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Abstract

We study minimal time strategies for the treatment of pollution of large volumes, such as lakes
or natural reservoirs, with the help of an autonomous bioreactor. The control consists in feeding the
bioreactor from the resource, the clean output returning to the resource with the same flow rate. We
first characterize the optimal policies among constant and feedback controls, under the assumption of a
uniform concentration in the resource. In a second part, we study the influence of an inhomogeneity in
the resource, considering two measurements points. With the help of the Maximum Principle, we show
that the optimal control law is non-monotonic and terminates with a constant phase, contrary to the
homogeneous case for which the optimal flow rate is decreasing with time. This study allows the decision
makers to identify situations for which the benefit of using non-constant flow rates is significant.
Keywords. Environmental engineering, biotechnology, waste treatment, continuous systems, minimum-
time control.

1 Introduction

The fight against eutrophication of lakes and natural reservoirs (excessive development of phytoplankton
associated with an excess of nutrients) constitutes a major challenge. Such an ecological question has given
rise to many studies over the last 30 years (see, for instance, the surveys [8] or [25] and references herein).
To remediate to eutrophication, many techniques such as bio-manipulation or ecological control have been
proposed with mitigated results. A common point of the proposed remediation approaches is that they are
usually based on ”biotic” actions on the lake trophic chain dedicated to the restoration of the equilibrium
of the local ecosystems. To do so, most studies are based on empirical knowledge. However, since the
seventies, the use of eutrophication models (from heuristic data-based models at steady state to more recent
dynamical mass-balance based models) together with optimal control techniques have been proposed (cf. [6]
and references herein).

In the present paper, an alternative to these techniques is studied using a very simple model of the
lake. It is assumed that a small bioreactor is available to treat the polluted water in removing a substrate
considered as being in excess in the lake water. More particularly, we consider a natural water resource
of volume V polluted with a substrate of concentration Sl. As underlined above, typical examples of such
natural water resources to be treated are lakes or water tables that have been contaminated with diffused
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pollutant as organic matter or nutrients. The objective of the treatment is to make the concentration of
such pollutant/contaminant Sl decreasing down, as fast as possible, to a prescribed value Sl, with the help
of a continuous stirred bioreactor of volume Vr . The reactor is fed from the resource with a flow rate Q, and
its output returns to the resource with the same flow rate Q, after separation of biomass and substrate in
a settler (see Figure 1). The settler avoids the presence of excessive biomass used for the treatment in the
natural resource, that could bring undesirable sludge and possibly lead to an increase of the eutrophication.
We assume that during the whole treatment, the volume V of the resource does not change.

bioreactor

Q

biomass

settler

Q QV

V

l

r
resource

Figure 1: Interconnection of the bioreactor with the resource.

Since the pioneer work by [5], the optimization of bioreactors operation has received a great attention in
the literature; see [19, 3, 2] for reviews of the different optimization techniques that have been used in
bioprocesses. Among them, the theory of optimal control has proved to be a generic tool for deriving
practical optimal rules [10, 23, 22]. Clearly, one can distinguish two different kinds of problems depending
on the continuous or discontinuous operation mode of the process. On one hand, if the process is operated in
fed-batch, the control objective is usually to optimize trajectories for attaining a prescribed target in finite
time or maximizing the production at a given time [9, 15, 12, 11, 14, 21, 29, 18, 28, 7, 17]. On the other
hand, the optimal control of continuous processes usually involves a two steps procedure. First, the optimal
steady state is determined as a nominal set point, maximizing a criterion [27, 26]. The benefit of operating
a periodic control about the nominal point can be analyzed [1, 20]. Then, a control strategy that drives the
state about the nominal set point from any initial condition is searched for [13], possibly in the presence of
uncertainty on the model using extremum seeking techniques [30, 31, 16, 4]

Concerning these strategies, the problem studied in the present paper exhibits several original points
with respect to the contributions available in the literature. Indeed:

- The actual control problem is dedicated to the optimization of transient trajectories - as in the case of
fed-batch processes - while it is actually a continuous process. It is due to the fact that in a standard
optimal minimal-time problem of a bioprocess, the volume of water to be processed is completely
decoupled from the bioreactor. In other terms, the problem is to process, using a biological reactor, a
given volume of ”substrate” which is finally released in the environment after processing (whatever it
is operated continuously or discontinuously). In the present problem, the treated water is immediately
recycled into the lake. From the modelling point of view, this introduces an original coupling via the
dilution of the treated water with the polluted one.
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- The lake and the reactor are isolated in the sense no biomass is supposed to be present in the water
resource. The biomass used as a catalyst in the bioreactor is separated from the treated water and
withdrawn from the overall process. Thus, in particular, the quantity of available biomass is not a
limiting parameter.

