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Abstract 

Dynamic fragmentation is observed in brittle materials such as ceramics, concrete, glass or 

rocks submitted to impact or blast loadings.  Under such loadings, high-stress-rate tensile 

fields develop within the target, and produce fragmentations characterized by a high density 

of oriented cracks.  To improve industrial processes such as blast loadings in open quarry or 

ballistic efficiencies of armours or concrete structures against impact loadings, it is essential 

to understand the main properties of such damage processes (namely, characteristic time of 

fragmentation, characteristic density, orientation and extension of cracking, ultimate strength) 

as functions of the loading rate, the size of the structure (or the examination volume), and the 

failure properties of the brittle material concerned.  In the present contribution, the concept of 

probability of non-obscuration is developed and extended to predict the crack density for any 

size, shape of the loaded volume, stress gradients, and stress-rates.  A closed-form solution is 

used to show how a brittle and random behaviour under quasi-static loading becomes 

deterministic and stress-rate-dependent with increasing loading rates.  Two definitions of the 

tensile strength of brittle materials are proposed.  As shown by Monte-Carlo simulations, for 

brittle materials, the “ultimate macroscopic strength” applies under high loading rate or in a 

large domain whereas the “mean obscuration stress” applied in a small domain or under low 

stress rate.  Next, a multi-scale model is presented and used to simulate damage processes 
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observed during edge-on impact tests performed on an ultra-high strength concrete.  Last, the 

fragmentation properties predicted by modelling of six brittle materials (dense and porous SiC 

ceramics, a micro-concrete, an ultra-high strength concrete, a limestone rock and a soda-lime 

silicate glass) are compared. 

 

Keywords: Single / multiple fragmentation process, Probability of obscuration, Weakest-link 

hypothesis, Anisotropic damage model, Dynamic tensile strength, Edge-On Impact tests. 
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I. Introduction 

Fragile, easily breakable, difficult to machine, expansive, weakly tough, “brittle materials” do 

not have the best reputation in the world of industry, materials science or mechanical 

engineering.  However, under extreme loading situations such as high temperatures, high 

confining pressures or dynamic loads, brittle materials may appear as very attractive in 

comparison with metals, polymers or some composite materials.  Ceramics have been known 

since antiquity as heat-resistant materials and are used very often under high temperature 

conditions [Kingery et al., 1976].  For example, the tensile or compressive strength of 

ceramics such as silicon carbide or alumina is virtually constant for temperatures as high as 

1000 to 1200 K [Lankford, 1981; 1991].  Concrete materials are also very popular in civil 

engineering applications for their low conductivity and residual strength after exposure to 

high temperatures up to 700-900 K [Saad et al., 1996; Ghan et al., 1999; Xiao and König, 

2004; Savva et al., 2005; Arioz, 2007]. 

The quasi-static confined strength of brittle materials has been extensively studied 

during the last three decades.  In particular, triaxial compression tests were developed to 

provide an evaluation of the strength of geomaterials under different confinement pressures.  

During these tests, a purely hydrostatic pressure is first applied on a cylindrical specimen.  

Afterwards, an axial compression is added.  The strength, in a von Mises sense, is taken as the 

maximum axial stress on withdrawal of the pressure applied by the confinement fluid.  These 

tests have been carried out for several decades on concretes [Bridgman, 1952; Zimmerman, 

1972; Palaniswamy and Shah, 1974; Kotsovos and Newman, 1980], on rocks [Hoek and 

Franklin, 1968; Cagnoux and Don, 1994] (limestone and quartzite), and on ceramics [Heard 

and Cline, 1980] (alumina-type ceramics, aluminium nitride, and beryllium or magnesium 

oxide).  All these works show that these materials known for their brittleness or quasi-



 5 

brittleness under uniaxial compression undergo a change to a more ductile behaviour under 

high pressure with an increase of strength under pressures of about few hundreds of MPa that 

may exceed ten times those under unconfined or nearly unconfined loading. 

The increase of strength and ductility with confining pressure is particularly 

spectacular in brittle materials; the same remark can be made concerning their strain-rate 

sensitivity.  Influence of strain rate on the failure stress of brittle materials has been 

investigated extensively during the two last decades.  For example, quasi-static and dynamic 

uniaxial compression tests were performed on ordinary or high-strength concretes.  A review 

proposed by Bischoff and Perry [1991] shows that above a strain rate of 10-5 s-1, a smooth and 

linear (in a log-log plot) increase of strength with strain rate is observed up to 20-30 s-1.  This 

increase of strength is due to the free water within the specimens of concrete since this 

phenomenon totally disappears with dry concretes [Gary et al., 1991; Gary and Klepaczko, 

1992].  Rossi [1988] showed a significant influence of free water on the toughness of 

concretes.  Therefore, the strain rate sensitivity is certainly the result of the viscosity of 

internal fluid that impedes the opening of micro-cracks [Mangis, 1988; Rossi, 1991].  Above 

the strain-rate level of transition (i.e., 20-30 s-1 for concretes [Bischoff and Perry, 1991]), the 

increase of strength in dynamic uniaxial compression is more pronounced.  This time free 

water is not the main reason of the phenomenon since it is also observed in dry concretes 

[Gary et al., 1991].  According to Gorham [1989] and Weerheijm [1992], this increase of 

ultimate stress is the consequence of inertia effects that restrain the lateral expansion 

associated with compression.  As reported above, brittle materials are very sensitive to any 

lateral pressure, and the inertia of the specimen is acting as an artificial confinement that 

explains the apparent strain-rate sensitivity that is observed in concrete-like materials under 

such loading rates.  A confirmation of this interpretation, namely, no strain-rate sensitivity, 

was observed in dynamic quasi-oedometric compression tests for which the radial 
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displacement is considerably reduced by a metallic confinement cell that surrounds the 

concrete specimen [Forquin, 2003; Forquin et al., 2008a; 2009]. 

As discussed above, the increase of failure stress in concrete samples under dynamic 

compression is mainly due to free water in the material or inertia effects.  However, strain-rate 

sensitivity of brittle materials is also observed in dynamic tensile loadings for which no inertia 

confinement occurs.  A review of results obtained with concretes was proposed by Klepaczko 

and Brara [2001].  As in uniaxial compression, a low increase of strength with loading rate is 

observed up to about 1 s-1.  Above this transition, a sharp increase of strength is reported.  

Free water within concrete samples may explain the sensitivity at low strain rates.  

Toutlemonde [1994] performed direct tensile tests for strain rates in the range of (2.5 × 10-6 s-1 

- 2.5 s-1).  Significant strain-rate sensitivity was observed in wet concretes for a maximum 

aggregate size ranging from 2 to 10 mm, and for water to cement ratios varying from 0.3 to 

0.7.  Conversely, a very limited influence of loading rate was detected in dry specimens.  

Spall tests performed by Klepaczko and Brara [2001] on a dried or water-saturated micro-

concrete revealed a spectacular increase of dynamic tensile strength in the strain-rate range of 

(20 s-1 – 120 s-1).  Other results for the “Dynamic Increase Factor” (i.e., ratio between the 

dynamic and quasi-static strengths) were obtained in the strain-rate range of (10–100 s-1) by 

Weerheijm [1992], Wu et al. [2005], Schuler et al. [2006], Weerheijm and Van Doormaal 

[2007], Erzar and Forquin [2009] on ordinary and high-strength concretes. 

To summarize, it is puzzling to observe that most brittle materials show attractive 

properties under extreme conditions such as high temperatures, high pressures or high loading 

rates but ironically these materials are not popular in the field of engineering mechanics.  The 

present study is focused on the modelling of the fragmentation process of brittle materials 

under dynamic tensile loading.  In particular it is shown that when the stress rate is 

“sufficiently” increased, the well-known brittle and probabilistic behaviour of these materials 



 7 

becomes deterministic and is characterized by an increase of ultimate failure stress and strain 

with loading rate.  Moreover, the ubiquitous weakest link hypothesis [Freudenthal, 1968] does 

no longer apply and the failure is not controlled by a unique initiation site but is the 

consequence of a large number of oriented cracks. 

In this study, six brittle materials are selected to compare their fragmentation 

behaviour under dynamic tensile loading.  The first two materials are a dense SiC ceramic and 

a porous SiC ceramic (infiltrated or not by an aluminium alloy).  The third material is a soda-

lime silicate glass.  As geomaterials, two concretes are chosen, namely, an ultra-high strength 

concrete (Ductal®) and a micro-concrete (MB50), and a limestone rock is selected as the last 

material.  The first part gives examples of the use of such brittle materials under impact or 

blast loadings.  Their damage pattern is illustrated by means of macrographs and micrographs.  

In the second part, based on the weakest-link hypothesis, the Weibull model is used to 

describe single fragmentation in brittle materials.  The Weibull parameters and the basic 

properties of the six reference materials are presented.  Results of edge–on impact tests 

performed with each material are shown in the third part.  Open or sarcophagus configurations 

are used to analyze the main properties of fragmentation in the targets (density, orientation, 

extension of cracking).  In the fourth part, based on a concept of “local” weakest-link 

hypothesis, a description of the obscuration phenomenon is proposed for any fragmentation 

process (single or multiple).  The meaning of the probability of obscuration is discussed 

depending on the applied loading rate and the size of the examination domain.  In the last part, 

the multi-scale fragmentation model is used to simulate the damage process during edge-on 

impact tests.  An analytical solution is also used to deduce the fragmentation properties near 

the surface of targets for the six brittle materials. 
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II. Damage of brittle materials under impact or blast loadings 

Fragmentation processes are commonly observed in targets made of concrete, rock, ceramic 

or glass when they are submitted to impact or blast loadings.  In this part, four examples of 

brittle materials under such conditions are detailed.  A silicon carbide ceramic is utilized as a 

front face of multilayered armour.  Next, the fragmentation of a limestone rock under blast 

loading is shown.  Ballistic results obtained with an ultra-high strength concrete (Ductal®) are 

shown afterwards.  This type of concrete combines low porosity levels and high compressive 

strengths that makes it interesting as a material for protective structures against impact loads.  

The last brittle material loaded under a projectile impact is a soda-lime silicate glass used in 

transparent armoured windshields. 

 

II.1.  Fragmentation of ceramic tiles used as front face of multilayered armour 

 

Bilayered armours using hard materials such as ceramics (e.g., alumina, silicon carbide, 

quartz) as front plate and ductile materials (e.g., steel, aluminium alloy, composite or 

polycarbonate) as backing face have been studied for several years to improve the efficiency 

of light or medium armours against small-to-medium piercing calibres (e.g., AP 7.62 mm or 

AP 12.7 mm [den Reijer, 1991]).  The high hardness of ceramic materials favours projectile 

blunting and / or failure and spreads the kinetic energy on a large surface of the ductile 

backing.  The weight of the armour is then reduced in comparison to those made of steel only 

[Forquin et al., 2003].  Figure 1 shows a block of armour made of three tiles of infiltrated 

ceramic as front face and of 15 mm thick aluminium layer as backing.  A steel casing that 

maintains the three tiles in position during squeeze casting and constrains the ceramic during 

impact surrounds the ceramic tiles.  An AP 12.7 mm projectile travelling at 880 m / s 

impacted the block (Figure 1).  One notes no penetration even though a bending deformation 
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of the target is observed.  An intense fragmentation made of dense and oriented micro-cracks 

occurred mainly in the first layer (see micrographs of Figure 1).  This anisotropic damage is 

due to high tensile stresses that spread out in the target following the incident compressive 

wave [Denoual et al., 1996; Forquin et al., 2003a].  The projectile was found totally 

pulverized after impact.  During impact, damage in the target and of the projectile develops 

simultaneously during few microseconds that follow impact.  They reduce respectively the 

strength of the target to be penetrated and the penetrating capability of the projectile.  This is 

why the fragmentation properties of the target (i.e., the characteristic time to damage, the 

density and orientation of cracking or the dynamic strength of the material) need to be 

predicted and modelled; the role of the microstructure of the ceramic tile being an important 

point to be understood. 

 

II.2.  Fragmentation of a limestone rock submitted to blast loading 

 

Detonating explosives are currently used in geomechanics to blast rocks to build roads, 

tunnels, bridges or dams.  They are also extensively used in open quarries to produce blocks, 

aggregates and gravel.  In such situations, fragmentation of rocks needs to be controlled to 

limit the extension of cracking, to obtain the required size of blocks and to adjust as well as 

possible the quantity of explosives, their power, the number and position of the charges.  The 

distinct zones resulting from rock blasting were identified by Kutter and Fairhurst [1971], 

namely a comminuted area (or crushing zone) in the vicinity of the explosive followed by a 

damaged zone in which dense microcracking is observed and finally a zone where few long 

cracks develop.  Later, it was recognized that inherent flaws are activated, grow and 

eventually coalesce to form macrocracks [Shockey et al., 1974].  For example, the picture of 

Figure 2 (left) shows the synchronized detonation of eight charges in an open quarry.  The 
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pressure of gas, the spacing of the charges and the chronology of the pyrotechnic system 

directly influence the fragmentation process of the blasted rock.  Figure 2 (right) shows the 

result of a unique blast loading of a Beaucaire limestone slab.  The material is reduced in 

debris in an area close to the explosive.  Furthermore, numerous radial and hoop cracks have 

propagated in the whole block.  Compressive damage and compaction in the first zone 

probably limited the crack density in the volume. 

