sets i.e.

(4.47) ∀ ρ > 0, ∃ c ρ > 0 such that h(x) ≥ c ρ for all x ∈ B(0, ρ).

(iii) There exist a function f : R d → I, I interval of R, having the PSP and a non-increasing function g : I → (0, +∞) such that

∀ x ∈ R d , x ≥ R =⇒ h(x) = g • f (x).
Note that supp(P ) = R d . Proof. Let s 0 > 0 be arbitrary. By [START_REF] Graf | Foundations of quantization for probability distributions[END_REF], Example 12.7 there exists a constant c > 0 such that

(4.48) ∀ x ∈ C, ∀ s ∈ (0, s 0 ), λ d (C ∩ B . 2 (x, s)) ≥ c λ d (B . 2 (x, s)).
There exists a constant κ ∈ (0, ∞) such that

1 κ . 2 ≤ . ≤ κ . 2 .
Now let x ∈ R d with x ≥ R and let s ∈ (0, s 0 ) be arbitrary. Then we have

λ d ({f ≤ f (x)}∩B(x, s)) ≥ λ d ϕ x (a x C) ∩ B . 2 x, s κ = λ d a x C ∩ ϕ -1 x B . 2 x, s κ = a d x λ d C ∩ 1 a x ϕ -1 x B . 2 x, s κ = a d x λ d C ∩ B . 2 1 a x ϕ -1 x (x), s a x κ ≥ c a d x λ d B . 2 1 a x ϕ -1 x (x), s a x κ owing to (4.48) = c a d x 1 κ d a d x s d λ d B . 2 (0, 1) = c κ -d λ d (B . 2 (0, 1)) λ d (B(0, 1)) λ d (B(x, s)).
Examples (a) If . 0 is any norm on R d and f : R d → R is defined by f (x) = x 0 . Then f has the CSAP outside B(0, R), for every R > 0.

In particular, every non-singular normal distribution has the PSTP outside B(0, R) for every R > 0 and more generally, this is the case for hyperexponential distributions of the forms

h(x) = K x a 2 e -c x b 2 , a, b, c, K > 0.
for large enough R > 0 (in fact this is true for any norm).

Proof. Let R > 0 be arbitrary. Then there is an R > 0 with

B . 0 (0, R) ⊂ B(0, R). Let C = B . 0 (0, R). Then C is convex with non-empty interior. Let x ∈ R d \ B . 0 (0, R) be arbitrary. Set ϕ x = id R d and a x = 1 R x 0 ≥ 1. Then x = ϕ x a x R x x 0 ∈ ϕ x (a x C) = B . 0 (0, x 0 ) = {f ≤ f (x)}.
(b) Let f : R d → R be semi-concave outside B(0, R) in the following sense:

∃ θ > 1, ∃ L > 0, ∃ ̺ : R d \ B(0, R) → R + \ {0}, ∃ δ : R d \ B(0, R) → R d \ {0} such that (i) ∀ x ∈ R d \ B(0, R), ̺(x) δ(x) 2 ≤ L, (ii) ∀ x ∈ R d \ B(0, R), ∀ y ∈ B x, 1 L 1 θ-1 , f (y) ≤ f (x) + δ(x) • (y -x) + ̺(x) y -x θ 2
where w • z denotes the standard scalar product of w, z ∈ R d .

Then f has the CSAP outside B(0, R).

Proof. Set C = {y = (y 1 , . . . , y d ) ∈ R d | y 1 + L y θ 2 ≤ 0}.
We will show that C is a bounded convex set with non empty interior. For λ ∈ [0, 1] and y, y ∈ C we have

(λy 1 + (1 -λ) y 1 ) + L λy + (1 -λ) y θ 2 ≤ λy 1 + (1 -λ) y 1 + L(λ y 2 + (1 -λ) y 2 ) θ . Since θ > 1 we have (λ y 2 + (1 -λ) y 2 ) θ ≤ λ y θ 2 + (1 -λ) y θ which yields λy + (1 -λ) y ∈ C.
Thus C is convex. For y ∈ C we have

0 ≥ y 1 + L y θ 2 ≥ -y 2 + L y θ 2 = y 2 (L y θ-1 2 -1), hence y 2 ≤ 1 L 1 θ-1
, so that C is bounded. There exists a t > 0 with -t + Lt θ = t(L t θ-1 -1) < 0. For y = (-t, 0, . . . , 0) this implies y 1 + L y θ 2 < 0. Hence there exists a neighborhood of y which is contained in C, i.e. the interior of C is not empty. Now let x ∈ R d with x > R be arbitrary. Set u = δ(x) δ(x) 2 . Let ψ x be a rotation which maps e 1 = (1, 0, . . . , 0) onto u. Define ϕ

x : R d → R d by ϕ x (y) = ψ x (y) + x. Then ϕ x is a Euclidean motion. Set a x = 1. Since 0 ∈ C we have x ∈ ϕ x (C) = ϕ x (a x C). For y ∈ ϕ x (a x C) = ϕ x (C) there is a z ∈ C with y = ϕ x (z), hence δ(x) • (y -x) + ̺(x) y -x θ 2 = δ(x) • ψ x (z) + ̺(x) ψ x (z) θ 2 = δ(x) 2 u • ψ x (z) + ̺(x) ψ x (z) θ 2 = δ(x) 2 e 1 • z + ̺(x) z θ 2 = δ(x) 2 z 1 + ̺(x) δ(x) 2 z θ 2 ≤ δ(x) 2 z 1 + L z θ 2 ≤ 0 since z ∈ C. Moreover, ϕ x (z) -x 2 = ψ x (z) 2 = z 2 and -z 2 + L z θ 2 ≤ 0 implies z 2 ≤ 1 L 1 θ-1 , i.e. y = ψ x (z) ∈ B x, 1 L 1 θ-1 .
By (ii) this yields