We consider the usual chemostat model for describing the dynamics of the bioreactor:











Ṡr = −µ(Sr)Xr +
Q

Vr
(Sl − Sr)

Ẋr = µ(Sr)Xr −
Q

Vr
Xr

(1)

where Sr and Xr stand for the concentrations of substrate and biomass, respectively. For sake of simplicity,
we assume that the yield coefficient of this reaction is equal to one (at the price of changing the unitary value
of the biomass concentration, that is always possible). The growth rate function µ(·) fulfills the properties

Assumption A1.

a. Function µ(·) is increasing and such that µ(0) = 0.
b. Function µ(·) is concave.

A reasonable hypothesis is to assume that the volume of the resource is much larger than the bioreactor
one: V >> Vr, and that the possible variations of the manipulated variable Q are slow compared to the
time scale of the bioreactor dynamics. Consequently, one can consider that dynamics (1) is fast and its
trajectories at the quasi-steady state (S⋆

r , X
⋆
r ) = (Sr(Q), Sl − Sr(Q)), where Sr(Q) fulfills µ(Sr(Q)) = Q/Vr

(see the usual equilibria analysis of the chemostat [24]).

Problem: The optimization problem consists in driving in minimal time the concentration of the resource
down to a prescribed value Sl > 0, playing with the control variable Q > 0. In Section 2, we assume that this
concentration is uniform in the resource, while in Section 3 we study the effect of a spatial inhomogeneity. For
each case, we characterize the optimal policy Q⋆ (resp. Qopt(·)) among constant (resp. feedback controls).
Section 4 is devoted to numerical simulations and discussions.

2 The homogeneous case

The dynamics of the resource concentration is simply

Ṡl =
Q

V
(Sr(Q)− Sl). (2)

Notice that under Assumption A1.a, choosing Q is equivalent to choosing Sr as a control variable:

Ṡl = αµ(Sr)(Sr − Sl), Sr ∈ (0, Sl) (3)

where we denote α = Vr/V .

Proposition 1 Under Assumption A1, the best constant control Q⋆ is defined as Q⋆ = Vrµ(S
⋆
r ), where S

⋆
r

is the unique minimum of the function

Tf(Sr) =
1

αµ(Sr)
ln

(

Sl(0)− Sr

Sl − Sr

)

(4)

on the interval (0, Sl).
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Proof. For a constant control, solutions of (2) can be made explicit:

Sl(t) = Sr(Q) + (Sl(0)− Sr(Q))e−
Q
V
t, (5)

as well as the time Tf (Sr), given in (4), for reaching the target with Q = Vrµ(Sr). The function Tf (·) tends
toward +∞ when Sr tends toward 0 or Sl. Consequently, its infimum is reached on the interval (0, Sl).
Denote by T ⋆

f its minimum, that we fix in the following. Then, for each constant control Sr, one has

dSl(T
⋆
f )

dSr

= 1−
[

1 + αµ′(Sr)T
⋆
f (Sl(0)− Sr)

]

e−αµ(Sr)T
⋆
f

d2Sl(T
⋆
f )

dS2
r

=
[

2µ′(Sr) + (αµ′(Sr)
2T ⋆

f − µ′′(Sr)(Sl(0)− S∗

r )
]

αT ⋆
f e

−αµ(Sr)T
⋆
f

and one deduces with Assumption A1 that the map Sr 7→ Sl(T
⋆
f ) is strictly convex. Notice that one

has necessarily Sl(T
⋆
f ) ≥ Sl and Sl(T

⋆
f ) = Sl when Sr = S⋆

r realizes the minimum of the function Tf(·).
Consequently, the optimal control S⋆

r is unique. 2

Proposition 2 Under Assumption A1, the optimal feedback fulfills Qopt(Sl) = Vrµ(S
opt
r (Sl)) with

Sopt
r (Sl) ∈ argmax

Sr∈(0,Sl)

µ(Sr)(Sl − Sr) . (6)

Moreover, t 7→ Qopt(t) is decreasing along any optimal trajectory.