 

II.3.  Damage of Ultra-High Strength Concrete due to impact by a kinetic striker 

 

During the two last decades, performances of concretes have seen a spectacular and 

continuous evolution.  First, super-plasticizers were used in the ‘80s to reduce the proportion 

of water in the mix, keeping at the same time a sufficient malleability.  This has led to high-

performance concretes with compressive strengths ranging from −40 to −60 MPa, instead of 

−20 MPa to −30 MPa generally obtained with ordinary concretes.  Addition of silica fume in 

the mix led in the ‘90s to very-high performance concretes (failure stress under simple 

compression down to −120 MPa [Malier, 1992]).  Next, ultra-high strength concretes (UHSC) 

also called RPC (reactive powder concretes) were developed during the last decade with 

failure stresses that may reach at least −200 MPa in simple compression.  These concretes 

benefit from a reduced grain size (maximum size < 600 µm) and an optimal granular skeleton 

that enables one to homogenize the elastic properties of the grains and the matrix, and to 

decrease internal stresses [Richard and Cheyrezy, 1995; Cheyrezy et al., 1995].  For example, 

a micrograph of an UHSC (Ductal®) with no small fibres is shown in Figure 3.  Its 

microstructure is made of fine-sand grains whose size is a few hundreds of micrometers, 

followed by cement grains and crushable quartz grains whose size is in the tens of 

micrometers.  A compact arrangement is obtained by using silica fumes (few micrometer-
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sizes).  The amount of water used in the mix [water / (cement + silica fumes) = 0.17 in 

weight] enables one to minimize the porosity (few %).  In its commercial composition, the 

Ductal® matrix is reinforced by steel fibres (length: 13 mm, diameter: 0.2 mm, strength: 

2400 MPa [Bayard, 2003]). 

At the same time, military laboratories have investigated whether the ballistic 

performances of concretes had grown in proportion to their quasi-static strength.  This is why 

laboratory-scale tests of projectile impact were carried out on ordinary, high-performance 

concretes [Forrestal et al., 1994; Forrestal et al., 1996, Frew et al., 1998; Gómez and Shukla, 

2001] and on ultra-high performance concretes [Darrigade and Buzaud, 1999].  These studies 

allowed for a derivation of analytical solutions of the depth of penetration of a projectile into 

a thick concrete target, in normal impact, knowing the geometry and the velocity of the 

projectile.  This type of dimensionless analysis was proposed, for example, by Kennedy 

[1976] and Barr [1990], and was applied to ordinary and high-performance concretes 

[Forrestal et al., 1996, Frew et al., 1998].  Li et al. [2005] recently proposed a synthesis of 

analytical solutions to predict the depth of penetration of a projectile into a concrete target. 

To illustrate the different types of cracking that develop in a target made of UHSC 

subjected to the impact of a kinetic striker, two pictures are shown in Figure 3.  The target is 

made of two 30-mm thick concrete blocks perfectly glued and a 10-mm thick aluminium 

backing that is used to prevent any spalling on the rear face of the second concrete tile.  The 

projectile is an Armour-Piercing AP 7.62 mm (hard steel core) bullet fired at 840 m/s.  As 

detailed by Li et al. [2005], one may observe distinct damage zones illustrated on the sketch 

on right-hand side of Figure 3: 

• scabbing on the front face (i.e., conical cracks that emerge on the front surface) 

due to unconfined compression in the direction orthogonal to the projectile 

trajectory, 
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• cracking around the tunnel region due to hoop stresses generated by the swelling 

of the tunnel during projectile penetration, 

• spalling on the rear face (i.e., conical cracks on the rear surface) due to axial 

punching of the projectile, 

• fragmentation of the target made of numerous oriented cracks with respect to the 

impact point due to tensile hoop stresses induced by the incident compressive 

wave, 

• Microcracking parallel to the tunnel corresponding to shear stresses ahead of the 

projectile (confined compression in front of the projectile). 

 

Similar damage patterns were observed in targets made of two mortars when impacted 

by cylindrical projectiles (5.3 mm diameter) of rolled 100C6 steel, fired at about 750 m/s 

[Forquin et al., 2008b].  In particular, scabbing on the front face (referred to as saucer-shaped 

cracking), radial and hoop cracking in the bulk of the targets as well as micro-cracking around 

the tunnel were observed.  The damage patterns of Figure 3 correspond to several dynamic 

tensile and compressive loadings at distinct instants and locations after impact.  Here again, 

the fragmentation process needs to be understood and modelled (especially the time to form 

damage, the dynamic strength as function of the loading rate and the mechanical properties of 

the damaged target). 

 

II.4.  Damage of glass during impact against transparent armoured windshields 

 

Glass is usually employed to make transparent armoured windshields.  Figure 4 shows a 

typical result of impact (in this case, a 44 magnum bullet) against a multilayered 

glass / polycarbonate target.  A complex crack pattern is observed.  It is made of: 
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• a zone fully pulverized and reduced in debris close to the impact point, 

• a second area that surrounds the first one.  This area, referred to as ‘zone of vision-

loss,’ is made of dense and oriented cracks, 

• long radial cracks that propagate far away from the impact point and that are 

intersected by hoop cracks. 

In this situation, the main issues are to prevent the perforation of the target by single or 

multiple hits, to reduce the extension of the area of vision loss and to limit as much as 

possible the weight of the windshield. A better understanding of the origin and kinetics of 

fragmentation may allow the designer to improve the efficiency of such transparent armours. 

In this introduction, few examples of damage in brittle materials due to impact or blast 

loadings were shown.  The mere knowledge of the dynamic strength of these materials is not 

sufficient since the projectile (in a case of impact) or gas (in a case of blasting) are still acting 

against the damaged target a long time after the initiation of cracking.  The origin of cracking 

(i.e., microdefects in the material), the growth and extension of damage, and the crack 

densities are also essential points to be understood and modelled.  In the following part, the 

Weibull model is detailed and mechanical properties of the six reference materials are 

presented. 

 

III. Weibull parameters and basic properties of six reference materials 

III.1.  Weibull model 

 

The single fragmentation in brittle materials is first analyzed.  Single fragmentation (i.e., a 

single crack initiation event leading to the failure of the whole structure) is observed in many 

brittle materials under tensile loading when the stress rate is low.  It follows that a weakest 
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link hypothesis is made [Freudenthal, 1968] and a Weibull model [1951] is used to fit 

experimental data, 
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where 1σ  is the local maximum principal stress.  The effective volume, surface or length 

[Davies, 1973], effZ , is expressed as 
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where Z is the size of the whole volume, surface or length and Hm is the stress heterogeneity 

factor [Hild et al., 1992] expressed as 
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The stress heterogeneity factor characterizes the effect of the load pattern on the cumulative 

failure probability.  Last, the average failure stress wσ  and the corresponding standard 

deviation sdσ  are written as 
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Figure 5 shows the change of the stress deviation divided by the average failure stress as 

function of the Weibull modulus (Equations (5) and (6)). The coefficient of variation σsd / σw 

is bounded by the functions m/1  and m6/π .  Therefore the Weibull modulus gives a direct 

indication on the scatter in failure stresses, namely, the higher the Weibull modulus, the lower 

the standard deviation and the scatter of failure stresses with respect to the average value. 

 

III.2.  Weibull parameters of the six reference materials 

 

Bending tests (at least a dozen) were performed for each reference materials and a distribution 

of failure stresses Fσ  was deduced.  According to Equation (1), the failure probability of a 

structure Ω  is function of the two Weibull parameters, namely, the Weibull scale parameter 

( 00 / λmS ) and the Weibull modulus (m).  One way to obtain these parameters is to deduce the 

Weibull modulus for example from Figure 5 knowing the average failure stress and the 

standard deviation of failure stresses (Equations (5) and (6)).  It is then possible to compute 

the stress heterogeneity factor (Equation (4)) knowing the stress field in the structure Ω. The 
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Weibull scale parameter ( 00 / λmS ) is deduced afterwards from Equation (5) or (6).  A classical 

alternative is to resort to the so-called Weibull [1939] diagram in which [ ])1ln(ln FP−−  vs. 

)ln( Fσ  is interpolated by a linear function, the slope of which is the Weibull modulus m.   

Three-point flexure tests were carried out on SiC-100, R-SiC ceramics, MB50 and 

Ductal® concretes, and crinoidal limestone samples.  The sizes of the latter and the number of 

tests performed are given in Table 1.  The Weibull modulus, the average failure stress and the 

effective volume are also reported.  For the five studied materials, the Weibull parameters are 

significantly different.  The Weibull parameters are representative of the material 

microstructure, and more precisely of the defect distribution and local toughness properties 

[Jayatilaka and Trustrum 1977; Hild et al., 1992].  For example, Figure 6 (right) shows the 

load / displacement curves obtained from bending tests carried out on Ductal® concrete 

without fibres.  The behaviour is perfectly elastic-brittle (i.e. no loss of linearity is observed 

until the maximum load is reached).  Consequently, the distribution of maximum loads allows 

one to characterize the population of defects (in terms of activation stresses) that induce the 

failure of specimens.  The pictures of Figure 6 (left) show two failure causes.  A large 

porosity (0.6 mm and 2 mm in diameter respectively for B1 and B5) is observed close to the 

tensile surface of each specimen (upper surfaces of Figure 6 (left)).  The largest porosities in 

the bulk of the specimens are the likely cause of failure.  Concerning the specimens made of 

crinoidal limestone, ceramics and glass, the analysis of failure patterns did not always allow 

one to identify the actual defect from which each failure originated.  The failure of R-SiC 

specimens is probably due to a pore as those visible in Figure 1.  The failure of limestone 

specimens may originate from inclusions made of silica, magnesia, sulphur, ferrous sulphide, 

or potassium oxides that are present in the material.  As demonstrated by Brajer et al. [2003], 

the failure of specimens made of soda-lime silicate glass is due to surface defects (such as 
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micro-scratches).  Therefore an effective surface is computed instead of an effective volume 

(Table 1). 

The Weibull modulus is mainly related to the decay for large defect sizes of the 

corresponding probability density function [Jayatilaka and Trustrum 1977; Hild et al., 1992], 

which is usually described by a power law whose exponent is a linear function of the Weibull 

modulus.  Consequently, different Weibull moduli, as observed for the studied materials, are 

an indication of different defect populations, in particular for the largest defect sizes, i.e., the 

ones likely to initiate failure under quasi-static loading conditions.  For a given reference 

density 0λ , different stresses 0S  are mainly induced by different toughnesses and average 

defect sizes.  Different defect populations will therefore lead to different Weibull parameters.  

Conversely, different Weibull parameters are indicators of different defect distributions.  

When dealing with dynamic fragmentation, the Weibull model itself can no longer be used 

since a weakest link hypothesis does not apply, however, the following microstructure model 

using Weibull parameters is still considered. 

A microstructure model is now introduced to account for random distributions of 

defects.  It has to be valid for describing single and multiple fragmentation regimes.  Its 

advantage then lies in the fact that quasi-static experiments may be used to identify the 

material parameters.  Once they are determined, they may be used in a situation where single 

fragmentation no longer occurs (e.g., dynamic fragmentation).  The material is assumed to 

contain point defects of density tλ .  Such hypotheses are those of a Poisson point process of 

intensity tλ  [Gulino and Phoenix, 1991; Jeulin, 1991; Denoual and Hild, 2000].   

Consequently, the probability of finding δ defects within a uniformly loaded domain Ω of size 

Z reads 

 [ ]t
tP Λ−

Λ
=Ω exp

!
),(

δ
δ

δ
 (8) 
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so that tΛ  corresponds to the average number of defects within Ω.  By definition, tΛ  is 

related to the density tλ  by tt Zλ=Λ  for a uniformly loaded domain.  Let us now assume that 

tλ  is a function of the applied stress 1σ .  The larger the applied stress, the greater the number 

of defects that will initiate cracks.  One possible choice to account for this trend is given by a 

power law function of the maximum principal stress 

 
m

t S ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0

1
01)(

σ
λσλ  (9) 

where m and 00 / λmS  are interpreted as the Weibull parameters when single fragmentation 

occurs.  By using the weakest link hypothesis, the failure probability FP  is the probability of 

finding at least one defect within Ω when 01 >= σσ F  
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when a uniform stress is applied.  If the stress field is heterogeneous, tΛ  is related to tλ  by  

 dZtt ∫
Ω

=Λ λ  (11) 

and the failure probability reduces to Equation (1), and describes the fact that the larger the 

volume the smaller the mean failure stress.  The Poisson-Weibull model allows one to relate 

the Weibull parameters to microstructural properties describing the population of initiation 

sites.  The latter is the key for understanding probabilistic features related to the fragmentation 

of brittle materials. 
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III.3.  Other mechanical properties 

 

In addition to the Weibull parameters, several mechanical properties are reported in Table 1.  

Elastic properties (Young’s modulus and Poisson’s ratio) are obtained from ultra sound 

measurements and knowing the mass density of the materials.  The Young’s modulus of the 

two ceramic materials is much higher than that of Ductal® and MB50 concretes, limestone 

and soda-lime glass.  However, the densities of the five materials are very similar.  

Consequently, the wave speed is higher in SiC ceramics (about 10 to 11 km / s for the 1D 

wave speed, ρ/E ) than in the three other material types (about 5 km / s). 

Data about the compressive strength of the five materials are also reported in Table 1.  

Simple compression tests performed with hourglass specimens on two dense silicon carbide 

grades (SiC-B and the SiC-100) showed a sudden failure with an average failure stress of 

about −6 GPa and −7 GPa [Forquin et al., 2003b].  The compressive strength of the R-SiC 

grade was not measured.  Simple compression tests were also performed with hourglass 

Ductal® specimens and cylindrical specimens with crinoidal limestone.  The average ultimate 

strength measured was −220 MPa and −150 MPa respectively [Forquin, 2003; Grange et al., 

2008]. 

Concerning glass, the Hugoniot Elastic Limit (HEL) was deduced from plate impact 

experiments by Cagnoux [1985].  The material behaves first elastically and then non-linearly 

beyond the HEL.  The yield stress σy may be deduced from the HEL using a Tresca or von 

Mises criterion 

 HELy σ
ν
νσ

−
−

=
1

21  (12) 



 20 

where ν is the Poisson’s ratio of the undamaged material.  With ν = 0.22, the yield stress of 

soda-lime glass is approximately 2.9 GPa. 

Last, the compressive strength of the five reference materials is much higher than their 

mean tensile failure stress (Table 1). However the compressive strengths vary a lot.  In 

particular those of Ductal® and limestone are much lower than those of SiC ceramics and 

glass.  This is why a dynamic confinement system will be used during Edge-On Impact (EOI) 

tests performed with the concrete and rock materials; this system aims at preventing as much 

as possible any compressive damage close to the impact point.  The EOI tests will be detailed 

in the next part. 