f (y) ≤ f (x) + δ(x) • (y -x) + ̺(x) y -x θ 2 ≤ f (x)
and, hence,

ϕ x (a x C) ⊆ {f ≤ f (x)}.
(c) Let f : R d → R be a differentiable function and let R > 0 be such that there exist real constants α ∈ (0, 1), β > 0 and c ∈ (0, +∞) satisfying

(i) ∀x, y ∈ R d , [x, y] := {x + t(y -x), t ∈ [0, 1]} ⊂ R d \ B(0, R) =⇒ grad f (x) -grad f (y) ≤ c x -y α (1 + x β + y β ). (ii) inf x ≥R grad f (x) 1 + x β > 0.
Then f is semi-concave outside of B(0, R + 1).

Proof. For every x, y ∈ R d with x > R and xy ≤ 1, we have

y β ≤ x + y -x β ≤ x + 1 β = x β 1 + 1 x β so that 1 + x β + y β ≤ 1 + x β 1 + 1 R β + 1 ≤ 1 + 1 R β + 1 x β + 1 . Let κ ∈ (0, ∞) such that 1 κ . 2 ≤ . ≤ κ . 2 . Let θ = 1+α. Define ̺ : R d → R + \{0} by ̺(x) = κ 2 c 1+ 1 R β +1 x β +1 and δ : R d → R d by δ(x) = grad f (x). Since M := inf x ≥R grad f (x) 1+ x β > 0, we have δ(x) = 0 for all x ∈ R d \ B(0, R). Moreover, ̺(x) δ(x) 2 ≤ ̺(x) 1 κ δ(x) ≤ κ 3 c 1 + 1 R β + 1 1 M ≤ L, where L = max 1, κ 3 c 1 + 1 R β + 1 1 M . Let x ∈ R d \ B(0, R + 1) and y ∈ B x, 1 L 1 θ-1
be arbitrary. Since L ≥ 1 we have [x, y] ⊂ R d \ B(0, R) and, by the mean value theorem of differentiation,

f (y) -f (x) = grad f (x) • (y -x) + grad f (x + t(y -x) -grad f (x) • (y -x)
for some t ∈ [0, 1]. By our assumption we obtain

(grad f (x + t(y -x)) -grad f (x)) • (y -x) ≤ grad f (x + t(y -x)) -grad f (x) 2 y -x 2 ≤ κ 2 grad f (x + t(y -x)) -grad f (x) y -x ≤ κ 2 ct α y -x α (1 + x β + x + t(y -x) β ) y -x . Since x + t(x -y) -x = t x -y ≤ 1 L 1 θ-1 ≤ 1 we deduce (grad f (x + t(y -x)) -grad f (x)) • (y -x) ≤ κ 2 c 1 + 1 R β + 1 x β + 1 y -x θ ≤ ̺(x) y -x θ .
It follows that

f (y) ≤ f (x) + δ(x) • (y -x) + ̺(x) y -x θ .
Thus, f is semi-concave outside the ball B(0, R + 1).

As always in this manuscript α n is an n-optimal codebook for P of order r > 0, where we assume

x r+δ dP (x) < ∞ for some δ > 0.

Our first aim is to prove another variant of the first micro-macro inequality for distributions P having the PSTP. Proposition 4.2. Let P , with density h, have the PSTP outside B(0, R) for a given R > 0. There exists a constant c 21 > 0 such that

∀ K ⊂ R d , compact, ∃ n K ∈ N such that ∀ n ≥ n K , ∀ x ∈ K, c 21 n -1/d h(x) -1 r+d ≥ d(x, α n ). (4.49) Proof. Let K ⊂ R d be compact. Since supp(P ) = R d , Proposition 2.2 in [5] implies lim n→∞ max y∈K d(y, α n ) = 0.
Let f and g be as in Definition 4.1(c)(iii) and let s 0 > 0 be related to f by Definition 4.1(a). Choose n K ∈ N, so that

∀ n ≥ n K , max y∈K d(y, α n ) < min(s 0 , R).
Let n ≥ n K and let x ∈ K be arbitrary. By (2.17) we know that (4.50) c 5 e r n,re r n+1,r ≥ d(x, α n ) r+d P (B(x, bd(x, α n ))) λ d (B(x, bd(x, α n ))) .