Proof. It is straightforward to check that the optimal feedback Sopt
r is the one that makes the time deriva-

tive of Sl, given by (3), the most negative at any time. A necessary condition is to have have µ′(Sopt
r )(Sl −

Sopt
r ) = µ(Sopt

r ). Deriving this last expression w.r.t. time, one has Ṡopt
r (2µ′(Sopt

r ) + µ′′(Sopt
r )(Sopt

r − Sl)) =
µ′(Sopt

r )Ṡl and from Assumption A1, on obtains Ṡopt
r < 0. 2

For usual growth functions, one obtains the expressions:

linear: µ(s) = µs, Monod: µ(s) =
µmaxs

K + s
,

Sopt
r (Sl) = Sl/2 Sopt

r (Sl) =
√

K2 +KSl −K

3 Consideration of a spatial inhomogeneity

The simplest way to introduce a gradient of concentration in the model of the resource is to consider two
compartments of volumes V1, V2 such that V = V1 + V2 (see Figure 2), that we assume to be large with
respect to Vr. Water is pumped from the first one while the clean one is rejected in the second one.

Denoting αi = Vr/Vi (i = 1, 2), one obtains the dynamics

Ṡ1 =
Q

V1
(S2 − S1) = α1µ(Sr)(S2 − S1)

Ṡ2 =
Q

V2
(Sr(Q)− S2) = α2µ(Sr)(Sr − S2)

(7)

and can easily check that the domain D = {(S1, S2) ∈ R
2
+ |S1 ≥ S2} is invariant for any control Sr(·)

such that Sr(t) ∈ (0, S2(t)] for any t > 0. We shall consider initial conditions in D and define the target
T = {(S1, S2) ∈ D |S1 ≤ Sl}.
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Figure 2: Consideration of non-homogeneity in the resource.

For p ∈ [0, 1] and τ ≥ 0, we define the function

A(p, τ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e−ατ if p = 0

(1− p)e−
ατ
1−p − pe−

ατ
p

1− 2p
if p ∈ (0, 12 )

(

1 +
α

2
τ
)

e−
ατ
2 if p = 1

2

A(1 − p, τ) if p ∈ (12 , 1]

and for S0 > Sl the function

B(Sr) =
Sl − Sr

S0 − Sr

, Sr ∈ (0, Sl) .

Proposition 3 Let p = V1/V . For initial conditions such that S1(0) = S2(0) = S0 > Sl, the best constant
control Q⋆ and time T ⋆

f to reach the target T are defined by Q⋆ = Vrµ(S
⋆
r ), where S

⋆
r is such that the graph

of B(·) touches tangentially the graph of Sr 7→ A(p, µ(Sr)T
⋆
f ) at Sr = S⋆

r .

Proof. The solution of (7) with constant control Sr ∈ (0, Sl) can be made explicit:

S1(t) = Sr + (S0 − Sr)A(p, µ(Sr)t) ,

and the time Tf to reach the target fulfills A(p, µ(Sr)Tf) = B(Sr). Notice that one has the property

S1(t) ≥ Sl ⇐⇒ A(p, µ(Sr)t) ≥ B(Sr) ,

from which the statement of the proposition follows. 2

If one consider the family of functions AT (Sr) = A(p, µ(Sr)T ), parametrized by T > 0, one has a graphical
interpretation of the optimum depicted in Figure 3.

B(·) is a concave function and one can check that AT (·) are strictly convex for values of Sr large enough
(under Assumption A1). Consequently, there cannot exist more than one best constant control S⋆

r in the
domain where AT⋆

f
is convex.