 

IV. Dynamic fragmentation in brittle materials 

Tensile cracking, one of the major degradation mechanisms during impact, can be observed 

by using so-called Edge-On Impact (EOI) configurations instead of a real configuration for 

which the degradation is ‘hidden’ in the bulk of the material.  Several configurations were 

developed by the Ernst-Mach-Institute (EMI) in Germany [Hornemann et al. 1984; 

Strassburger et al., 1994] and by the Centre Technique d'Arcueil (CTA) in France [Riou et al., 

1998; Denoual et al., 1998; Forquin and Hild, 2008].  It is shown that the same damage 

mechanism (i.e., damage in tension) is observed in EOI and in real impact configurations 

[Denoual et al., 1996].  During an EOI test, a cylindrical projectile hits the edge of a tile to be 

fragmented.  In the same way as for real impact, a compressive wave propagates within the 

target that induces a radial motion of the material (along the axis centred on the impact point).  

This radial motion creates tensile hoop stresses that may induce intense damage of the target 

made of oriented microcracks.  An ultra-high speed camera may be used to visualize the 

development of the fragmentation process in ‘real time’ (open configuration).  The damage 
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pattern may be also observed after impact if a so-called sarcophagus configuration is used 

[Denoual et al., 1998; Forquin, 2003].  It corresponds to a metallic casing that surrounds the 

target to maintain the fragments in place and to observe the macroscopic and microscopic 

post-mortem cracking pattern.  Various results of EOI tests obtained with the five reference 

materials (Table 1) are detailed below. 

 

IV.1.  Edge-On Impact tests performed with SiC-100 ceramic 

 

Several EOI tests were performed on tiles of SiC-100 [Strassburger et al., 1994; Riou et al., 

1998].  Among those of Riou et al. [1998], Figure 7a shows the damage pattern observed in a 

15-mm large target (horizontal axis of Figure 7a) and a 10-mm thick target (axis 

perpendicular to the pictures of Figure 7a).  Damage is composed of a large number of 

millimetre-long cracks oriented in the radial direction from the impact point.  This damage is 

not generated from the release wave coming from the rear face since the first part of the target 

is damaged less than 2 µs after impact (the longitudinal wave velocity being 11800 m / s, the 

covered distance during 1.9 µs is 22 mm).  One may also note that the characteristic time of 

damage is very short (about few tens of microseconds) since the final damage pattern is 

almost observed at time 2.9 µs. 

 

IV.2.  Edge-On Impact tests performed on R-SiC ceramic 

 

The (60 x 30 x 8 mm3) R-SiC tiles, which are obtained by sintering SiC powder (commercial 

name: Crystars, Saint-Gobain industrial ceramics), are porous (Figure 7b).  The open porosity 

is regular and continuous from one side to the other, in such a way that it can be infiltrated by 

an aluminium alloy, which fills most of the open porosities during squeeze casting [Forquin et 



 22 

al., 2003a].  A porosity of the order of 17% was measured for R-SiC (Table 1).  Edge-on 

impact tests were performed with high-strength steel projectiles (diameter: 11 mm, height: 

15 mm) travelling with two different velocities.  The results of EOI tests obtained with a 

sarcophagus configuration, after infiltration by a hyper-fluid resin and fine diamond-

polishing, are given in Figure 7b.  The damage pattern shows two distinct zones.  A first one, 

made of numerous oriented micro-cracks, spreads over half the tile.  This highly damaged 

area is followed by numerous radial and longer cracks that reach the rear face.  The gradient 

of crack density highlights the influence of stress rate on the crack density. 

 

IV.3.  Edge-On Impact test performed on a limestone rock 

 

Edge-On impact tests were carried out on Ductal® concrete with and without fibres [Forquin, 

2003; Forquin and Hild, 2008] and on crinoidal limestone [Grange et al., 2008].  A special 

sarcophagus configuration drawn in Figure 8 was developed for this type of materials 

[Forquin and Hild, 2008].  It is composed of the standard aluminium casing that surrounds the 

target (Figure 8).  Moreover, two half-cylinders made of tungsten and two half-crowns made 

of steel are put in contact with the lateral faces of the concrete tile near the impact point.  This 

confinement system ensures a plane strain compression loading in front of the projectile.  

Consequently, the hydrostatic pressure in this area increases and it allows one to benefit from 

the large increase of strength of rock and concrete materials with the level of confinement 

pressure.  Therefore the extent of compressive damage is reduced and the modelling of the 

test is easier.  As no additional static loading is used to ensure a good confinement, the 

confinement system is really effective during the back and forth time of waves in the 

confinement (about a dozen of microseconds).  This is why this system is called dynamic 

confinement. 
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Edge-On Impact tests were also performed on crinoidal limestone.  A slab of size 

300 × 150 × 15 mm3 is impacted on the edge by an aluminium alloy projectile (diameter: 20 

mm, length: 50 mm) travelling at 100 m/s.  A typical damage pattern is shown in Figure 8.  It 

is composed of a network of radial and hoop cracks.  No compressive damage is observed in 

the area surrounded by the dynamic confinement system. 

 

IV.4.  Edge-On Impact test on an Ultra-High Strength Concrete 

 

Results of EOI tests carried out on the Ductal® matrix with and without fibres are shown in 

Figure 9.  The size of the target is unchanged wrt. to the previous one and the same projectiles 

are used (aluminium projectile, diameter: 20 mm, length: 50 mm).  The projectile velocity is 

about 90 m/s.  An intense fragmentation is visible beyond the area of confinement.  It is 

composed of numerous cracks oriented in the radial direction (from the impact point).  This 

damage zone spreads over about 80 mm.  A crack density in the range of 107 to 

2 × 107 cracks / m3 was estimated between radii of 30 and 50 mm.  Moreover, spall cracks 

oriented perpendicularly to the axial direction are also visible at a distance of 60 mm from the 

impact point.  These cracks are the likely consequence of interactions of reflected waves from 

the opposite side of the projectile and the rear face of the target.  Last, fibres did not prevent 

crack initiation and propagation even if they provided a substantial residual strength to the 

fragmented target as observed in bending tests performed with specimens reinforced with 

steel fibres [Forquin and Hild, 2008]. 
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IV.5.  Edge-On Impact test on sodalime silicate glass 

 

An edge-on impact configuration was also developed to study the origin and growth of 

damage in sodalime silicate glass due to impact.  The target of size 100 × 100 × 10 mm3 is 

impacted on the edge by a so-called ‘BR4’ bullet (i.e., magnum 44 projectile with a lead core) 

travelling at a speed of 430 m/s.  Two results are shown in Figure 10.  The first picture shows 

for different times after impact the change of cracking visualized by an ultra-high-speed 

camera.  Different types of damage are observed: 

• cracks develop from the impact point forming a circular cracking front, 

• cracks propagate from the impacted edge due to the Rayleigh wave forming the 

Rayleigh cone, 

• cracks develop within the target from flaws located on the lateral faces of the tile.  

Tensile hoop stresses that follow the compressive wave induce these cracks, 

• cracks propagate from the rear face and the lateral edges when the incident wave is 

reflected on this free surface.  These cracks are oriented mainly in the normal direction 

of these edges, 

• a final cracking pattern is visible on the second picture obtained from a sarcophagus 

configuration.  Distinct families of oriented cracks are again detected.  As shown by 

Brajer et al. [2003], the damage pattern is the consequence of cracks initiated from 

surface flaws that are activated by the tensile stress fields that develop in the wake of 

the compressive wave, the shear wave, the Rayleigh wave [Graff, 1975] and of wave 

reflection on free surfaces. 

 

By analyzing edge-on impact tests, it is concluded that when submitted to high-stress-

rate and tensile stresses, brittle materials such as ceramics, rocks, concretes or glass give rise 
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to a high density of oriented (micro)cracks initiated from volume or surface defects.  

Moreover, as shown by dynamic tensile tests available in literature, such as spalling tests, a 

significant increase of failure stress is observed under high loading rates (i.e., strain rates 

greater than a few tens of s-1 in concrete [Weerheijm, 1992; Klepaczko and Brara, 2001; Wu 

et al., 2005; Schuler et al., 2006].  Brittle materials behave in a totally different manner under 

dynamic and quasi-static loadings for which a single crack is usually observed and a very low 

sensitivity to loading rate is reported.  However, one may already underline several common 

points that exist between the quasi-static failure mode and damage under dynamic conditions, 

namely, the origin of cracking is a priori identical (i.e., caused by the same population of 

defects).  A second point would be a “local weakest link hypothesis” that assumes that no 

defect is activated in the vicinity of the existing cracks, an area that depends on the size of the 

corresponding crack as shown by numerical simulations performed by Denoual and Hild 

[2000].  This hypothesis will be the fundamental basis for the modelling of the fragmentation 

process described below. 

 

V. Modelling of the fragmentation process in brittle materials 

A fragmentation process is discrete by essence.  In the theory developed by Mott [1947], the 

fragmentation of a rapidly expanding ring was studied. It contains some key ingredients (i.e., 

the randomness of the process is clearly stated and accounted for) to analyze the distribution 

of fragments in 2D experiments [Grady and Kipp, 1985].  Inertia effects were also to have an 

influence on the fragment size [Grady, 1982; Glenn and Chudnovsky, 1986].  From a 

numerical point of view, different approaches are developed [Ravi-Chandar, 1998].  Discrete 

models are proposed [Kusano et al., 1992; Xu and Needleman, 1994; Camacho and Ortiz, 

1996; Mastilovic and Krajcinovic, 1999; Zavattieri and Espinosa, 2001; Zhou and Molinari, 
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2004] when the fragment size is greater than or equal to the size of a representative element.  

An alternative route to the previous approaches would be to resort to eXtended Finite Element 

simulations.  However, up to now, most, if not all, reported simulations account for single 

fragmentation under dynamic loading conditions [Belytschko et al., 2003; Réthoré et al., 

2005; de Borst et al., 2006; Menouillard et al., 2006].  Models based upon Smoothed Particle 

Hydrodynamics [Monaghan, 1990; Libersky and Petscheck, 1993] are also used to simulate 

the fragmentation of brittle materials under shock loading [Hiermaier and Riedel, 1997]. 

The aim of the present study is to describe and model in a unified way a fragmentation 

process in a brittle material for any loading rate, and accounting for various defect 

distributions.  As shown by the previous experimental results, under low stress rates, single 

fragmentation (a unique crack) occurs whereas multiple fragmentation (numerous cracks) is 

observed under high stress rates.  The modelling is expected to show how the number of 

cracks depends on strain rate and how the loading rate influences ultimate stress and stress-

strain curves.  To answer these questions, the phenomenology of a fragmentation process is 

detailed first.  Next, a general expression of the non-obscuration probability is given and an 

analytical solution is expressed showing the role of volume (or surface) size.  Last, the 

changes of number of cracks, ultimate stress, and time to failure are discussed as functions of 

stress-rate, volume size and material parameters. 

 

V.1.  The “local-weakest-link hypothesis” 

 

V.1.a – Phenomenology of a fragmentation process in a brittle material 

 

Dynamic fragmentation corresponds to the initiation and propagation of a large number of 

cracks from volume or surface defects that exist in a structure Ω, of size Z, Z being a length, 
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surface area or volume.  The defects are assumed to be randomly distributed and activated for 

a random level of stress (for example a function of the size of each defect considered 

[Jayatilaka and Trustrum, 1977]).  The number of critical defects in Z (i.e., whose activation 

stress is exceeded) is described by a density of critical defects related to the applied stress 

level λt(σ), see Equation (9).  Figure 11 shows a schematic of a fragmentation process.  

Defects are randomly distributed along the spatial scale (horizontal axis) and along the stress 

level scale (vertical axis) assuming that the stress level varies linearly with time (second 

vertical axis).  As the stress level is increasing (σ  > 0), the number of critical defects is 

increasing.  However, the cracks that propagate from the first critical defects relax stresses in 

their vicinity (σ  < 0) and prevent the activation of critical defects in an “obscured domain” of 

size Zo(T-t) centred on this crack, where T-t corresponds to the time interval between crack 

inception t and the current time T (Figure 11).  The growth of obscuration domains (i.e., zones 

in which σ  < 0) from activated defects is depicted by triangles (obscuration hyper-cones) in 

Figure 11, corresponding to a constant propagation velocity.  The fragmentation process ends 

when the whole domain is obscured.  Therefore, dynamic fragmentation corresponds to a 

competition between, on the one hand, new critical defects that progressively initiate cracks 

with the increase of the stress level, and on the other hand, the obscuration of areas of 

potential critical defects by cracks created before. 

 

The interaction law between cracks already created and critical defects of the material 

is given by the concept of probability of non-obscuration or “local weakest-link hypothesis.”  

The density and number of cracks are then derived.  Thereafter, basic ingredients of a 

fragmentation process, i.e., laws for the density of critical defects λt(σ) and the size of 

obscured zone Zo(T-t) are proposed. 
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V.1.b – General form for the probability of non-obscuration Pno 

 

One wishes to describe any fragmentation phenomenon corresponding to the random 

inception of one or several cracks in a given domain Ω of size Z.  It is necessary to write the 

condition (in terms of probability) for a point M at a time T not to be obscured, i.e., able to 

initiate a new crack, if a critical defect exits at that point and if it may be activated at time T. 

This condition corresponds to the absence of any critical defects in the horizon of 

(M, T), i.e., “local weakest-link hypothesis.”  This horizon corresponds to the space-time zone 

in which one crack might release the stress level at point M and time T (see Figure 11).  

According to the “local weakest-link hypothesis,” the probability of non-obscuration is equal 

to the product of the elementary probabilities of no-inception of new cracks in each 

elementary space-time zones of Ω belonging to the horizon of the point M at time T 
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where iP∉  is the elementary probability of no-inception of new crack in the space-time area 

dZ x dt located at (x, t) belonging to the horizon of (M, T) and to the considered domain Ω.  If 

one assumes that the material contains point defects of density tλ  (hypothesis of a Poisson 

point process of intensity tλ , see Section III), the elementary probability iP∉  is expressed 

according to Equation (14) if the density λt(x, t) is a continuous function between t and t+dt  
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If the density λt(x, t) is discontinuous between ti and ti+dt, i.e., λt(x, ti+dt) − λt(x, ti) = [λt]x,ti, 

the elementary probability of no-inception of new crack in the space-time area dZ x dt located 

at (x, ti) is expressed as 

 [ ]( )dZtxP
itxti

i
),(exp),( λ−=∉ , (15) 

Therefore, the general form of the non-obscuration probability at (M, T) takes the following 

expression 
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This expression will be analyzed thereafter in a number of particular cases.  First, the crack 

density is derived. 