Since B(0, 2R) is bounded and convex there exists a constant c > 0 with

∀ s ∈ (0, s 0 ), ∀ y ∈ B(0, 2R), λ d (B(0, 2R) ∩ B(y, s)) ≥ c λ d (B(y, s)).
If x ∈ B(0, 2R), by Definition 4.1(c)(ii) there exists a lower bound c 2R > 0 of h on B(0, 2R), so that

P B(x, bd(x, α n )) ≥ c 2R λ d (B(0, R) ∩ B(x, bd(x, α n ))) ≥ c 2R c λ d (B(x, bd(x, α n ))),
hence c 5 e r n,re r n+1,r ≥ c 2R c d(x, α n ) r+d and consequently, for every x ∈ B(0, 2R), (4.51)

c 5 e r n,re r n+1,r ≥ c 2R c

1 h B(0,2R) h(x) d(x, α n ) r+d .
If x / ∈ B(0, 2R) and y ∈ B(x, bd(x, α n )) ∩ {f ≤ f (x)}, then we have

y / ∈ B(0, R) and h(y) = g(f (y)) ≥ g(f (x)) = h(x)
since g is non-increasing and we obtain

P B(x, bd(x, α n )) ≥ P (B(x, bd(x, α n )) ∩ {f ≤ f (x)}) = {f ≤f (x)}∩B(x,bd(x,αn )) h(y) dλ d (y) ≥ h(x) λ d {f ≤ f (x)} ∩ B(x, bd(x, α n )) ≥ c f h(x) λ d (B(x, bd(x, α n )))
since f has the PSP. Hence (4.52)

c 5 e r n,r -e r n+1,r ≥ c f h(x) d(x, α n ) r+d .
Note that, by Proposition 2.3, there exists a constant c 11 > 0 such that

∀ n ∈ N, e r n,r -e r n+1,r ≤ c 11 n -(1+ r d ) .
Setting

c 21 = c 11 c 5 max c -1 f , (c 2R c) -1 1
r+d and combining the last inequality with (4.51) and (4.52) yields the conclusion of the proposition.

Remark. Note at this stage that the results established in the rest of this section depend only on properties (4.47) and (4.49), not directly on PSP.

Our next aim is to give an upper and a lower bound for P (W (a | α n )) and the local quantization error W (a | αn) xa r dP (x), provided all the W (a | α n ) intersect a given compact set. The following lemma provides an essential tool for the proof. Here and in the rest of the paper we set

s n,a = sup{ x -a , x ∈ W (a | α n ))}
which can be considered as the radius of the Voronoi cell W (a | α n ). Lemma 4.1. Let K ⊂ • supp(P ) be an arbitrary compact set and let ε > 0 be arbitrary. Then there exists an n K,ε ∈ N such that

(4.53) ∀ n ≥ n K,ε , ∀ a ∈ α n , W (a | α n ) ∩ K = ∅ ⇒ s n,a ≤ ε.
Proof. Let ε > 0. Since K ⊂ • supp(P ), one may assume without loss of generality that ε is small enough so that the ε-neighbourhood K ε := {y ∈ R d | d(y, K) ≤ ε} is included in supp P . Since K is compact and contained in supp(P ), [START_REF] Delattre | Quantization of probability distributions under norm-based distortion measures[END_REF] 

∀ x ∈ K, ∀ n ≥ n 0 , d(x, α n ) < ε 2 .
Now assume that (4.53) does not hold for ε 2 in the place of ε. Then there exist sequences (n k ) k∈N in N and (a k ) with

n k ↑ ∞, a k ∈ α n k with W (a k | α n k ) ∩ K = ∅,
and s n k ,a k > ε 2 .
Without loss of generality we assume n k > n 0 for all k ∈ N. For each k ∈ N there is an

x k ∈ W (a k , α n k ) with x k -a k > ε 2 . Set x k = a k + ε 2 x k -a k ( x k -a k ). Then we have x k -a k = ε
2 and, since W (a k , α n k ) is star shaped with center a k (see [START_REF] Graf | Foundations of quantization for probability distributions[END_REF], Proposition 1.2), we deduce that

x k ∈ [a k , x k ] ⊂ W (a k | α n k ). Now let z k ∈ W (a k | α n k ) ∩ K. Then z k -a k < ε 2 owing to (4.54) and x k -a k = ε 2 , so that x k ∈ K ε . Since K ε is
compact there exists a convergent subsequence of (x k ), whose limit we denote by x ∞ ∈ K ε . Then we have

d (x ∞ , α n k ) ≥ d (x k , α n k ) -x k -x ∞ = x k -a k -x k -x ∞ = ε 2 -x k -x ∞ so that lim sup k→∞ d (x ∞ , α n k ) ≥ ε 2 .
Since x ∞ ∈ K ε ⊂ supp(P ), we know that lim n→∞ d(x ∞ , α n ) = 0 (see [START_REF] Graf | Foundations of quantization for probability distributions[END_REF], Lemma 6.1 and [5], Proposition 2.2) and obtain a contradiction.

Definition 4.2. For a compact set K ⊂ R d , let α n (K) = {a ∈ α n | W (a | α n ) ∩ K = ∅}.
Proposition 4.3. Let P satisfy the micro-macro inequality (4.49). There are constants c 22 , c 23 , c 24 , c 25 > 0 such that, for every compact set K ⊂ R d and every ε > 0, there exists an n K,ε ∈ N such that, for every n ≥ n K,ε , and

every a ∈ α n (K) the Voronoi cell W (a | α n ) is contained in K ε and P (W (a | α n )) ≤ c 22 h W (a | αn) r r+d 1 n , (4.55) W (a | αn) x -a r dP (x) ≤ c 23 1+log h W (a | αn) essinf h |W (a | αn)
n -(1+ r d ) , (4.56)