Remark 1 Notice that the case of an homogeneous resource can be seen formally as the limiting case p = 0
(although cases when p is close to 0 are not compatible with assuming that V1, V2 are large with respect to
Vr). One can easily check that A(p, τ) < A(0, τ) for sufficiently large values of τ . Furthermore, times T ⋆

f

are increasing with respect to S0 − Sl. Consequently, for initial conditions such that S0 is far from Sl, the
time T ⋆

f is larger for an homogeneous resource than for non-homogeneous one, even when the parameter p
is unknown and the control S⋆

r is determined for the homogeneous case.
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Figure 3: Graphical determination of S⋆
r and T ⋆

f .

For S1 > S2 > 0 and γ > 0, we define

φ(S1, S2, γ, Sr) = µ(Sr)

[

1 + γ
(S2 − Sr)

(S1 − S2)

]

, (8)

ψ(S1, S2, γ) = µ′(S2)− γ
µ(S2)

S1 − S2
. (9)

The proof of the following lemma is left to the reader.

Lemma 1 Under Assumption A1, for S1 > S2 > 0 and γ > 0, the function φ(S1, S2, γ, ·) is strictly concave
on [0, S2] and the property

max
Sr∈(0,S2]

φ(S1, S2, γ, Sr) = φ(S1, S2, γ, S2)

is fulfilled exactly when ψ(S1, S2, γ) ≥ 0.

Proposition 4 Under Assumption A1, from any initial condition in D \ T , the optimal control Qopt(·)
consists in reaching a subset I ⊂ D \ T from which the constant control Qopt = Vrµ(S2) is optimal until
S1(·) reaches Sl, where S2 is the value of S2 when I is reached. Moreover, t 7→ Qopt(t) is increasing when
approaching the set I.

Proof. Recall first that D is invariant. If S1 = S2 > Sl, the feedback Sr = S2 cannot be optimal (this
would imply Ṡ1 = Ṡ2 = 0 at any time). So, any optimal trajectory is such that S1(t) > S2(t) for any t > 0.
Let us write the Hamiltonian, along with the adjoint equations:

H = 1 + max
Sr∈[0,S2]

µ(Sr) [α1λ1(S2 − S1) + α2λ2(Sr − S2)]

{

λ̇1 = α1µ(S
opt
r )λ1 , λ1(Topt) < 0

λ̇2 = µ(Sopt
r )(α2λ2 − α1λ1) , λ2(Topt) = 0

One deduce immediately that λ1(t) < 0 for any t ≥ 0 and can consider the function

γ(t) =
α2λ2(t)

α1λ1(t)
(10)

that fulfills γ̇ = µ(Sopt
r ) [(α2 − α1)γ − α2] , γ(Topt) = 0.

Notice that γ = 0 implies γ̇ < 0 and then one obtains γ(t) > 0 for any t ∈ [0, Topt).
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When S1 > S2, optimizing the Hamiltonian is equivalent to maximizing φ(S1, S2, γ, ·) (defined in (8)),
and then Lemma 1 provides the uniqueness of Sopt

r . A straightforward calculus gives

d

dt

(

γ

S1 − S2

)

=
α2µ(S

opt
r )

S1 − S2

[

γ

(

1−
S2 − Sopt

r

S1 − S2

)

− 1

]

.

From γ(Topt) = 0 we deduce the existence of t̃ ∈ [0, Topt) such that d
dt

(

γ
S1−S2

)

< 0 for all t ∈ [t̃, Topt]. Then,

for ψ given by (9), one has

ψ̇ = Ṡ2

(

µ′′(S2)−
γ

S1 − S2
µ′(S2)

)

−
d

dt

(

γ

S1 − S2

)

µ(S2),

which is positive for t ∈ [t̃, Topt]. Since ψ > 0 at Topt, there exists ts ∈ [t̃, Topt) such that ψ ≥ 0 for t ≥ ts.
Defining t̄ = inf{ts ∈ [t̃, Topt) : ψ ≥ 0 for t ∈ [ts, Topt]}, with Lemma 1, one concludes that the optimal Sopt

r

is constant equal to S2 = S2(t̄) at any time t ≥ t̄.
When t̄ > 0, let us write Sopt

r = uS2 with u ∈ [0, 1]. The left derivative u̇(t̄−) has to be positive and
Ṡ2(t̄) = 0. This implies to have Ṡopt

r (t̄−) > 0. 2

Proposition 5 Under Assumption A1, for any initial condition in D \ T , the optimal trajectory is unique.