 

V.1.c – Number of cracks and crack density 

 

The number of cracks generated in Ω at a time T is computed as a function of the crack 

density 
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The crack density is obtained by integrating its derivate and assuming a zero density at time 

T = 0.  Therefore, the history of loading is taken into account 
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However, new cracks are formed only in the partial area that is not obscured.  Therefore, the 

increment of new cracks is assumed to be proportional to the increment of critical defects and 

weighted by the fraction of non-obscured zones.  In a location that is not obscured, any new 

critical defect is converted into a new crack.  The fraction of non-obscured zones is 

comparable to the probability of non-obscuration.  The increment of crack density reads 

 ( , ) ( , ) ( , )cracks t
noM t P M t M t

t t
λ λ∂ ∂

=
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, [ ] [ ]
ii tMtinotMcracks tMP ,, ),( λλ = . (19) 

The probability of non-obscuration is essential for analyzing and modelling fragmentation 

processes in brittle materials.  The basic ingredients are now detailed.  Next, an analytical 

expression of the non-obscuration probability is developed from few basic hypotheses. 

 

V.2.  Modelling of dynamic-fragmentation processes 

 

According to Equation (16), the obscuration probability depends on the density of critical 

defects λt and on the size of obscured zone Zo due to a single crack.  Typical expressions are 

detailed below if an analytical solution of the obscuration probability is needed. 

 

V.2.a – Density of critical defects λt 

 

If one assumes that the same population of defects is activated as under quasi-static tests, the 

density of critical flaws is again given in the form of a power law of the positive (tension) 

principal stress 
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and the Weibull parameters m and ( ) mS −
00λ  are assumed identical to those identified from the 

quasi-static experiments. 

 

V.2.b – Size of obscured domain due to a single crack 

 

The cracks are assumed to propagate with a constant velocity equal to kC, where k is a 

constant parameter and C is the one-dimensional wave speed (C = ρ/E ).  Based upon the 

concept of conservation of energy, an analytical solution for k was proposed [Broek 1982; 

Kanninen and Popelar 1985].  It was demonstrated that when the crack length becomes 

significantly larger than the initial crack size, the cracking velocity tends to a limit close to 

0.38C.  However, according to Freund [1972; 1990], cracks in brittle materials may accelerate 

up to the Rayleigh wave speed CR, e.g., CR = 0.59C with ν = 0.2.  Moreover, the parameter k 

was investigated in several brittle materials, in particular when transparent.  For example, 

experimental studies showed a limiting velocity about 0.5CR in glass, about 0.6CR in Plexiglas 

and about 0.4CR in Homalite-100 [Ravi-Chandar and Knauss 1982; 1984a; 1984b; 1984c; 

1984d; Knauss and Ravi-Chandar 1985; 1986; Sharon et al. 1995].  Strassburger and Senf 

[1995] also investigated the terminal crack velocity in a silicon carbide and in glass materials 

and observed a crack velocity of approximately one half of CR in both cases.  Therefore, it is 

reasonable to assume a crack velocity in brittle materials within the range 0.4CR to 0.6CR (or 

0.23C to 0.35C with ν = 0.2). 

One further assumes that the zone of stress release is centred on the point of crack 

initiation and grows in a self-similar way with a diameter proportional to the size of the crack.  

Therefore the size of the zone of obscuration at a time T corresponding to a single crack 

created at time t is given by 
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where S is a shape parameter of the obscuration volume (equal to 4 π / 3 when assuming that 

obscuration volumes are similar to spheres in a 3D medium (n = 3), S = π for a disc in a 2D 

medium (n = 2) or S = 2 in a 1D medium (n = 1)). 

 

V.3.  Heterogeneous stress field 

 

Let us focus on the fragmentation process in a domain Ω submitted to a heterogeneous tensile 

stress field satisfying the following condition 
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where t0 is a given time for which the maximum principal stress is greater than zero.  This 

would be a typical stress field encountered in a volume in equilibrium and loaded by a force 

F(t) located on a unique point (for example a quasi-static three-point flexural test, or a 

Brazilian test).  Moreover, if the density of critical defects depends on the stress level 

according to Equation (20), then the elementary probability of no-inception of new cracks in 

the space-time area dZ × dt located at (x, t) reads 
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Therefore, the probability of non-obscuration becomes 
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The space-time domain of integration is delimited by the cone-shaped horizon of vertex (M, 

T) and the boundaries of Ω.  The points (x, t) concerned are 
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where xM corresponds to the space coordinate of point M.  The probability of non-obscuration 

is then expressed as 
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where ( , )eff
MoZ x T t−  is the effective volume of obscuration centred on (M, T) due to defects 

generated between t and t+dt 
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The integration bounds are, on the one hand, the boundaries of the domain Ω (Equation (25a)) 

and, on the other hand, the inverted cone in a space-time diagram corresponding to Equation 

(25b).  One may note that the probability of non-obscuration simplifies by mainly using one 

of the integration limits. 

In the particular case of a horizon mainly delimited by the whole domain Ω (Equation 

(25a)), the effective obscuration domain corresponds to the expression of the effective domain 

under quasi-static loading conditions (see Section III, Equation (3)) 
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Therefore, the probability of obscuration (Equation (26)) corresponds to the failure 

probability expressed by Weibull (Equation (1)) and depends on the effective domain and on 

the density of critical defect associated with the maximum stress in Ω (λt(σmax(T))) 

 ( )))((exp1),(1),( max TZPTMPTMP teffFnoo σλ−−=≡−=  (29) 

When the horizon is strictly included inside the domain Ω (horizon given by Equation 

(25b)), and if a uniform stress field is assumed, the obscuration probability (Equation (26)) 

corresponds to [Denoual and Hild, 2000] 
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where Zo(T-t) is the obscured domain at time T due to a crack initiated at time t.  In such 

cases, the obscuration probability is comparable to a damage variable D [Denoual et al., 

1997].  It is interesting to note that the first order approximation of Equation (30) leads to the 

differential equation proposed by Grady and Kipp [1980] to describe the growth law of a 

damage variable.  Moreover, an analytical solution may be obtained by assuming a constant 

stress rate ( tσσ = ) in addition to the density of critical defects given in Equation (20) and 

the shape of obscuration zone given by Equation (21) 
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The obscuration probability (or equivalently the damage variable D) is expressed as a function 

of three parameters, namely, n the space dimension, m the Weibull modulus, and T / tc the 

dimensionless time.  The characteristic time tc reads 
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For any value m > 3 and considering n = 3, the probability of obscuration is less than 5% at tc 

and it is greater than 95% for 2tc.  Therefore, the characteristic time represents the time during 

which most of the obscuration phenomenon occurs.  Equation (32) shows that tc depends on 

three types of parameters.  The first term corresponds to parameters related to crack initiation 

(i.e., the Weibull parameters); the second term highlights the influence of loading rate 

whereas the third term corresponds to parameters related to the crack growth (i.e., kC being 

the propagation velocity of cracks).   

Equation (32) shows the tendency and sensitivity of the characteristic time to each 

parameters of the problem.  For example, the higher the loading rate or the crack velocity, the 

shorter the time to damage the material.  Moreover, by assuming m much larger than n 

( nm >> ), the exponents of each term of Equation (32) are close to respectively 1, −1 and 0.  

This means, for example, that the sensitivity of tc to the crack speed is small compared to the 

parameters related to crack initiation and loading rate. 

A characteristic stress ( cc tσσ = ) may be also defined as 
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This equation again highlights how each parameter of the problem influences the ultimate 

level of stress.  For example, the higher the strain rate, the higher the characteristic stress.  

Two other characteristic parameters are also defined.  The characteristic density ( )( ctc tλλ = ) 

reads 



 36 

 
1 1

0

m n m nm n
m n m nm n

m n
c o

L o a d in g ra teC ra ck in c e p tio n C ra c k p ro p a g a tio n

S k Cλ σ λ σ
− −

+ ++−⎛ ⎞ ⎛ ⎞⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 (34) 

Last, a characteristic zone size ( )( coc tZZ = ) is expressed as 
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Let us note that Zc is equal to 1/λc in accordance with the condition Zc λc = 1. 

In the next part, an analytical solution to Equation (24) is developed.  In particular, it 

is shown how the probability of non-obscuration of Equations (16) and (26) is changed into 

Equations (30) and (31) when the loading rate increases. 

 

V.4.  Non-obscuration probability of a point M centred in Ω 

 

V.4.a – Influence of 5 key parameters on the fragmentation process 

 

The obscuration probability being known, one may wonder when does single fragmentation 

(i.e., a single crack) or multiple fragmentation (i.e., numerous cracks) occur knowing the 

loading rate, the material properties and the size of the domain Ω.  Figure 12 allows one to 

understand how each parameter namely, the stress rate, the crack velocity, the Weibull 

parameters and the size of Ω influence the number of cones that contribute to obscure the 

whole domain Ω.  For example, the faster the cracks propagate, the larger the opening angle 

of obscuration cones, thus the faster the complete obscuration of Ω.  Consequently, the 

ultimate tensile strength and the number of cracks decrease.  Conversely, the higher the stress 
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rate, the lower the opening angle of obscuration cones (when keeping the same scale of stress 

level and dilating the time scale); thus, the higher the ultimate tensile strength and the 

corresponding number of cracks. 

 

V.4.b – Influence of the domain size (Z) on the obscuration probability 

 

Figure 12b allows one to understand the influence of the size of the considered domain on the 

nature of fragmentation (i.e., single or multiple).  When the size of Ω is sufficiently small, a 

single crack will be created in Ω and will obscure the whole domain giving rise to a single 

fragmentation process.  Therefore, the mean failure stress is random and weakly influenced by 

the loading rate. 

An analytical solution of the probability of obscuration of point M at time T may be 

deduced by considering the following hypotheses.  The size of the obscuration domain is 

given by Equation (21) and a point M is located at the centre of the domain (as illustrated in 

Figure 12b, all points of the boundary of Ω are assumed to be equidistant from M).  In such 

cases, the inverted horizon-cone will cut the boundary of Ω whenever the size Z is less than a 

critical size Zcritical = S (kCT)n 
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 (36) 

 

In the first case (Equation (36a)), one may define a time tZ > 0 such that S (kC(T-tZ))n = 

Z (see Figure 12b), the shape of the horizon of (M, T) corresponds to the inverted cone if t > tZ 

and the size of horizon is equal to Z when t < tZ.  Therefore, the non-obscuration probability 

given by Equation (13) is composed of two parts:  
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• the first one corresponds to the product of elementary probabilities of no crack 

inception for t ≤ tZ 

• whereas the second one corresponds to the product of elementary probabilities of no 

crack inception for t > tZ 
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If Equation (14) is used in the previous expression and if one assumes a stress field given by 

Equation (22), the probability of non-obscuration becomes 

 
( )max max

0

( ) ( ( ))( , ) exp ( ) exp
Z

Z

tT
t eff t

no o eff
t t t

Single fragmentationMultiple fragmentation

d t d tP M T Z T t dt Z dt
dt dt

λ σ λ σ

= =

⎛ ⎞ ⎛ ⎞
= − − × −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∫ ∫  (38) 

where Zeff is the size of the effective domain [Davies, 1973] (Equation (28)) and ( )eff
oZ T t−  

the size of the effective domain of obscuration 
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In the particular case of a uniform stress field, the non-obscuration probability reads 
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V.4.c – Analytical solution for Pno considering a constant stress rate σ  
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Equation (40) was obtained by considering a centred point M in Ω and a uniform stress field.  

It may be simplified if one uses the density of critical defect given in Equation (20), the 

expression of the size of the obscured domain given by Equation (21), and if a constant stress 

rate is assumed.  In that case, Equation (40) becomes 
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where tc is the characteristic time defined previously (Equation (32)).  It is worth noting that 

time tZ is not constant but depends upon time T 

 ( )
1

1 nn
Z Z

ZZ S kC T t t T
kC S

⎡ ⎤= − ⇔ = −⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦
 (42) 

To use a new variable that is time independent, a constant stress σZ is defined as 
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Last, the non-obscuration probability becomes 
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where σc is the characteristic stress defined by Equation (33), and the function g reads 
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The non-obscuration probability depends upon four parameters, namely, n the space 

dimension, m the Weibull modulus, the ratio σZ/σc, and the normalized stress σ / σZ.  The 

ratio σZ/σc is the key parameter that controls the fragmentation regime.  This parameter is 

expressed as a function of the ratio Z / Zc 
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V.4.d – Obscuration probability as function of Z / Zc 

 

Equation (46) gives the change of the obscuration probability with time t or microscopic 

stress ( tσσ = ).  According to Equation (45), g is a function that is monotonically increasing 

and the obscuration probability vanishes when t = 0 and tends to one when t → +∞.  One may 

log-log plot the change of x = σ / σZ as a function of Z / Zc for different values of the 

obscuration probability Po (namely 0.1, 0.5 and 0.9, see Figure 13).  During a fragmentation 

process, Z / Zc is given and x is increasing from 0 to +∞ (if a continuous increase of stress is 

assumed).  Therefore, a fragmentation process corresponds to horizontal lines in Figure 13 

and areas corresponding to obscuration probabilities less than 0.1 or greater than 0.9 are 

depicted. 

Figure 13 shows that the obscuration probability is a function of x, which is dependent 

upon the ratio Z / Zc.  For large domains (i.e., cZZ >> ), the obscuration probability evolves 

(from 0.1 to 0.9) for low values of x ( 1<<x  i.e. Zσσ << ).  This is the case when no 

intersection occurs between the horizon-cone and the domain boundary (Figure 12a).  

Numerous cracks are expected to obscure Ω.  By using g(x) = xm+n, the probability of non-
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obscuration tends to the solution given in Equation (30).  This case corresponds to multiple 

fragmentation not influenced by boundaries of Ω 
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( )!

m n m n

Z
Z no

c Z

m nt x P
m n

σ σσ
σ σ

+ +⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟≤ ⇔ ≤ ⇒ → − ⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠⎝ ⎠

 (47) 

If a small domain Ω is considered ( cZZ << ), the probability of obscuration changes for high 

values of x ( 1>>x  i.e. Zσσ >> , see Figure 13).  In such situations, Zσσ >>  and the domain 

is obscured at time T ≈ tZ.  In this case the horizon-cone intersects the domain Ω (Figure 12b).  