P (W 0 (a | α n )) ≥ c 24 essinf h |W (a | αn) r r+d 1 n , (4.57) W 0 (a | αn) x -a r dP (x) ≥ c 25 essinf h |W (a | αn) h W (a | αn) max(r,1) n -(1+ r d ) . (4.58)
Proof. Let K ⊂ R d be compact and ε > 0 be arbitrary. By Lemma 4.1 and Proposition 4.2 there exists an

n K,ε ∈ N with n K,ε ≥ 2 such that (4.59) ∀ n ≥ n K,ε , ∀ a ∈ α n (K), W (a | α n ) ⊂ K ε and (4.60) ∀ n ≥ n K,ε , ∀ x ∈ K ε , c 21 n -1/d h(x) -1 r+d ≥ d(x, α n ). Now let n ≥ n K,ε and let a ∈ α n (K) be fixed. Set t n,a = h W (a | αn) and t n,a = essinf h |W (a | αn) . Since W (a | α n ) ⊂ K ε by (4.59), Inequality (4.60) implies (4.61) ∀ t > 0, ∀ x ∈ {h > t} ∩ W (a | α n ), x -a ≤ c 21 n -1/d t -1 r+d .
This yields

λ d ({h > t} ∩ W (a | α n )) ≤ λ d B(a, c 21 n -1/d t -1 r+d (4.62) = λ d (B(0, 1)) c d 21 t -d r+d n -1 .
Now we will prove (4.55). Observing that λ d {h > t} ∩ W (a | α n ) = 0 for t > t n,a we deduce 

P (W (a | α n )) = W (a | αn) h dλ d = ∞ 0 λ d ({h > t} ∩ W (a | α n )) dt = tn,a 0 λ d ({h > t} ∩ W (a | α n )) dt ≤ tn,a 0 t -d r+d dt λ d (B(0, 1))c d 21 n -1 owing to (4.62) ≤ λ d (B(0, 1)) r + d r c d 21 h W (a | αn)
d {h > t} ∩ W (a | α n ) = 0 for t > t n,a we get W (a | αn) x -a r dP (x) = W (a | αn) x -a r h(x) dλ d (x) (4.63) = ∞ 0 {h>t}∩W (a | αn) x -a r dλ d (x) dt = tn,a 0 {h>t}∩W (a | αn)
xa r dλ d (x) dt.

For t ≤ t n,a we have h(y

) ≥ t for λ d -a.e. y ∈ W (a | α n ) so that {h>t}∩W (a | αn) x -a r dλ d (x) = W (a | αn)
xa r dλ d (x).

By (4.59) and (4.60), we have, for

λ d -a.e. x ∈ W (a | α n ), x -a = d(x, α n ) ≤ c 21 n -1/d h(x) -1 r+d ≤ c 21 n -1/d t n,a -1 r+d so that λ d W (a | α n ) \ B a, c 21 n -1/d t n,a -1 r+d = 0. Consequently t n,a 0 {h>t}∩W (a | αn) x -a r dλ d (x) dt ≤ t n,a 0 B(a,c 21 n -1/d (t n,a ) -1 r+d ) c 21 n -1/d (t n,a ) -1 r+d r dλ d (x) dt = c 23 n -(1+ r d ) (4.64) 
where c 23 = c r+d 21 λ d (B(0, 1)). Using (4.61) and the same argument as before we obtain

tn,a t n,a {h>t}∩W (a | αn) x -a r dλ d (x) dt (4.65) ≤ tn,a t n,a B(a,c 21 n -1/d t -1 r+d ) c r 21 t -r r+d n -r d dP (x) dt ≤ c 23 n -(1+ r d ) tn,a t n,a t -1 dt = c 23 n -(1+ r d ) log t n,a t n,a . 
Combining (4.64) and (4.65) with (4.63) yields (4.56). Now we will prove (4.57). It follows from the second micro-macro inequality (Proposition 2.2) and Proposition 2.3 that there exists a real constant c > 0 (independent of n and a) such that (4.66)

cn -(1+ r d ) ≤ W 0 (a | αn) (d(x, α n \ {a}) r -x -a r ) dP (x). Since n ≥ 2 there exists a b ∈ α n \ {a} with W (a | α n ) ∩ W (b | α n ) = ∅. Let z ∈ W (a | α n ) ∩ W (b | α n ) be arbitrary. Then z -a = d(z, α n ) = z -b and (4.67) d(a, α n \ {a}) ≤ a -b ≤ a -z + z -b = 2 z -a .
This implies that, for every

x ∈ W (a | α n ), d(x, α n \ {a}) ≤ x -a + d(a, α n \ {a}) ≤ x -a + 2 z -a = d(x, α n ) + 2d(z, α n ).
By (4.59) and (4.60) this yields

d(x, α n \ {a}) ≤ c 21 n -1/d h(x) -1 r+d + 2h(z) -1 r+d ≤ 3c 21 n -1/d t n,a -1 r+d and, therefore, (4.68) 
W 0 (a | αn) d(x, α n \ {a}) r dP (x) ≤ 3 r c r 21 n -r/d t n,a -r r+d P (W 0 (a | α n )).
Using (4.66), we deduce

c 3 -r c -r 21 t n,a r r+d n -1 ≤ P (W 0 (a | α n ))
and, hence, (4.57) with c 24 = c 3 -r c -r 21 . Now we will prove (4.58). It follows from (4.66) that