Proof. We recall, from the proof of Proposition 4, that along any optimal trajectory, one has S1(t) > S2(t)
and γ(t) > 0 for any t ∈ (0, Tf). Then, one has Ṡ1 < 0 and can re-parametrize the dynamics of variables S2

and γ, defined in (10), in terms of S1 instead of time t, and write the non-autonomous dynamics for optimal
trajectories:

dS2

dS1
=

α2

α1

(Sopt
r − S2)

(S2 − S1)
, S2(Sl) = S2(Topt)

dγ

dS1
=

(α2 − α1)γ − α2

α1(S2 − S1)
, γ(Sl) = 0

(11)

where Sopt
r is the unique maximum of φ(S1, S2, γ, ·) on [0, S2]. When Sopt

r < S2 and γ > 0, one has

∂φ

∂Sr

= γ

(

S2 − Sopt
r

S1 − S2
−
µ(Sopt

r )

S1 − S2

)

+ µ′(Sopt
r ) = 0 (12)

and hence
∂2φ

∂Sr∂γ
= −

µ(Sopt
r )

γ
< 0. Fix S1, S2 and consider Sopt

r as a function of γ. From (12), one has

∂2φ

∂Sr∂γ
+
∂2φ

∂S2
r

∂Sopt
r

∂γ
= 0

and from the strict concavity of φ(S1, S2, γ, ·), given by Lemma 1, one deduces
∂Sopt

r

∂γ
≤ 0.

The Jacobian matrix of system (11) is of the form





⋆ α2

α1(S2−S1)
∂Sopt

r

∂γ

− ((α2−α1)γ−α2)
α1(S2−S1)2

⋆





from which one observes the non-negativity of off-diagonal terms, because (α2 −α1)γ−α2 = γ̇/µ(Sopt
r ) < 0.

So, the dynamics (11) is cooperative (in time S1), and since γ(Sl) = 0, one deduces that two solutions of
(11) cannot cross in the (S1, S2) plane. Finally, one obtains the uniqueness of the optimal trajectory for a
given initial condition in D \ T . 2
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Remark 2 When S1(0) = S2(0) = Sl, from the expression of the Hamiltonian we obtain that the optimal
control Sopt

r is such that at the beginning it maximizes µ(Sr)(Sl − Sr). Therefore, it is exactly the same as
in the homogeneous case of Proposition 2. Measuring the initial rate of variation of S2 gives an estimation
of the parameter α2 to fit the model, as one has

Ṡ2(0) = α2µ(S
opt
r )(S2(0)− Sopt

r ) .

If it is close to α, then the model with one compartment should suit.

For S0
1 > Sl > S0

2 , we define when α1 6= α2:

f0(S
0
1 , S

0
2) =

α2

(

1−
(

S0

1
−S0

2

S
l
−S0

2

)

α1−α2

α1

)

(α2 − α1)(S0
1 − S0

2)
, β =

(

α1

α2

)

α1

α1−α2

and when α1 = α2: f0(S
0
1 , S

0
2) =

ln
(

S0

1
−S0

2

Sl−S0

2

)

(S0
1 − S0

2)
, β = e.

Proposition 6 The set I, where a constant control is optimal, is given by

I = {(S0
1 , S

0
2) ∈ (Sl,+∞)× (0, Sl) s.t. S

0
2 ≤ S̄2 or µ(S0

2)f0(S
0
1 , S

0
2) ≤ µ′(S0

2 ) }

where S̄2 is the unique solution in (0, Sl) of

µ(S̄2) = βµ′(S̄2)(Sl − S̄2) . (13)

Proof. With control Q = Vrµ(S
0
2), S2(·) is equal to S0

2 and solution S1(·) can be made explicit. Then,
time Tf such that S1(Tf) = Sl, and solution γ(·) such that γ(Tf) = 0 can be also made explicit. Let
f(t) = γ(t)/(S1(t)− S0

2). According to Lemma 1, this constant strategy is optimal exactly when

µ′(S0
2) ≥ µ(S0

2)f(t) , t ∈ [0, Tf ] . (14)

One can easily check that ḟ = α2µ(S
0
2)(γ − 1)/(S1 − S0

2), and consequently, ḟ cannot be null more than one
time (recall from the proof of Proposition 4 that γ is non-increasing). One has also f(0) > 0, f(Tf) = 0,
and f ′(Tf ) ≤ 0.