For large values of x ( 1>>x ), Equation (45) becomes 
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In that case, the obscuration probability tends to the failure probability given by a Weibull 

model 
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 (49) 

As shown in Figure 12 and Equation (40), the nature of the fragmentation process is strongly 

related to the size Z of the domain Ω to be compared with Zc.  Large volumes are more 

favourable for multiple fragmentation, and the obscuration probability may be compared to a 

damage variable.  On the other hand, small domains lead to single fragmentation, and the 

obscuration probability is equivalent to a failure probability.   
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V.5.  Crack density 

 

V.5.a – Closed-form solution 

 

The analytical solution for the crack density is deduced from Equation (46) and using 

Equations (18) and (19) 
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This expression is computed in cases of single and multiple fragmentation processes using 

Equations (47) and (49). 

 

V.5.b – Crack density for a single fragmentation process ( cZZ << ) 

 

In the first case ( 1>>x  and g given by Equation (48)), the non-obscuration probability is 

described by Equation (49).  The average number of cracks in Ω is given by 
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 (51) 

Therefore, according to Equation (51), the average number of cracks in Ω tends to 1 when the 

stress level exceeds the average failure stress (σw) 
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 43 

where Γ is the Euler function of the second kind (Equation (7)) 

 

V.5.c – Crack density for a multiple fragmentation process ( cZZ >> ) 

 

For multiple fragmentation (i.e., 1<<x ), the non-obscuration probability is expressed by 

Equation (47).  The normalized crack density reads 
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 (53) 

where γ is the incomplete gamma function 
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According to Equation (53), at the beginning of loading ( cσσ << ), the crack density is 

expressed as 
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At the end of loading, the crack density saturates 

 ( )!( ) 1
! !

m
m n

cracks
c

c

m n m
m n m n

λ σ σ
λ

++⎛ ⎞ ⎛ ⎞>> = Γ +⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
 (56) 

The time tcracks satisfying Equations (55) and (56) characterizes the characteristic time 

associated with saturation for a multiple fragmentation process.  This time is scaled by the 

characteristic time tc 
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The ratio tcracks / tc is plotted in Figure 14 when n = 3.  It is bounded between 1.2 and 1.62 for 

a Weibull modulus varying within the range 1 to 30, a confirmation that multiple 

fragmentation mainly evolves during tc and 2tc. 

 

V.5.d – Transition between single and multiple fragmentation regimes 

 

Figure 15 shows the change of the average number of cracks (Zλcracks) in Ω when saturation is 

reached by using Equation (50).  For small domains ( cZZ << ), a single crack is expected in 

Ω (see Equation (51)).  For domain sizes greater than Zc, the crack density tends rapidly to the 

solution given in Equation (56).  Therefore, one may define as transition criterion between 

single and multiple fragmentation, the condition for which the number of cracks in Ω given 

by Equation (56) equals one 
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. (58) 

This ratio is plotted as a function of m for n = 3 in Figure 16.  Considering a given stress rate 

(i.e., Zc constant), the higher the Weibull modulus, the smaller the volume size needed to have 

multiple fragmentation.  With a high Weibull modulus, as numerous defects are activated 

“quasi-simultaneously,” the obscuration phenomenon is prevented and, consequently, 

multiple fragmentation occurs more easily. 
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V.6.  Ultimate macroscopic strength and mean microscopic obscuration stress 

 

V.6.a – Ultimate macroscopic strength 

 

A first method for calculating the tensile strength is to determine the maximum value of the 

“macroscopic non-obscured stress.”  In the same way as Rabotnov [1963], a macroscopic 

stress Σ is defined as the microscopic (or effective) stress σ multiplied by d = 1 − D, where D 

is a damage variable defined as the fraction of domain that is obscured.  This simplification, 

which allows us to derive closed-form solutions, consists in assuming not only that the 

stresses are decreasing in the obscuration zones (σ  < 0), but also that the cohesion is 

neglected in the obscured zones.  The “macroscopic non-obscured stress” Σno is defined as 
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The ultimate macroscopic strength is defined for any fragmentation process as the maximum 

“macroscopic non-obscured stress” 
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with ut  such that 
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V.6.b – Ultimate macroscopic strength in single fragmentation 
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For a single fragmentation process, the non-obscuration probability is given by Equation (49).  

Therefore the “macroscopic non-obscured stress” reads 

 σ
σ
σ

σ
σ

σ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=Σ

+ m

Z

nm

c

Z
Fno P exp)1( , (62) 

The maximum value becomes 
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Thus, similarly to the quasi-static average failure stress (Equation (5)), the ultimate 

macroscopic strength is stress rate independent and is proportional to the size of the domain Ω 

raised to the power −1 / m.  The meaning of u
nglesiΣ  with respect to σw will be discussed in the 

sequel.  The time u
nglesit  for which the ultimate macroscopic strength is reached is given by 
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It is worth noting that for high Weibull modulus (m >> 1), since u
nglesiΣ  tends to wσ , the time 

u
nglesit  tends to the average failure time of the Weibull model ( σσ /w ). 

 

V.6.c – Ultimate macroscopic strength in multiple fragmentation 

 

For a multiple fragmentation regime, the function g is equal to xm+n, and the non-obscuration 

probability is given by Equation (47).  Therefore, the “macroscopic non-obscured stress” 

corresponds to the macroscopic stress of a damage model [Denoual et al., 1997] 
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characteristic stress and time with a correction coefficient that depends on the Weibull 
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The ratio )/( c
u
multiple tt  is plotted in Figure 14.  It varies between 1 and 1.3 for a Weibull modulus 

in the range of 1 to 30.  This shows again that multiple fragmentation mainly evolves during tc 

and 2tc. 

 

V.6.d – Transition criterion between a single and a multiple fragmentation 

 

One may define a new criterion to describe the transition between single fragmentation and 

multiple fragmentation processes based on the ultimate macroscopic strength level computed 

above.  If the ultimate macroscopic strength defined by Equations (63) and (66) are equal 

( u
multiple

u
nglesi Σ=Σ ), a transition domain size is obtained 
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This new transition in terms of Ztransition / Zc is plotted as function of the Weibull modulus m 

for n = 3 (Figure 16).  It is very close to the first criterion (Equation (58)). 

The “macroscopic non-obscured stress” Σno defined previously represents the fraction 

of microscopic stress in the material that is not obscured by the propagating cracks.  
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Therefore, the maximum macroscopic stress corresponds, in a pure deterministic vision, to the 

maximum load that the material may carry, for any domain size or applied stress-rate.  Under 

quasi-static loading conditions, the failure of brittle materials is sudden and the failure stress 

is random.  Therefore, the macroscopic non-obscured stress would correspond to the average 

failure stress if a large number of specimens were loaded at the same time and if the average 

of all stress-strain curves was recorded. 

Last, the macroscopic non-obscured stress gives a possible representation of the 

mechanical behaviour of a fibres bundle loaded under quasi-static or dynamic loading.  

Another definition of stress and strength may be obtained by considering each specimen 

separately.  This second approach is detailed next. 

 

V.6.e – The mean microscopic obscuration stress 

 

Another way of defining the tensile strength of the material is to compute the average of the 

random microscopic stresses when obscuration occurs.  This corresponds to a statistical 

treatment of the data considering different increments of obscuration probability.  The mean 

microscopic obscuration stress is defined by 
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It is computed by considering the change of the obscuration probability with the microscopic 

stress σ.  If one uses the analytical solution of the obscuration probability (Equation (46)), the 

mean microscopic obscuration stress reads 
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The corresponding standard deviation becomes 

 ∫ −=
1

0

22 )()( ooo
sd
o dPP σσσ . (71) 

 

V.6.f – Mean microscopic failure stress in single fragmentation 

 

The non-obscuration probability is given by Equation (49).  Therefore, the mean microscopic 

failure stress is expressed as 
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It corresponds to the classical average failure stress obtained by considering a Weibull model 

(Equation (5)).  The standard deviation is identical to Equation (6). 

 

V.6.g – Mean microscopic damage stress in multiple fragmentation 

 

For multiple fragmentation, the mean microscopic damage stress is defined as 

 ∫=
1

0

)( dDDmultiple σσ , (73) 

Considering the growth law of the damage variable for a multiple fragmentation [see 

Equation (31)], the mean microscopic damage stress is proportional to the characteristic stress 
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A corresponding time obs
multiplet  may be defined as  
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and represents the mean time duration for which the damage variable evolves between 0 and 1.  The 

ratio )/( c
obs
multiple tt  is plotted in Figure 14 and varies between 1.2 and 1.6, and it shows again that 

the duration of the multiple fragmentation process is of the order of tc. 
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This standard deviation is proportional to multipleσ  with a correction coefficient given by the plot of 

Figure 5 in which the Weibull modulus m is replaced by m+n.  One may note that even if sd
multipleσ  is 

related to a multiple fragmentation process, it does not tend to zero when σ  increases.  Thus, 

sd
multipleσ  is not representative of the scatter of ultimate stress but it characterises the distribution 

of microscopic stress when damage evolves from 0 to 1. 

 

V.6.h – Transition criterion between single and multiple fragmentation 

 

It is also possible to define a criterion to describe the transition between single fragmentation 

and multiple fragmentation processes based on the mean microscopic obscuration stress level.  

A new transition size Ztransition is obtained by assuming that the two mean microscopic 

obscuration stresses are equal ( multiplenglesi σσ = ) 
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 (77) 

This new transition criterion Ztransition / Zc is plotted as a function of the Weibull modulus in 

Figure 16 for n = 3; it is very close to the two previous ones (Equations (58) and (68)). 

 

V.6.i – Changes of the ultimate macroscopic strength and the mean 

microscopic obscuration stress with stress rate 

 

Figures 17 and 18 show the changes of stress level as function of respectively the stress rate 

σ  and the ratio Z / Zc (considering the parameters of a SiC-100 ceramic, see Table 1).  Six 

curves are plotted in each graph.  The first three correspond to the mean microscopic 

obscuration stresses given by Equations (69), (72), (74) that are respectively the general 

solution, the particular solution for single fragmentation, and the particular solution for a 

multiple fragmentation.  The last three correspond to the ultimate macroscopic strengths given 

by Equations (60), (63), (66), respectively the general solution, the particular solution for 

single fragmentation, and the particular solution for multiple fragmentation.  The two 

transition criteria corresponding to Equations (68) and (77) are also shown in the plot of 

Figure 18.  The ultimate macroscopic strength level is below that of the mean microscopic 

obscuration stress for any considered volume size or stress rate. 

In this part, two definitions of the tensile strength of a brittle material were proposed 

for any stress-rate and volume size.  The “ultimate macroscopic strength” was defined as the 

maximum level of macroscopic stress.  The “mean obscuration stress” was built as an average 

value of microscopic stresses when the obscuration probability evolves from 0 to 1.  Both 

criteria are stress-rate independent and volume size dependant at low stress-rates.  At high 

stress-rates, in both cases, the strength increases with the stress-rate raised to the power 
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n/(m+n).  The transition criteria derived from both definitions are almost identical, whatever 

the considered Weibull modulus.  Next, both curves of tensile strength vs. stress-rate are 

compared to data obtained by Monte-Carlo simulations. 

 

V.6.j – Comparison with results obtained by Monte-Carlo simulations 

 

Denoual and Hild [2000] carried out Monte-Carlo simulations of a fragmentation process in a 

cube of SiC-100 (Table 1) of volume size equal to 1.25 mm3 (n = 3).  The volume was 

subjected to remote tension when σ  was constant.  When a crack is activated, a zone of stress 

relaxation is produced following Equation (21).  The macroscopic stress is therefore equal to 

Tσ  times the fraction of non-relaxed volumes.  500 realizations were performed for each 

stress rate.  The dots in Figure 19 correspond to the average values of the maximum 

macroscopic stress whereas the standard deviation is represented by error bars.  For a stress 

rate within [0, 500 MPa / µs], the ultimate strength is not modified by the loading rate and is 

equal to the average failure stress (σw) of a Weibull model (Equations (5) and (72)).  When σ  

increases by approximately one order of magnitude, the ultimate strength follows the dynamic 

solution of Equation (60), i.e. the ultimate macroscopic strength for a multiple fragmentation 

( u
multipleΣ , Equation (66)).  During the transition, the standard deviation of Monte-Carlo 

simulations significantly decreases when the stress rate increases.  Thus, Denoual and Hild 

[2000] proposed a transition size Ztransition assuming that the quasi-static mean failure stress 

and the dynamic ultimate strength are equal ( u
multiplenglesi Σ=σ ) 
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This transition criterion Ztransition / Zc is plotted as function of the Weibull modulus in Figure 

16 for n = 3; it appears slightly different than the three criteria proposed above (Equations 

(58), (68) and (77)) especially for high Weibull moduli. 

Last, one may ask why the average values of Monte-Carlo simulations fit the curve of 

the mean microscopic obscuration stress at low stress rate, whereas these data follow the 

curve of the macroscopic ultimate strength at high stress rate.  Since cracks are initiated 

independently from each other under quasi-static loading (single fragmentation, one crack in 

each domain Ω) the tensile strength is defined as the average value of independent failure 

stresses and the mean microscopic obscuration stress applies ( nglesiσ  = σw).  Conversely, under 

high loading rate, multiple fragmentation occurs corresponding to a high quantity of cracks 

that evolves simultaneously in the domain Ω.  This is why the ultimate macroscopic strength 

applies )( u
multipleΣ . 

The mean microscopic obscuration stress would apply under high stress rates for 

example to characterise the average microscopic stress of independent micro-domains each 

one obscured by a single crack.  In the other-hand, the ultimate macroscopic strength would 

be of interest under quasi-static loading to characterise the global strength of a macro-domain 

made of micro-domains as in a composite material made of fibres bundles.  In such case, 

although random events (fibres breakage) take place at a microscopic scale, the macroscopic 

behaviour is deterministic. 

 

V.7.  Anisotropic damage model for multiple fragmentation and first validations 

 

To account for microcracking under dynamic loading conditions, the early models are based 

upon the analysis of cracked systems [Budiansky and O'Connell, 1976; Margolin, 1983] on a 

continuum level at which constitutive equations are written.  The models developed by Taylor 
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et al. [1986] and Rajendran [1994] use the previous framework.  This approach usually leads 

to an isotropic description of damage.  More heuristic models have also been proposed 

[Johnson and Holmquist, 1992].  Cracking is essentially anisotropic and the model needs to 

account for it to be realistic in terms of actual damage predictions [Denoual et al., 1996; 

Dragon and Halm, 1996; Espinosa et al., 1998]. 