(4.69) c n -(1+ r d ) ≤ W 0 (a | αn) (( x -a + d(a, α n \ {a})) r -x -a r ) dP (x).
Case 1 (r ≥ 1): Using the mean value theorem for differentiation yields (4.70)

c n -(1+ r d ) ≤ W 0 (a | αn) r ( x -a + d(a, α n \ {a})) r-1 d(a, α n \ {a})) dP (x).
By (4.67), (4.59) and (4.60) we know that

(4.71) x -a + d(a, α n \ {a}) ≤ 3c 21 n -1/d t n,a -1 r+d .
Combining (4.70) and (4.71) yields

(4.72) cn -(1+ r d ) ≤ d(a, α n \{a}) r 3 c 21 n -1/d t n,a -1 r+d r-1 P (W 0 (a | α n )).
By (4.55) we have

P (W 0 (a | α n )) ≤ c 22 t r r+d n,a 1 n and, hence, (4.73) c -1 22 cr -1 (3c 21 ) 1-r t r-1 r+d n,a t -r r+d n,a n -1/d ≤ d(a, α n \ {a}). Set c = c -1 22 cr -1 (3c 21 ) 1-r . Then we deduce (4.74) B a, c 2 t r-1 r+d n,a t -r r+d n,a n -1/d ⊂ W 0 (a | α n ).
It follows that (4.75)

B a, c 2 t r-1 r+d n,a t -r r+d n,a n -1/d x -a r h(x) dλ d (x) ≤ W 0 (a | αn) x -a r dP (x). Since h(x) ≥ t n,a , for λ d -a.e. x ∈ B a, c 2 t r-1 r+d n,a t -r r+d n,a n -1 d and B(a,̺) x -a r dλ d (x) = ̺ r+d B(0,1) u r dλ d (u)
for every ̺ > 0, the left hand side of (4.75) is greater or equal to

t n,a B(0,1) x r dλ d (x) c 2 t r-1 r+d n,a t -r r+d n,a r+d n -(1+ r d ) = B(0,1) u r dλ d (u) c 2 r+d t r n,a t -r n,a n -(1+r/d) .
The inequality (4.58) follows by setting c 25 = B(0,1) u r dλ d (u) c 2 r+d .

Case 2 (r < 1): In this case we have

( x -a + d(a, α n \ {a})) r ≤ x -a r + d(a, α n \ {a}) r
for all x ∈ W 0 (a | α n ), so that, by (4.69),

cn -(1+ r d ) ≤ W 0 (a | αn) d(a, α n \ {a}) r dP (x) (4.76) ≤ d(a, α n \ {a}) r P (W 0 (a | α n )).
By (4.55) we know that As above this implies, for c = c 1/r c -1/r 22 , t n,a B(0,1)

P (W 0 (a | α n )) ≤ c 22 t n,a
x r dλ d (x) c 2 r+d t n,a t n,a n -(1+ r d ) ≤ W 0 (a | αn)
xa r dP (x) and (4.58) follows. (b) If R > 0 and the density h has the form h(x) = g( x 0 ) for all x / ∈ B(0, R), where g : [0, +∞) → (0, +∞) is a decreasing function and . 0 is an arbitrary norm on R d then there exists a constant c > 0 and an m = m(c) ∈ N such that

∀ n ≥ m, ∀ x ∈ R d , c n -1/d h(x) -1 r+d ≥ d(x, α n ).
This can be used to show that there is a c > 0 with

∀ n ≥ m, P (W (a | α n )) ≤ c h W (a | αn) r r+d 1 n .
Under additional assumptions on g (g regularly varying) one can also give a similar upper bound for the local L s -quantization errors, s ∈ (0, r).

The local quantization behaviour in the interior of the support

In this section we will show that weaker versions of the results in Section 4 still hold without assuming the strong version of the first micro-macro inequality as stated in (4.49). We have to restrict our investigations to compact sets in the interior of the support of the probability in question and also obtain weaker constants in the corresponding inequalities for the local probabilities and quantization errors.

Let r ∈ (0, ∞) be fixed. In this section P is always an absolutely continuous Borel probability on R d with density h. We assume that there is a δ > 0 with

x r+δ dP (x) < +∞. As before, α n is an n-optimal codebook for P of order r. For n ∈ N and a ∈ α n set s n,a = sup{ xa , x ∈ W (a | α n )} and s n,a = sup{s > 0, B(a, s) ⊂ W (a | α n )}.

Moreover, we assume that h is essentially bounded and that essinf h |K > 0 for every compact set K ⊂ • supp(P ), where Proof. By the first micro-macro inequality (2.17) and Proposition 2.3 there exists a constant c > 0 with

(5.87) ∀ n ∈ N, ∀ x ∈ R d , cn -(1+r/d) ≥ d(x, α n ) r+d P (B(x, bd(x, α n )) λ d (B(x, bd(x, α n ) .
Now let n ∈ N and a ∈ α n be arbitrary.