If f ′(0) ≤ 0, then condition (14) is equivalent to have (S0
1 , S

0
2) below the graph of the curve C defined by

µ(S0
2)f0(S

0
1 , S

0
2) = µ′(S0

2 ). A straightforward but lengthy computation gives f(0) = f0(S
0
1 , S

0
2)). One can

also check that f ′(0) ≤ 0 is equivalent to have (S0
1 , S

0
2) below the line L defined by S0

1 − S0
2 = β(Sl − S0

2).
The intersection point (S̄1, S̄2) of C and L is given by S̄2 solution of (13), its uniqueness being guaranteed
by the concavity of µ. One can easily check that C is below L for any S2 ∈ [S̄2, Sl].
If f ′(0) ≥ 0, on can check that maxt f(t) = 1/β(Sl − S0

2) and then condition (14) is equivalent to have
S0
2 ≤ S̄2. Moreover, the straight line S2 = S2 is below the graph of the curve C in the interval [Sl, S1] (see

Figure 4). 2

For the Monod law, one can find

S2 =
1

2

(

−K(1 + β) +
√

K2(1 + β)2 + 4KβSl

)

.

4 Discussion and numerical simulations

The benefits of our theoretical analysis is to identify efficient pumping strategies and some of their robustness
properties. We summarize those contributions in terms of the following rules for the decision makers:
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Figure 4: Backward integration of the extremals.

1. The profit of using the optimal feedback strategy compared to the best constant one, can be easily de-
termined numerically (see the simulations below). As expected, the more the resource is initially polluted,
the more the improvement of the feedback policy is significant. Depending on the ratio ”initial pollution
over desired maximal pollution level”, the decision maker can then decide whether it worth adopting a time-
varying strategy.
2. A spatial inhomogeneity of the pollution concentration improves the treatment time on the condition
that the resource is enough polluted. Moreover, applying the best constant strategy as if the resource was
perfectly homogeneous is robust with respect to uncertainty on the inhomogeneity parameter in the sense
that it provides a guaranteed time (see Remark 1).
3. Measuring the initial speed of variation of concentration at two remote locations in the resource allows
to identify the inhomogeneity parameter of the model (see Remark 2). Then, the decision maker can decide
if it worth considering a feedback strategy with two measurement points instead of one.
4. The optimal feedback strategy for the inhomogeneous case consists in applying a constant flow rate when
the concentration S2 reaches a prescribed value given by Proposition 6. The concentration S2 is then main-
tained constant, without having to measure the concentration S1 (see Figure 4).

Simulations have been conducted for the Monod law with µmax = 1 s−1, K = 1mol.m−3, and volumes
V = 1000m3, Vr = 1m3. The initial concentration of pollutant has been chosen equal to 1mol.m−3

uniformly. Figure 5 shows the comparison of minimal times for different values of Sl (the curves corresponds
to different values of the parameter p).

On this example, one can see that for Sl = 0.01, the minimal time among constant controls is about twice
larger than among feedbacks. The influence of inhomogeneity is also quite significant.
The optimal feedback (6) for the homogeneous case is a simple law that provides a decreasing flow rate
Q w.r.t. time (cf. Proposition 2), contrary to the inhomogeneous case for which it is non-monotonic (cf.
Proposition 4). In Figure 6, we compare the optimal policy Qopt(·) for p = 0.4 and Sl = 0.1 with Q1(·),
resp. Q2(·) applying the formula (6) on measurement S1, resp. S2.

The true optimal feedback control, in the model that consider both measurements, is more sophisticated
in the sense that it anticipates the approach to the target, increasing the flow rate and freezing it.
The study has been made assuming that the steady-state characteristics Q 7→ Sr(Q) of the bioreactor is
perfectly known. Uncertainty on this map as well as on measurements will be the matter of a forthcoming
work.
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