According to the Monte-Carlo simulations (Figure 19), under low stress rate, the 

behaviour is probabilistic (random failure stresses), stress-rate-independent but domain size 

dependent.  Under high loading rate, the behaviour of brittle materials becomes deterministic 

with an ultimate strength stress-rate-dependent but volume-size-independent.  An anisotropic 

damage model was proposed by Denoual and Hild [2000] to describe the deterministic 

behaviour of brittle materials at high stress rate.  The bases of the modelling are the following.  

Three damage variables are used associated to each cracking directions (di) assumed to be 

orthogonal.  The strain tensor ε is related to the stress tensor Σ by 

 ΣKε ),,( 321 DDD=  (79) 

In the principal frame, the compliance tensor K  is defined by 
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where E is the Young’s modulus and ν the Poisson’s ratio of the undamaged material.  The 

growth of each damage variable Di is based upon the defect density λt and derived by using 

the obscuration probability for multiple fragmentation in a domain loaded uniformly 

(Equation (30)) 
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where no index summation is used.  For a constant stress rate ( tt ii σσ =)( ), the damage 

variable follows the analytical solution of Equation (31) and the maximum value of the 

macroscopic stress iii D σ)1( −=Σ  corresponds to the ultimate macroscopic strength 

)( u
multipleΣ  of Equation (66).   

 

V.7.a – Multiple fragmentation in R-SiC ceramic target 

 

This type of (local) model was used to simulate the dynamic fragmentation during edge-on 

impact tests on SiC ceramics [Denoual and Hild, 2000], on aluminium infiltrated ceramics 

[Forquin et al., 2003], on microconcrete [Forquin and Erzar, 2009], on glass [Grujicic, 2009].  

It is used herein to analyze the experimental results of Figure 7b by resorting to finite element 

analyses.  The material parameters used in the simulations are given in Table 1.  It should be 

remembered that no parameter is tuned by using the EOI experiments.  The following results 

are therefore validations of the proposed approach.  Figure 20 shows the numerical simulation 

of two edge-on impact tests with R-SiC tiles. The maps of crack densities are given for three 

different times and two different impact velocities.  The dashed boxes correspond to those 

found experimentally (Figure 7b).  When t = 3 µs, the crack density is greater than 102.5 

cracks / mm3 in the rectangles.  Figures 20-b,c show that a damage front gradually invades 

about one half to two thirds of the tile in less than 4 µs.  It can be noted that after t = 4 µs, the 

density in the rectangles does not change significantly.  It can therefore be compared with 

post-mortem analyses shown in Figure 7b.   

A fragmentation analysis is carried out in the vicinity of a 1-mm3 volume 13 mm 

ahead of the impact point.  The crack density is evaluated in the following way.  The mean 
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distance (d) between two neighbouring cracks is estimated. For example, six circles centred 

about the impact point have been drawn in the pictures shown in Figure 7b.  It was observed 

that, on average, each circle is intercepted by a crack every 0.2 mm in the first case (impact 

velocity of 100 m/s) and every 0.1 mm in the second case (impact velocity of 200 m/s).  Thus, 

the crack density is estimated in both cases as (1/d)3, which corresponds to a value of the 

order of 102 and 103 cracks / mm3 to be compared to the predictions of Figure 20.  According 

to numerical simulations, the final crack density in a zone located 13 mm from the impact 

point is about 103 cracks / mm3 (i.e. 1012 cracks / m3) and 103.5 cracks / mm3 (i.e. 1012.5 

cracks / m3) respectively for projectile velocities of 100 and 200 m/s.   

In the present case, the benefit of a damage model in comparison with other numerical 

methods in which each crack is described is clearly shown since the total number of cracks in 

the target exceeds few millions and the computation took less than a few minutes on a 

conventional PC. 

 

V.7.b – Modelling of the dynamic strength of a micro-concrete 

 

The dynamic tensile strength of a dry micro-concrete (MB50) was experimentally 

investigated by means of spalling tests and computations [Erzar and Forquin, 2009]. The 

striker is designed to get a uniform tensile stress field within the specimen. A laser device, 

acting like a VISAR, is directed towards the free end of the specimen to record the particle 

velocity. The spall strength of MB50 concrete is deduced from a linear acoustic 

approximation introduced by Novikov [1966] 

 pbspall VC Δ= 02
1 ρσ , (82) 
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where pbVΔ , which is referred to as the pullback velocity, is the difference of velocity 

between the maximum value and that at rebound. Moreover, strain gauges are used to 

evaluate the level of strain-rate within the damaged part of the specimen. The results obtained 

with dried samples are shown in Figure 21. Moreover, direct tensile tests performed on 

identical specimens (cylinders 45.7 mm in diameter, 120 mm in length) at low strain-rate 

(about 10-5 s-1) showed a much lower quasi-static strength (3.9 MPa). In parallel, 20 bend tests 

were performed to identify the Weibull parameters for small effective volume (39.9 mm3 

instead of 200 000 mm3 for direct tensile tests; see Table 1). Predictions of the model, i.e. the 

average failure stress ( )( effw Zσ ) given by Weibull law and the ultimate macroscopic strength 

( )(εu
multipleΣ , Equation (66)), are compared with the quasi-static and dynamic (experimental) 

results in Figure 21. Both effects, namely, the increase of strength with loading rate at high 

strain rate, and volume effect described by the Weibull law at low strain-rates, are well 

predicted. 

 

V.8.  Multi-scale modelling of any fragmentation processes 

 

The previous model does not allow one to describe the probabilistic behaviour of brittle 

materials under low stress rates. To simulate in a finite element code any fragmentation 

process (single or multiple) with a unique model, a modified growth of the density of defect is 

proposed [Denoual and Hild, 2002; Hild et al., 2003] 
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where σk is stress generated randomly for each finite element k according to the Weibull law 

of Equation (1) and considering Zeff = ZFE 
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Pk being obtained by random number varying between 0 and 1.  An example of distribution of 

random failure stresses is given in Figure 22 for a “very coarse mesh” used later on 

(ZFE = 93.8 mm3). 

For a constant applied stress rate, an analytical solution of Equations (81) and (83) was 

proposed [Forquin, 2003; Hild et al., 2003] 
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The analytical solution of Equation (85) is compared with the previous Monte-Carlo 

simulations in Figure 23 considering three values of stress σk (σw, σw-σsd and σw+σsd).  The 

multi-scale model of Equations (81) and (83) allows one to obtain the probabilistic behaviour 

of Weibull at low stress rates as well as the deterministic ultimate macroscopic strength 

(Equation (66)) at high stress rates.  Moreover, the reduction of scatter of failure stresses 

when the stress rate is increasing describes quite well what is predicted by Monte-Carlo 

simulations. 

 

V.8.a – Multi-scale modelling of the fragmentation in SiC-100 ceramic target 
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The multi-scale model is used to analyze an EOI test on a SiC-100 ceramic [Denoual and 

Hild, 2002].  Strain measurements are performed over a field of 32 × 32 mm2 during impact.  

Details on the moiré photography set-up are reported in [Bertin-Mourot et al., 1997].  The 

advantage of the moiré measurement is that quantitative rather than qualitative analyses can 

be performed between experiments and simulations.  Figure 24-a shows the fringe pattern 

approximately 2 µs after impact.  The comparison of numerical and experimental strains is 

given in Figure 24-b. The strain diagram is plotted for a point M at a distance of 13 mm from 

the surface hit by the projectile (circular mark in Figure 24-a).  It can be noted that the radial 

strain level reaches an important value (of the order of 0.8 %) before any significant change of 

the hoop strain. This is consistent with a cylindrical stress wave in which the tensile strain is 

induced by the radial motion of the material. 

The multi-scale model requires probabilistic numerical simulations instead of the 

deterministic simulations proposed with a classical (i.e., local) description.  That is, numerous 

simulations have to be carried out when the average behaviour is analyzed.  Five hundred 

realizations of the simulation are performed with the multi-scale model (a CPU time of 4 

minutes per realization is needed on a conventional PC).  The average and standard deviation 

of the hoop and radial strains are plotted in Figure 24-b. The multi-scale model yields good 

predictions of the strain levels.  All the experimental measurements fall in the grey shaded 

zone, i.e., the experiment may be compared to one realization of the 500 numerical 

simulations.  The use of an anisotropic damage model is necessary if one wants to accurately 

predict the strain levels.  An elastic computation underestimates both radial and hoop strains. 

An isotropic damage model would have given even lower strain levels [Denoual et al., 1996]. 

This type of model was also used to analyze the dynamic fragmentation in 

compression tests on SiC ceramics [Forquin et al., 2003b], in EOI tests on glass [Brajer et al., 
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2003; 2009], and on limestone rocks [Grange et al., 2008].  Next, it is used to simulate 

dynamic fragmentation that occurs during EOI tests performed on Ductal® concrete. 

 

V.8.b – Multi-scale modelling of the fragmentation in Ductal® concrete target 

 

As underlined above, the transition between single and multiple fragmentation depends on the 

stress rate for a given domain size Z.  Multiple fragmentation is obtained at high stress rates 

whereas single fragmentation is observed at low stress rates.  However, the transition criterion 

depends on Z as well.  Thus, for a given stress rate, multiple fragmentation will occur in 

sufficiently large domains (i.e. Z >> Ztransition(σ )) whereas single fragmentation is expected in 

small domains (i.e. Z << Ztransition(σ )).  Several numerical simulations of edge-on impact 

configurations (Ductal® concrete targets) were performed with different sizes of finite 

elements to observe how the transition between single and multiple fragmentation occurs in 

the computation.  First, numerical simulations were performed with a plasticity-like model 

without damage to characterise the tensile loading rate as a function of the distance from 

impact point.  The plasticity model referred to as KST [Krieg, 1978; Swenson and Taylor, 

1983] model gives a description of geomaterials behaviour under low and high confinements.  

The equivalent (von Mises) stress is related to the pressure P by a pressure-dependent yield 

stress )(Pyσ  
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where min
eqσ  is the minimum yield stress assumed to be equal to the ultimate strength under 

uniaxial compression.  Simple compression tests performed with hourglass samples of 
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Ductal® concrete without fibres showed a mean ultimate strength of about 222 MPa [Forquin, 

2003].  Triaxial compression tests performed on the same material under hydrostatic pressures 

as high as 600 MPa [Buzaud, 2003] allowed us to tune the coefficients a0, a1, a2 and the 

maximum equivalent stress max
eqσ .  All these coefficients are reported in Table 2.  Similar tests 

performed by Buzaud [2003] also provide points of the compaction curve (i.e., change of the 

volumetric strain with pressure) that is described in KST model by a piece-wise linear 

relationship ( )(i
vε , )(iP ) 
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where Ki and Kf denote the initial and final bulk moduli, and (n) the last point used to define 

the overall volumetric behaviour (n = 3 in Table 2).  Edge-on impact tests of Figure 9 were 

simulated with the commercial explicit code Abaqus [Hibbitt et al., 2001].  An aluminium 

alloy projectile (diameter: 20 mm, length: 50 mm) impacts a 10-mm thick concrete target with 

a velocity of 88 m/s.  In the numerical simulations, the dynamic confinement system is 

composed of a steel half-cylinder (diameter: 24 mm) put in contact against the concrete tile 

(Figure 22).  Few microseconds after impact, a high-pressure field develops within the 

confined area in the range of 150 MPa-250 MPa, which justifies the use of the KST model.  In 

the wake of the compressive wave, tensile hoop stresses develop within the target, a 

consequence of the radial motion due to the compressive wave.  The stress-rate level is 

plotted in Figure 25 (left) as function of the distance from the impact point.  It is in the range 

of 24 MPa/µs to 2.4 MPa/µs at a distance of respectively 20 mm and 70 mm from the 

impacted edge of the target.  To know whether single or multiple fragmentation should be 

expected, the transition sizes Ztransition(σ ) of Equations (78) and (58) (criteria u
multiplenglesi Σ=σ  
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and Zλcracks = 1) are plotted versus the distance from the impact point in Figure 25-right 

considering the stress rate level of Figure 25-left.  Close to the impact point (20 mm), as the 

stress rate is high (24 MPa/µs), the transition occurs for a small volume (about 2.7 mm3 with 

criterion u
multiplenglesi Σ=σ  and 0.28 mm3 with criterion Zλcracks = 1).  On the other hand, far 

away from impact point (> 70 mm), the stress rate is ten times lower and a larger volume 

(Z > 600 mm3 with criterion u
multiplenglesi Σ=σ  and Z > 61 mm3 with criterion Zλcracks = 1) is 

needed to have multiple fragmentation.  Next, the result of numerical simulations performed 

with the local and multiscale fragmentation models are shown with four mesh sizes to observe 

whether the radius of transition between single and multiple fragmentation is correctly 

predicted by one of the two criteria shown in Figure 25-right. 

The KST model was coupled to the anisotropic damage model presented above to 

simulate fragmentation processes by taking account the behaviour of confined geomaterials 

under high pressure levels.  It is worth noting that other coupling strategies were proposed 

(see, e.g., [Gailly and Espinosa, 2002]).  The present model is implemented as a VUMAT 

routine made of two parts.  First, the microscopic stress tensor σ is computed from volumetric 

and deviatoric strain components taking into account the compaction law (Equation (87)) and 

the pressure-dependent yield stress (Equation (86)) of the KST model.  Second, the three 

damage variables associated to each principal microscopic stress is computed according to the 

growth law (81).  Last, the macroscopic stress tensor is computed from Equations (79) and 

(80) 

 σKKΣ )0,0,0(),,( 321
1 DDD−=  (88) 

The edge-on impact tests of Figure 9 (aluminium projectile impacting at 88 m/s a Ductal® 

concrete target) is now simulated with the fragmentation model coupled to the KST model.  

Figure 26 shows the fields of damage (D1) and crack density (λcracks
(1), log-scale) associated 
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with the major principal stress at times t = 20 µsand 35 µs and considering different finite 

element sizes (ZFE = 93.8 mm3, 23.4 mm3, 5.86 mm3, 1.67 mm3) labelled respectively “very 

coarse mesh,” “coarse mesh,” “fine mesh” and “very fine mesh”. 