It follows from (5.87) that (5.88) xa r dP (x) ≤ B(a,sn,a)

∀ x ∈ W (a | α n ), x -a r+d P (B(x, b x -a )) λ d (B(x, b x -a )) ≤ cn -(1+ r d ) . For x ∈ W (a | α n ) and y ∈ B(x, bd(x, α n )) we have y -a < y -x + x -a ≤ b x -a + x -a ≤ (1 + b) s n,a so 
xa r dP (x)

≤ h B(a,sn,a)

B(a,sn,a)

xa r dλ d (x) 

≤ λ d (B(0, 1 
1/r n -1/d for 0 < r < 1.
Proof. By the second micro-macro inequality (Proposition 2.2) combined with Proposition 2.3, there is a constant c > 0 such that

∀ n ≥ 2, c n -(1+ r d ) ≤ W 0 (a | αn) (d(x, α n \ {a}) r -x -a r ) dP (x).
Case 1 (r ≥ 1): As in (4.69) and (4.70) we deduce

(5.96) cn -(1+ r d ) ≤ W 0 (a | αn) r( x -a + d(a, α n \ {a})) r-1 d(a, α n \ {a} dP (x).
Since n ≥ 2 there exists an a ∈ α n \ {a} with

W (a | α n ) ∩ W ( a | α n ) = ∅. Let z ∈ W (a | α n ) ∩ W ( a | α n ) be arbitrary. Then we have z -a = d(z, α n ) = z -a and, hence d(a, α n \ {a}) ≤ a -a ≤ a -z + z -a = 2 z -a so that d(a, α n \ {a}) ≤ 2s n,a .
It follows from (5.96) that

cn -(1+ r d ) ≤ r(3s n,a ) r-1 d(a, α n \ {a}) P (W 0 (a | α n )) (5.97) ≤ r(3s n,a ) r-1 d(a, α n \ {a}) h B(a,sn,a) λ d (B(0, 1)) s d n,a = r3 r-1 s r+d-1 n,a λ d (B(0, 1)) h B(a,sn,a) d(a, α n \ {a}). This implies c r -1 3 1-r λ d (B(0, 1)) -1 h B(a,sn,a) -1 s 1-(r+d) n,a n -(1+ r d ) ≤ d(a, α n \ {a})
and, hence, by (5.86)

cr -1 3 1-r λ d (B(0, 1)) -1 h B(a,sn,a) -1 c 1-(r+d) 26 essinf h |B(a,(1+b)sn,a) - 1-(r+d) r+d n -1/d ≤ d(a, α n \ {a}).
Since s n,a = 1 2 d(a, α n \ {a}) this leads to (5.94) with

c 29 = 1 2 cr -1 3 1-r (λ d (B(0, 1)) -1 c 1-(r+d) 26
.

Case 2 (r ≤ 1): As in (4.76) we have

cn -1+r/d ≤ d(a, α n \ {a}) r P (W 0 (a | α n )) ≤ d(a, α n \ {a}) r h B(a,sn,a) λ d (B(0, 1)) s d n,a
and, hence, by (5.86) Proof. First we will prove (5.98). We have xa r dλ d (x) = s r+d n,a B(0,1)

c n -(1+ r d ) h B(a,sn,a) -1 λ d (B(0, 1)) -1 c -d 26 n essinf h |B(a,( 1+b 
P (W 0 (a | α n )) ≥                  c 31 essinf h |B(a,( 1+b 
x r dλ d (x) so that W 0 (a | αn)

xa r dP (x) ≥ B(0,1)

x r dλ d (x) essinf h |B(a,s n,a ) s r+d n,a .

Using Lemma 5. Proof. The proof is identical with that of Lemma 4.1.

Theorem 5.1. Let P be an absolutely continuous Borel probability measure on R d with density h and x r+δ dP (x) < ∞ for some δ > 0. Then there exist constants c 27 , c 28 , c 31 , c 32 , c 33 , c 34 > 0 such that, for every compact K ⊂ • supp(P ), the following holds: These inequalities combined with Lemma 5.2 and Lemma 5.4 yield the assertions of the theorem.

Remark. The above theorem yields estimates for the asymptotics of the local cell probabilities and quantization errors only if the density h is essentially bounded and bounded away from 0 on each compact subset of the interior of the support of P . ya n,x r dP (y) ≤ c 28 .

Proof. Set K = {x} in Theorem 5.1.

a∈αa1 1 r

 1 Vn,a (x) where (V n,a ) a∈α is a Voronoi partition of R d with respect to α, i.e. a Borel partition such that each of the partition setsV n,a is contained in the Voronoi cell W (a | α n ) := {x ∈ R d | xa = minb∈α xb }. If d(x, α) := min a∈α xa denotes the distance of x to the set α then e n,r = inf d(x, α) r dP (x) | α ⊂ R d and card(α) ≤ n .

n a∈αn δ a weakly

  converge as n → ∞ to the "point density measure" where λ d denotes the d-dimensional Lebesgue measure. Thus we obtain, at least for bounded continuous densities h and an arbitrary bounded continuous function f : R d → R, ) f (x) dP r (x) = f (x) dP (x), =⇒ denotes the weak convergence of finite measures on R d . Since it is well-known that a∈αn P (V n,a ) δ a (R d )

  ρ} denotes the open ball with center x and radius ρ. . 2 will denote the canonical Euclidean norm on R d . • • A denotes the interior of a set A ⊂ R d .

  )) c d 13 and c 15 = c 14 c r 13 yields (3.29).

  Combining this inequality with (3.35) and (3.36) yields c n -(1+ r d ) ≤ d(a, α n \ {a}) r P (W 0 (a | α n )).

Corollary 3 . 1 .