First, the so-called “local model” or “multiple fragmentation model” is used with the 

fine mesh.  Each damage variable is computed from Equation (81) considering the defect 

density given in Equations (1) and (20).  In that case, the influence of boundaries of each 

finite element is not considered (see Figure 12).  Thus, according to Figure 19, the ultimate 

strength is underestimated each time ZFE < Ztransition, i.e. each time the number of cracks (ZFE 

λcracks
(1)) in each finite element predicted by the modelling is less than one or each time 

λcracks
(1) < 1/ZFE (see Figure 26a-right considering that for ZFE = 5.86 mm3, 

1 / ZFE = 108.23 m-3).  This is why the crack density predicted at the scale of the finite element 

is unrealistic (since a fraction of one crack does not make sense) even if the crack density 

field may be deemed correct at the scale of the whole structure.  In other words, Figure 26a 

gives the purely continuum vision of the fragmentation process in the target even when the 

fragmentation process is discrete at the scale of each finite element.   

The multi-scale model was used for the numerical simulations of Figures 26b, c, d and 

e.  The damage growth law (81) combined to that of the crack density (83) gives a 

deterministic ultimate strength at high stress rates and a random failure stress at low stress 

rates (Figure 23).  On each picture of Figures 26b, c, d and e, two zones are observed.  In the 

first part of the target (area inside the mid-circles centred on the impact point), all elements 

are damaged and a continuous crack density field is observed.  The level of crack density 

appears to be always greater than 1 / ZFE (1/ZFE = 107.02, 107.63, 108.23, 108.77 m3 respectively 

for the very coarse, coarse, fine and very fine meshes) i.e., multiple fragmentation is observed 

in each finite element included in this area.  Moreover, the level of crack density in this area is 

similar to that of Figure 26a (local model).  Outside this area, the damage field is discrete and 
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is composed of corridors that develop following radial lines that emanate from the impact 

point.  In this area, the “strongest elements” (i.e. those characterized by a high random failure 

stress σk (Equation (84))) did not break and a probabilistic behaviour is observed.  The size of 

the area that delimits the continuous field of damage (D1 = 1) decreases with decreasing 

element sizes.  For example, this area spreads over a radius of 80 mm, 58 mm, 43 mm and 

less than 30 mm respectively for the very coarse, coarse, fine and very fine meshes.  These 

radii correspond to those predicted by the second transition criterion of Figure 25-right 

(Zλcracks
(1) = 1).  Therefore, this criterion is able to predict the transition between a discrete and 

a continuous damage field and to predict the minimum finite element size for which the local 

model may be used.   

The influence of the mesh size on the crack density is shown in Figure 27.  A 

93.8-mm3 volume located 60 mm ahead from the impact point is considered in each numerical 

simulation.  This volume corresponds to a single element for the very coarse mesh, four 

elements for the coarse mesh, 16 and 64 elements of the fine and very fine meshes, 

respectively.  In each case, the crack density of one element belonging to this volume is 

plotted as a function of the microscopic stress.  With the local model, the change of crack 

density corresponds to the analytical solution given by Equation (53). In the other cases 

(multiscale model) the crack density is equal to zero until the random failure stress of the 

element is reached (Equation (83)).  Later on, the response of the four computations differ, 

namely, for the very coarse and coarse meshes the crack density tends rapidly to the same 

level as with the local model (see white rectangles of Figure 26a, 26b and 26c).  In agreement 

with the transition criterion (58), see Figure 25b, a single fragmentation process develops at 

the scale of the fine and very fine meshes at the considered location (Figure 26d and 26e).  In 

both cases, the final crack density of damaged elements may reach higher values than that 
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obtained with the local model (Figure 27).  However, a small amount (fine mesh) or a large 

number (very fine mesh) of elements remain undamaged (Figure 26d and 26e).   

Last, the mean crack density averaged over the considered volume (16 and 64 

elements respectively for the fine and very fine meshes) tends to a similar level as in the other 

cases (Figure 27).  In other words, the smaller the mesh size, the higher the mean level of 

random failure stresses, the lower the fraction of damaged elements.  For instance, in the case 

of the very fine mesh, the number of damaged elements in the considered volume 

Z = 93.8 mm3 is equal to 23 out of 64, and this is quite close to the final number of cracks 

predicted by the local model for the same volume, namely, Z λcracks = 35.  These results show 

that, by construction, the local crack details differ from one mesh to the next.  However, the 

general features remain essentially the same. 

 

V.9.  Comparison of the fragmentation properties of six brittle materials 

 

As shown in Part IV, two configurations of edge-on impact test were developed to 

characterize fragmentation properties.  On the one hand, an open configuration allows one to 

visualize in real time the change of cracking by means of a high speed camera (Figures 7 and 

10).  On the other hand, a sarcophagus configuration is used to analyze the damage pattern of 

targets (post-mortem observations, Figures 7, 8, 9 and 10).  Both configurations were used for 

example with SiC ceramics [Denoual and Hild, 2000; Forquin et al., 2003], with Ductal® 

concrete [Forquin and Hild, 2008], with limestone rocks [Grange et al., 2008] and with soda-

lime glass [Brajer et al., 2003].  With both configurations, the cracks are observed on the 

lateral surface of the target and are due to tensile stresses oriented orthogonally to the normal 

of the surface.  Thus, the analytical solution of the obscuration probability in the 

neighbourhood of an outer surface is developed next. 
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V.9.a – Probability of non obscuration in the neighbourhood of an outer 

surface considering volume and surface defects 

 

To derive an analytical solution, let us consider a point M located at a distance x from the 

outer surface ∂Ω of a 3D domain Ω loaded by a uniform microscopic stress field σ (Figure 

28-right).  At the beginning (time t1), the horizon (assumed spherical in Figure 28) does not 

intersect the outer surface and the point M at time t1 may only be obscured by volume defects 

in Ω.  Next (times t2 and t3), the horizon of M is composed of a part of spherical horizon-

volumes and of a part of the outer surface (circular shape).  Therefore, point M at times t2 or t3 

may be obscured by volume defects as well as surface defects and both population of defects 

have to be taken into account to express the condition of non-obscuration. 

Considering V
tλ  and S

tλ  the density of critical defects respectively in the bulk of the domain 

Ω and on the surface of the domain ∂Ω, the non-obscuration probability is expressed as 
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V.9.b – Non obscuration probability considering surface defects only 

 

For soda-lime glass, one may consider surface defects only [Brajer et al., 2003].  Let us 

consider So(T-t) the area of ∂Ω in which surface defects initiated at time t might obscure the 

point M at time T.  As long as the radius r of the spherical horizon-volume is less than x (the 

distance between M and the outer surface ∂Ω) the area So(T-t) is zero (Figure 28).  When the 

obscuration volume intersects the outer surface, the area So(T−t) is a disc of radius 22 xr −  
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Thus, the non-obscuration probability of M at time T reads 
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Considering a point M on the surface (x = 0) and assuming a constant stress rate σ , the non 

obscuration probability reads 
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where S
ct  is the characteristic time (see Equation (32)) expressed as a function of the Weibull 

parameters of surface defects (m, mSS −)( 00 σλ ).  Thus, considering a solid in which only surface 

defects are activated, the obscuration probability of a point M located on its surface 

corresponds to the standard expression of the obscuration probability for a 2D domain 

(Equation (31) with n = 2). 

 

V.9.c – Non obscuration probability considering volume defects only 

 

For the SiC ceramics mentioned above, crinoidal limestone and Ductal®, volume defects have 

to be taken into account (Part III).  The size of the obscuration volume Vo(T−t) in which 

volume defects initiated at time t might obscure the point M at time T is expressed as 
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where r is the radius of spheres centred on M (Figure 28).  Thus, the non-obscuration 

probability of M at time T reads 
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In the particular case of a point M on the surface (x = 0) and assuming a constant stress rate 

σ , the non obscuration probability becomes 
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where V
ct  is the characteristic time expressed as a function of the Weibull parameters associated with 

volume defects (m, mVV −)( 00 σλ ), and considering a shape parameter divided by 2 (S/2 instead of S in 

Equation (32)).  Thus, in the case of volume defects only, the obscuration probability of a point 

M located on the surface of a solid is almost unchanged in comparison with that of a point 

located in the bulk of this medium. 
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V.9.d – Comparison of the fragmentation properties of six brittle materials on 

the outer surface of the domain ∂Ω 

 

The analytical solutions for the non-obscuration probabilities (Equations (92) and (95)) are 

used to predict the characteristic time of cracking saturation (tcracks, Equation (57)), the 

ultimate strength (i.e. the maximum macroscopic stress u
multipleΣ , Equation (66)), the transition 

volume (Ztransition, Equation (78)) and the crack density (λcracks, Equation (56)) on the outer 

surface of the six reference materials for a stress rate in the range of 1 to 1000 MPa / µs 

(Figures 29a, b, c, d). It is worth remembering that the range of stress-rate usually differs in 

impact problems that involve ceramics, glass or geomaterials.  For instance, in the edge-on 

impact tests performed on rocks and concretes, the typical range of stress-rate is one MPa / µs 

to a few tens of MPa / µs. Conversely, typical stress-rates of about a few hundreds to a few 

thousands of MPa / µs are reached with SiC ceramics and glass. 

First, one may note that the characteristic cracking time tcracks and the ultimate strength 

u
multipleΣ  of the two ceramic materials and of glass (on the surface) are quite similar.  In the 

same way, the levels of tcracks  and u
multipleΣ  for Ductal® and MB50 concretes, and limestone are 

close.  This is likely the consequence of the difference of quasi-static strength between 

ceramics and glass on the one hand (few hundreds of MPa considering Z = 1 mm3 and 1 mm2 

respectively) and that of concrete and rocks (few tens of MPa for the same volume size 

(1 mm3)).  As already shown by Equations (32) and (33), the parameters related to crack 

initiations (i.e., the Weibull parameters) play a major role on the characteristic stress and time 

associated with fragmentation.  Moreover, one may note that the relative increase of strength 

(Figure 29b) is higher with glass, SiC-100, MB50 concrete and Ductal® than with limestone 

and R-SiC ceramics, a consequence of the lower Weibull moduli of the three first materials. 
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Comparison of Figures 29c and d gives another illustration of the correspondence 

between the volume of transition (Equation (78)) and the final crack density (Equation (56)), 

namely, the higher the crack density, the lower the transition volume between single and 

multiple fragmentations.  For a given stress rate, the crack density appears to be higher in 

geomaterials (limestone, MB50 and Ductal®) than in ceramic materials and glass.  This result 

is not surprising when considering the characteristic crack density λc (34) that shows that the 

higher the quasi-static strength, the lower the crack density.  Again, this conclusion may be 

inverted comparing edge-on impact tests mentioned above since loading rates completely 

differ in ceramic targets in comparison with concrete or limestone targets.  Moreover, λc is 

seen as proportional to the stress rate raised to the power mn / (m + n).  This explains the 

lower increase of crack density observed for glass (n = 2) than for the other five brittle 

materials (n = 3), see Figure 29d. 

To conclude, the fragmentation properties of geomaterials on the one hand (rocks and 

concrete), and of glass and ceramics on the other hand, appear quite distinct. This comparison 

illustrates the major influence played by parameters related to crack initiation in comparison 

with those related to crack propagation on the fragmentation process in brittle materials. 

VI.  Summary 

Dynamic fragmentation made of numerous oriented cracks is one of the major damage 

mechanisms observed in brittle materials such as ceramics, concrete, rocks or glass when 

submitted to extreme loadings such as blast or impact.  Cracks initiate from volume or surface 

defects such as sintering flaws, porosities, inclusions, scratches and propagate in the 

considered domain generating a relaxation wave in their vicinity.  Thus, the fragmentation 

process is a competition between new cracks initiated as the stress level increases and 

obscuration of critical defects as cracks propagate in the domain.  Based on two concepts, 
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namely, the “local weakest link hypothesis” and the “elementary probability of no-inception 

of new cracks in each elementary space-time zones belonging to the horizon of a considered 

point M at time T,” several points were discussed. 

First, a general formulation of the non-obscuration probability is proposed for any 

form of the critical defect densities (continuous or discontinuous), shape of obscuration zones 

and space dimension.  The number of cracks and the crack density were then derived.  

Assuming a heterogeneous but proportional tensile stress fields, an effective obscuration 

domain is proposed.  It recovers the expression given by Davies [1973] under quasi-static 

loading conditions. 

Moreover, the influence of the domain size and stress-rate on the nature of 

fragmentation (single or multiple) is explored by means of the non-obscuration probability 

when considering a point M located in the centre of an examination domain.  The obscuration 

probability corresponds to the failure probability given by Weibull [1951] under low stress 

rates, and to the damage law developed by Denoual and Hild [2000] to model multiple 

fragmentation at high stress rates.  From this expression, an analytical solution is obtained 

assuming a constant stress-rate.  It is used to express the crack density for any stress-rate.  A 

single crack is obtained at low stress rates (or considering a small domain size).  The crack 

density proposed by Denoual and Hild [2000] is obtained for high stress rates.  Thus, this 

analytical solution shows how single fragmentation turns into multiple fragmentation with the 

increase of domain size or stress rate.  New transition criteria are also proposed. 

Two ways are proposed to define tensile strengths of brittle materials.  First, the 

concept of “macroscopic non-obscured stress” is defined as the microscopic stress level 

considering only the non-obscured part of the domain.  Under high loading rates, as the 

obscuration probability tends to a damage variable, the maximum “macroscopic non-obscured 

stress” corresponds to the deterministic ultimate strength proposed by Denoual and Hild 
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[2000] of a domain that experiences multiple fragmentation.  On the other hand, the concept 

of “microscopic obscuration stress” is built as an average value of the microscopic stress as 

the obscuration probability varies from 0 to 1.  Under quasi-static loadings, as the obscuration 

probability tends to the failure probability, the “microscopic obscuration stress” corresponds 

to the mean failure stress of a Weibull model.  For any stress concept, the strength of brittle 

materials is seen as stress-rate independent but domain-size dependent for low stress rates and 

stress-rate dependent but domain-size independent at high stress rates.  The first concept of 

strength characterises the maximum stress level in a domain with numerous cracks (as a 

brittle material under dynamic loading or a fibres bundle under quasi-static loading) whereas 

the second one is the average stress level considering a superposition of states with single 

cracking.  When compared with Monte-Carlo simulations [Denoual and Hild, 2000] of the 

fragmentation process of a cube containing point-defects, the ultimate macroscopic strength 

regime applies at high loading rates whereas the mean microscopic obscuration stress applies 

at low loading rates.  Moreover, from these two concepts of strength, two transition criteria 

between single and multiple fragmentations were proposed and compared with the previous 

one.  The three criteria are very similar for any value of the Weibull modulus. 