 31 Let the assumptions of Proposition 3.3 be satisfied.

  s)) is continuous with lim s ↓0 P (B(a, s)) = 0 and lim s↑+∞ P (B(a, s)) = 1, we deduce, (3.42) P (B(a, s a )) = 1 2 P (W 0 (a | α n )).

  r/d and combining (3.43) and (3.44) yields (3.45)

1+ r d 17 n 17 .

 1717 -(1+ r d ) and, hence, the conclusion (3.41) of the proposition with c 19 = c c 1+r/d Proof of Theorem 3.1. The result is a combination of the results in Propositions 3.1, 3.2, 3.3, 3.4, Corollary 3.1 and Zador's Theorem which says that lim n→∞ e r n,r n -r/d exists in (0, +∞) (see, for instance, [8], Theorem 6.2).

Proposition 4 . 1 .

 41 If f : R d → R d has the CSAP outside B(0, R) then it has the PSP outside B(0, R).

r r+d 1 n

 1 which proves (4.55) with c 22 = λ d (B(0, 1)) r+d r c d 21 . Next we will show (4.56). Using again λ

  n -1/d ≤ d(a, α n \ {a}).

Theorem 4 . 1 .PP 3 . 4 . 1 .W 1 .

 413411 Let P satisfy the micro-macro inequality(4.49). Then there are constants c 22 , c 23 , c 24 , c 25 > 0 such that, for every compact set K ⊂ R d , the following holds:(W (a | α n )) ≤ c 22 inf ε>0 ) W (a | αn) xa r dP (x) ≤ c 23 1+log inf (W 0 (a | α n )) ≥ c 24 sup ε>0 a∈αn(K) W (a | αn)x-a r dP (x) ≥ c 25 sup ε>0 The theorem follows immediately from Proposition 4.Corollary For everyx ∈ R d , let a n,x ∈ α n satisfy x ∈ W (a n,x | α n ). Then (4.82) lim sup n→∞ nP (W (a n,x | α n )) ≤ c 22 lim sup y→x (an,x | αn)xa r dP (x) ≤ c 23 1 + log limε↓0 sup h(B(x, ε)) inf h(B(x, ε)) , (4.84) lim inf n→∞ nP (W 0 (a n,x , | α n )) ≥ c 24 liminf y→x h(y) r r+d , (4.85) lim inf n→∞ n 1+r/d W 0 (an,x | αn xa r dP (X) ≥ c 25 lim ε↓0 inf h(B(x, ε)) sup h(B(x, ε)) max(1,r) . Moreover, if h is continuous , then lim sup y→x h(y) = h(x) = liminfy→x h(y) and lim ε↓0 sup h(B(x, ε)) inf h(B(x, ε) = lim ε↓0 inf h(B(x, ε)) sup h(B(x, ε)) = Proof. The corollary follows from Theorem 4.9 if one sets K = {x}. Remarks. (a) For certain one dimensional distribution functions, sharper versions of the above corollary have been proved by Fort and Pagès ([6], Theorem 6).

•B 2 . 5 . 1 . 1 r+d

 2511 denotes the interior of the set B ⊂ R d . For the use in the first micro-macro inequality we fix a b ∈ 0, 1 Lemma There exists a constant c 26 > 0 such that, for every n ∈ N and a ∈ α n , (5.86) c 26 n -1/d essinf h |B(a,(1+b) sn,a) -≥ s n,a .

that ( 5 Lemma 5 . 2 .

 552 .89) B(x, b xa ) ⊆ B(a, (1 + b) s n,a ). This yields P (B(x, b xa )) = B(x,b x-a ) hdλ d (5.90) ≥ essinf h |B(a,(1+b)sn,a) λ d (B(x, b xa )).owing to (5.89). Thus, (5.88) implies(5.91) xa r+d essinf h |B(a,(1+b) sn,a) ≤ c n -(1+ r d ) .Since x ∈ W (a | α n ) was arbitrary we deduces r+d n,a essinf h |B(a,(1+b) sn,a) ≤ c n -(1+ r d )and, hence, (5.86) with c 26 = c 1 r+d . There exist real constants c 27 , c 28 > 0 such that, for every n ∈ N and a ∈ α n , P (W (a |α n )) ≤ c 27 h B(a,sn,a) essinf h |B(a,(1+b)sn,a) d r+d n -1 (5.92) and W (a | αn) xa r dP (x) ≤ c 28 h B(a,sn,a) essinf h |B(a(1+b),sn,a) n -(1+ r d ) . (5.93) Proof. Let n ∈ N and a ∈ α n be arbitrary. Then (5.86) implies P (W (a | α n )) ≤ P (B(a, s n,a )) ≤ h B(a,sn,a) λ d (B(a, s n,a )) ≤ λ d (B(0, 1)) h B(a,sn,a) s d n,a ≤ λ d (B(0, 1)) c d 26 h B(a,sn,a) essinf h |B(a,(1+b) sn,a) -d r+d n -1 Thus (5.92) follows for c 27 = λ d (B(0, 1)) c d 26 . Similarly (5.86) implies W (a | αn)

4 .

 4 ) sn,a)d r+d ≤ d(a, α n \{a}) r h |B(a,(1+b) sn,a) d r(r+d) n -1/d ≤ d(a, α n \{a}). Since s n,a = 1 2 d(a, α n \ {a}) this leads to c 30   essinf h b(a,(1+b) sn,a)There exist constants c 31 , c 32 , c 33 , c 34 > 0 such that, for every n > 2 and a ∈ α n ,(5.98) 

- 1 for r ≥ 1 c

 11 ) sn,a) h B(a,sn,a) d essinf h B(a,(1+b) sn,a) r r+d n 32 essinf h |B(a,(1+b) sn,a) h B(a,sn,a) d r essinf h |B(a,(1+b) s n,a ) h |B(a,(1+b) sn,a) h B(a,sn,a) r+d n -(1+ r d ) for r ≥ 1 c 34 essinf h |B(a,(1+b) sn,a) h B(a,sn,a) 1+ d r n -(1+ r d ) , for 0 < r < 1.

P

  (W 0 (a | α n )) ≥ P (B(a, s n,a )) = B(a,s n,a ) hdλ d ≥ essinf h |B(a,s n,a ) λ d (B(0, 1)) s d n,a ≥ essinf h |B(a,(1+b) sn,a) λ d (B(0, 1)) s d n,a .Using (5.94) we obtainP (W 0 (a | α n )) ≥ λ d (B(0, 1)) c d 29 essinf h |B(a,(1+b) sn,a) h B(a,sn,a) d essinf h |B(a,(1+b) s n,a ) r r+d n -1for r ≥ 1 and using (5.95) we getP (W 0 (a | α n )) ≥ λ d (B(0,1)) c d 30 h B(a,sn,a) -d r essinf h |B(a,(1+b) sn,a) d r+d . d r +1 n -1 = λ d (B(0, 1)) c d 30 essinf h |B(a,(1+b) sn,a) h B(a,sn,a) d r (essinf h |B(a,(1+b) sn,a) ) r r+d n -1 for 0 < r < 1. With c 31 = λ d (B(0, 1)) c d 29 and c 32 = λ d (B(0, 1)) c d 30 we deduce (5.98). Now we will prove (5.99). We have W 0 (a | αn) xa r dP (x) ≥ B(a,s n,a ) xa r essinf h |B(a,s a,n ) dλ d (x) ≥ essinf h |B(a,s n,a ) B(a,s n,a ) xa r dλ d (x) Now B . (a,s n,a )

3 ,Lemma 5 . 5 .

 355 we obtain (5.99) with c 33 = B(0,1) x r dλ d (x) c r+d 29 and c 34 = B(0,1) x r dλ d (x) c r+d 30 . Let K ⊂ • supp(P ) be an arbitrary compact set and let ε ∈ (0, d(K, R d \ • supp(P )))be arbitrary (where d(K, ∅) = ∞). Then there exists an n K,ε ∈ N such that(5.100) ∀ n ≥ n K,ε , ∀ a ∈ α n (K), s n,a ≤ ε, where α n (K) = {a ∈ α n | W (a | α n ) ∩ K = ∅}.

P 1 .

 1 (W (a | α n )) ≤ c 27 inf ε>0 h Kε (essinf h Kε ) d r+d , (5.102) lim sup n→∞ n 1+ r d max a∈αn(K) W (a | αn) xa r dP (x) ≤ c 28 inf ε>0 h Kε essinf h |Kε , ) W 0 (a | αn)xa r dP (x)Proof. Let ε > 0 satisfy ε < d(K, R d \• supp(P )). By Lemma 5.5 there exists an n K,ε ∈ N such that∀ n ≥ n K,ε ∀ a ∈ α n (K), s n,a < ε 2(1 + b) .This implies∀ n ≥ n K,ε ∀ a ∈ α n (K), B(a, (1 + b) s n,a ) ⊂ K εand, therefore, h B(a,(1+b) sn,a) ≤ h Kε as well as essinf h |B(a,(1+b) sn,a) ≥ essinf h |Kε for all n ≥ n K,ε and all a ∈ α n (K).

Corollary 5 . 1 .

 51 For every x ∈ R d let a n,x ∈ α n satisfy x ∈ W (a n,x | α n ). Assume that x ∈ • supp(P ) and h is continuous at x. Then (107) min(c 31 , c 32 ) h(x) r r+d ≤ liminf n→∞ nP (W 0 (a n,x | α n )) ≤ lim sup n→∞ nP (W (a n,x | α n )) ≤ c 27 h(x)r r+d and (108) min(c 33 , c 34 ) ≤ lim inf n→∞ n 1+r/d W (an,x | αn) ya n,x r dP (y) ≤ lim sup n→∞ n 1+r/d W (an,x | αn)

  Proposition 2.2 implies lim

	exists an n 0 ∈ N with	n→∞	max x∈K	d(x, α n ) = 0. Hence, there
	(4.54)			

  There exists real constant sc 29 , c 30 > 0 such that, for every n ≥ 2 and every a ∈ α n ,

	Lemma 5.3. (5.94)	s n,a ≥ c 29	essinf h |B(a,(1+b) sn,a h B(a,sn,a)	1-1 r+d	n -1/d for r ≥ 1
	and				
	(5.95) s n,a ≥ c 30	(essinf h |B(a,(1+b) sn,a) ) h B(a,sn,a)	d r+d
				)) h B(a,sn,a) s r+d n,a
				≤ λ d (B(0, 1))c r+d 26	h B(a,sn,a) essinf h |B(a,(1+b) sn,a)	-1 n -(1+ r d ) .
	still owing to (5.86). Thus, (5.93) follows for c 28 = λ d (B(0, 1)) c r+d 26 .