Next, a series of validations is proposed. The local model allows for the prediction of 

the crack density and the damage pattern in ceramic targets as well as the enhancement of 

strength of a micro-concrete.  Moreover, to simulate the fragmentation process in a finite 

element code for any stress rate, a multiscale model is constructed by generating failure 

stresses randomly selected for each finite element.  This multiscale model allows one to 

reproduce, at the scale of finite elements, the scatter of failure stresses at low stress rates and 

the deterministic strength of brittle materials at high stress rates.  An anisotropic damage 

model is built considering one damage variable for each principal stress.  It is coupled to the 

Krieg, Swenson and Taylor (KST) model and used to simulate the fragmentation process 
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during edge-on impact tests performed with an ultra-high strength concrete.  The numerical 

simulations performed with four sizes of mesh show that the larger the mesh size, the larger 

the area of continuous damage field in which a multiple fragmentation occurs at the scale of 

the volume of finite elements.  Conversely, for small or very small elements, a large zone of 

discontinuous damage field develops. In each damaged element single fragmentation occurs 

even if the fragmentation remains multiple at the scale of the whole target.  Thus, at the scale 

of the whole target, the nature of fragmentation (i.e. multiple) is unchanged.  A main 

advantage of this type of modelling in comparison with other numerical methods in which 

each crack is described is that it allows for the description of intense damage made of a large 

number of micro-cracks (close to the impact point for instance) and a random fragmentation 

process farther into the target with computation times that do not exceed few minutes on a 

conventional PC. 

An analytical solution for the obscuration probability is proposed for a point located in 

the neighbourhood of the domain boundary (as for edge-on impact tests).  The main 

fragmentation properties (characteristic cracking time, ultimate strength, crack density and 

transition volume between single and multiple fragmentation) of the five reference materials 

presented herein are compared.  The comparison underlines the major influence of parameters 

related to crack initiation on the fragmentation properties. 

 The main concept developed herein is the obscuration of zones around propagating 

cracks inhibiting the initiation of new cracks as the dynamic fragmentation process builds up 

in brittle materials.  It leads to a space-time domain, i.e., the horizon, in which no defect 

should lie to initiate a new crack.  In that sense, it is a non-local process in space and time.  

The same concept was recently used to describe spallation of ductile materials [Trumel et al., 

2009].  There are other areas in which the obscuration concept can be applied to predict the 

formation of crack networks.  The main difference is related to the propagation law describing 
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the obscuration zone.  For instance, when analyzing CO2 sequestration in deep reservoirs, 

crack networks may appear if the pressure becomes too high [Guy et al., 2008].  Thermal 

fatigue usually induces multiple surface cracks (striping), for instance in pipes [Seyedi et al., 

2006].  It can be described as the competition between microcrack initiations and mesocrack 

propagations [Malésys et al., 2006; 2009].  In fibre-reinforced composites, multiple cracking 

is also observed and modelled with similar concepts [Curtin, 1991; Neumeister, 1993; Hui et 

al., 1995; Hild and Feillard, 1997], and the single to multiple fragmentation transition is also 

possible [Hild et al., 1994; da Silva et al., 2004].   
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Figures 

 

 

 

Figure 1.  Impact of an armour-piercing projectile AP12.7 mm travelling at 880 m / s against a 

multilayered armour made of three infiltrated ceramic tiles (R-SiC-Al) as front face and 

aluminium alloy as backing. 
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Pyrotechnic test in an open quarry 

 

-a- 

 

Fragmentation of a Beaucaire limestone by a blast 

loading [Hild et al., 2003] 

-b- 

 

Figure 2.  Fragmentation of rock in open quarry (a) and of a slab (b) by blast loading. 
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Figure 3.  Impact of an Armour-Piercing projectile AP 7.62 mm (steel core, impact velocity: 

840 m/s) against a bilayered target (Ductal® concrete: 60 mm + aluminium backing: 10 mm). 
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Figure 4.  Impact of a ‘BR4’ projectile (impact velocity: 230 m/s) against a glass armour and 

sketch of the damage pattern. 
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Figure 5.  Change of the coefficient of variation σsd/σw as a function of the Weibull 

modulus m. 
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Figure 6.  Results of 3-point bend tests performed with Ductal® concrete without fibres and 

two post-mortem observations. 
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-a- 

 

-b- 

 

Figure 7.  -a-Fragmentation of a SiC-100 ceramic during an EOI test observed with an ultra-

speed camera [Riou et al., 1998]. Steel projectile of diameter 11 mm (AFNOR 100C6, AISI 

52 100) impacting at 250 m/s. 

-b-Edge-On Impact against R-SiC ceramic.  Post-mortem observations and zoom around a 

central zone located 13 mm from the impact point for two impact velocities (left: 100 m/s, 

right: 200 m/s). 
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Figure 8.  Edge-On Impact against crinoidal limestone (sarcophagus configuration with a 

“dynamic confinement system”). 
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Figure 9.  Edge-On Impact with Ductal® concrete in a sarcophagus configuration (left: 

Ductal® with fibres, right: Ductal® with no fibre) [Forquin and Hild, 2008]. 
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Figure 10.  Edge-On Impact against soda-lime glass impacted by a 44-magnum projectile. 

Top view: visualization of damage with an ultra-high speed camera and sketch of damage 

pattern, bottom: sarcophagus configuration. 
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Figure 11.  Obscuration phenomenon and horizon of a point M at time T. 
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Figure 12.  Influence of the size of the considered domain on the fragmentation process and 

the horizon of a point M at time T.  -a-Multiple fragmentation.  -b-Single fragmentation. 
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Figure 13.  Change of x with Z / Zc for given values of the probability of obscuration Po (0.1, 

0.5 and 0.9) when m = 5 (left) or m = 10 (right), and n = 3. 
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Figure 14.  Comparison of three characteristic times of multiple fragmentation (n = 3). 
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Figure 15.  Number of cracks (Zλcracks) in Ω at saturation.  Comparison of the general solution 

(Equation (50)) and that of multiple fragmentation (Equation (56)) for a SiC-100 ceramic 

(Table 1), when n = 3, S = 3.74, k = 0.38. 
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Figure 16.  Comparison of four transition criteria (Ztransition / Zc) for n = 3. 
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Figure 17.  Changes of microscopic and macroscopic stress levels with stress rate for a SiC-

100 ceramic (Table 1), when n = 3, S = 3.74, k = 0.38. 
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Figure 18.  Change of microscopic and macroscopic stress levels normalized by the average 

failure stress (σw) with the ratio (Z / Zc), when n = 3, and m = 9.6. 
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Figure 19.  Comparison of microscopic and macroscopic stress levels with results obtained by 

Monte-Carlo simulations (500 realizations/point) and their standard deviation for a SiC-100 

ceramic (Table 1), when n = 3, S = 3.74, k = 0.38. 
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Figure 20.  Change of the crack density with time in R-SiC:  

t = 2 µs (left), t = 3 µs (middle), t = 4 µs (right) after impact for a  

projectile velocity of 100 m/s (a) and 200 m/s (b). 
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Figure 21.  Comparison between experimental results obtained in quasi-static tensile tests and 

spalling tests (cylindrical specimens ∅45.7 mm, 120 mm) and model prediction of the whole 

range by considering Weibull parameters identified from 20 bend tests on 15 × 15 × 60-mm3  

samples [Forquin and Erzar, 2009]. 
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Figure 22.  Random failure stresses associated with each finite element (very coarse mesh) 

and boundary conditions of the numerical simulation. 
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Figure 23.  Comparison of the multi-scale model (solid line) and the results obtained by 

Monte-Carlo simulations (500 realizations/point) and their standard deviation for a SiC-100 

ceramic (Table 1), when n = 3, S = 3.74, k = 0.38. 



 111 

 

-a-                                                                 -b- 

 

Figure 24.  SiC-100 tile impacted on the edge by a blunt steel projectile (11 mm in diameter 

and 20 mm in length) with a velocity equal to 330 m/s [Denoual and Hild, 2000]. 

-a-Typical example of moiré fringes.   

-b-Strain history given by the moiré technique (dots) and by the multi-scale model (solid line: 

average, grey bandwidth: ± standard deviate). 
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-a-                                                                                      -b- 

 

Figure 25.  Numerical simulation of EOI test with an aluminium projectile (impact 

velocity = 88 m/s) against a target of Ductal® concrete (KST model).  -a-Stress rate as 

function of the distance from impact point.  -b-Comparison of the volume of finite elements 

with the volume of transition computed with the stress rates on the left. 
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-e- 

 
Figure 26.  Damage variable (left, a, b, c, d, e; right, e) and crack density (right, a, b, c, d) 

associated with the maximum principal stress direction 20 or 35 μs after impact of an 

aluminium projectile (impact velocity = 88 m/s).  The dashed line depicts the transition from 

multiple to single fragmentation, and the white box is the volume in which average crack 

densities are evaluated. 

-a-Local (L) model, fine (f) mesh (ZFE = 5.86 mm3), t = 35 µs (left and right). 

-b-Multiscale (MS) model, very coarse (vc) mesh (ZFE = 93.8 mm3), t = 35 µs (left and right). 

-c-Multiscale model, coarse (c) mesh (ZFE = 23.4 mm3), t = 35 µs (left and right). 

-d-Multiscale model, fine (f) mesh (ZFE = 5.86 mm3), t = 35 µs (left and right). 

-e-Multiscale model, very fine (vf) mesh (ZFE = 1.67 mm3), t = 20 µs (left), t = 35 µs (right). 
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Figure 27.  Change of crack density with the microscopic stress in damaged elements located 

60 mm ahead of the impact point for the 5 meshes of Figure 26. For the fine (f) and very fine 

(vf) meshes, the average (av) crack density is plotted by considering a 93.8-mm3 volume. 
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Figure 28.  Horizon volumes of a point M placed at a distance x from the outer surface. 
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-a-                                                                                -b- 

 

       

-c-                                                                               -d- 

 

Figure 29. Comparison of the fragmentation properties of the five reference materials on the 

outer surface of the domain ∂Ω: 

-a-Time of saturation of crack (tcracks, Equation (57)) vs. stress rate, 

-b-Ultimate strength ( u
multipleΣ , Equation (66)) vs. stress rate, 

-c-Volume of transition (Ztransition, Equation (78)) vs. stress rate, 

-d-Crack density (λcracks, Equation (53)) vs. stress rate. 
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Tables 

Table 1.  Mechanical properties and Weibull parameters of the six reference materials. 

Material SiC-100 
ceramic 

Porous       
R-SiC 

ceramic 

Ductal® 
concrete 

without fibres

Dry MB50 
micro-

concrete 

Crinoidal 
limestone 

rock 

Soda-lime 
silicate glass 

Elastic properties, density, compression tests 

Young’s 
modulus E 
(GPa) 

410 260 57 31 78 70 

Poisson’s ratio 
ν 

0.15 0.16 0.18 0.2 0.28 0.22 

Density ρ 3.15 2.64 2.4 2200 2.7 2.5 

Porosity 1.8% 17.1% 1-2% ≈ 12% < 1% 0 

Compressive 
strength1 (MPa) 

-6500 (SC) 
[Forquin et 
al., 2003b] 

Not 
measured 

−220 (SC) −70 (SC) 
[Bernier and 
Dalle, 1998] 

−147 (SC) ≈ −4000 (HEL) 
[Cagnoux, 

1985] 

Bend tests and Weibull parameters 

Height × width 
× span (mm3), 
number of tests 

3×4×30,      

65 

3×3×20,     

19 

11×10×130,    

18 

15×15×60,     

20 

50×50×150,    

40 

Disk 
bending,     

400 

Mean tensile 
failure stress 
(MPa) σw[Zeff] 

360 113 21.9 9.99 19.0 ≈ 94 

Effective 
volume (mm3) / 
surface (mm2) 

1.25 0.084 53 39.9 360 Seff = 
100 cm2 

Mean tensile 
failure stress 
(MPa) [Veff], [Seff] 

31.6 [1 mm3] 103 [1 mm3] 31.6 [1 mm3] 13.6 [1 mm3] 24.8 [1 mm3] 350 [1 mm2] 

Weibull 
modulus m 

9.6 26.5 11 12 22 ≈ 7 

References [Hild et al., 
2003] 

[Forquin et 
al., 2003] 

[Forquin and 
Hild., 2008] 

[Forquin and 
Erzar, 2009] 

[Grange et 
al., 2008] 

[Oakley, 
1996] 

1σ SC: minimum nominal axial stress under simple compression, σ HEL: Hugoniot Elastic Limit 

(corresponding to the axial stress level during plates impact when the elastic limit is reached) 
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Table 2. Parameters of the fragmentation model coupled with the Krieg, Swenson and Taylor 

model for the unreinforced Ductal® concrete. 

Density, Elastic parameters ρ; E; ν 2.390; 57 GPa; 0.18 

Parameters of the hydrostatic behaviour 

Initial et final bulk moduli 

Compaction curve (3 points) 

Ki; Kf 

εv
(i); P(i) 

 

29.7 GPa; 34.0 GPa, 

-0.013 ; 320 MPa 

-0.04 ; 600 MPa 

-0.059 ; 900 MPa 

Parameters of the deviatoric behaviour 

Coefficient of elliptic equation 

Maximum and minimum stresses 

a0; a1; a2 

max
eqσ ; min

eqσ  

104 MPa2; 515 MPa; 0.384 

750 MPa; 222 MPa 

Parameter of the fragmentation model 

Cracks initiation (Weibull) parameters 

Cracks propagation parameters 

σw; m; Veff 

k; C 

22 MPa; 11; 53 mm3 

0.38; 4880 m/s 

 


