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Abstract— Recovering 3D motion of reflective objects in image
sequences is still a cumbersome problem for computer vision.
One common approach is to track geometric features of the
object such as contours and edges since they are rather insensitive
to light reflections. However, such basic features fail to recover
the actual 3D motion in some cases. For example, the external
contour of a sphere rotating about one of its axes remains static in
the image. In this paper, we propose a new approach to 3D motion
recovery of a reflective sphere visible in an image sequence.
Instead of tracking only geometric features, our technique makes
use of texture information in a slightly modified image alignment
method. Unlike in classical image alignment methods, texture
information is processed differently whether it comes from a
diffuse or a specular light component. Using this technique,
we show that motion estimation is possible when dealing with
reflective objects, but also that specular components can offer
information about the 3D motion. Finally, we present some results
obtained from the analysis of image sequences.

I. INTRODUCTION

Motion estimation and object tracking is a highly explored

task in computer vision. New techniques evolve constantly and

depend on the kind of motion (2D or 3D) to be analyzed, the

number and state (steady or in motion) of used cameras, the

constrained level of the environment (lighting sensitivity), the

required accuracy of results, the number of tracked objects. . .

One common technique is to predict what will be observed

and then match this prediction with the actual observation.

The prediction can be applied on different types of features of

the tracked object, such as geometric features or appearance

information (intensity, texture, color).

Image alignment is a commonly used texture-based tech-

nique whose goal is to warp an image or a patch into another

one that matches the most the analyzed image. Image align-

ment techniques emerged with the Lucas-Kanade algorithm

[1]. Since, many extensions have been proposed to decrease

its computational cost [2]. However, these methods yield bad

results when we focus on tracking objects with reflective

properties. In this case, the warping must be different for pixels

showing diffuse or specular components since their apparent

motions are not the same. For example, a sphere in rotation

about one of its axes will show a static specular component

while its diffuse component will apparently move.

Geometric model-based matching methods use geometric

features of the tracked object such as corner-like features or

feature points [3], [4]. These methods avoid the matching

inconsistency problem induced by the specular components.

However, in some cases, geometrical information is not

enough to reconstruct the 3D motion parameters. In addition,

feature extraction and correspondence can be computationally

expensive specially when the object is complex.

If available, it is possible to use the object texture and

geometric model, the camera parameters as well as the light-

ing information. The scene is fully rendered and the set of

unknown parameters is updated based on an optimization

algorithm, such as the steepest descent, whose goal is to

reduce the discrepancy between the rendered image and the

analyzed one. The 3D model must be accurate in order to

obtain satisfying results but, in this case, the rendering is slow.

Moreover, this technique is even more time consuming when

reflective properties are taken into account in the object model.

In this paper, our purpose is to estimate the 3D motion

of a reflective sphere in every image of a sequence based

on an image alignment technique chosen for its low compu-

tational cost. To avoid inconsistency problems between the

transformed patch and the actual patch, we warp separately

specular and diffuse components and then combine them to

get the synthetic image. Those components are obtained from

a priori information about the scene. Our system outputs the

six parameters representing 3D motion of the sphere for every

image of the sequence.

In the next section we discuss related work. The image

alignment technique is described in section 3.2. Our algorithm

is described in section 3.3. We present the results in section 4

and conclude in section 5.

II. PREVIOUS WORK

During a study undertook on image sequences showing

foraging dragonflies, we were asked to locate precisely the

dragonfly’s head (cf. appendix). We noticed that given the

reflective surface of the head and its geometrical properties, the

problem was close to that of estimating motion of a textured

reflective sphere. However, no reference was found that dealt

explicitly with motion estimation of reflective objects. In this

section, we present briefly some classical motion estimation

approaches and some other innovative techniques.



As mentioned earlier, classical motion estimation methods

are based either on shape information or on appearance

information.

Appearance-based techniques, such as optical flow tech-

niques, assume that the brightness of a given scene point is

constant during the sequence. Their goal is to reconstruct the

image velocity field representing the apparent motion of the

object in the analyzed image, i.e. the optical flow. This field

can then be used to reconstruct partially the 3D motion. Many

techniques are used to estimate the optical flow. Barron and

Fleet [5] divide them into four categories : differential methods

which are based on the assumption of intensity conservation

locally [2], globally [6] or a combination of both [7]; region

based matching where several blocks of two successive images

are compared yielding displacement vectors representing a

more or less accurate result [8]; energy based methods and

phase based techniques where motion is estimated by applying

spatiotemporal filters such as Gabor filters [9].

All these methods provide good results when tracking

objects with lambertian surfaces. However, given that the in-

formation gathered from the specular component is processed

the same way as the information gathered from the diffuse

component, the accuracy of these methods is expected to

decrease as the specular component increases. In addition,

since appearance-based techniques yield only the optical flow,

further computations are required to estimate the 3D motion.

Shape-based techniques suffer from a high computational

cost specially when a complex geometric model is involved.

Hence, they are often preceded by an information extraction

step in order to reduce the number of tracked features and

therefore decrease the computational cost. A multitude of

methods have been proposed based on tracking the image

contours of a known model. A Hough transform has been

used in [10] to extract lines which were then matched with

the model line segments. However, these techniques fail to

estimate rotations in the case of a spherical object.

One interesting approach is the use of a 2D (edge map) 3D

geometric model-based approach in order to track complex

objects. Polat et al. [11] use a multiple hypothesis tracking

(MHT) along with a Hausdorff distance for analyzing the

motion of multiple objects. This method is mainly used to

track multiple objects while dealing with partial occlusion.

However, as long as the texture is not modeled, this approach

can’t be used in our case.

Novel approaches endeavor to recover the 3D motion under

variable illumination ([15], [14], [12], [13]). Most of those

methods [15], [12] consider the case of a lambertian surface.

Yang et al. [15], and Basri and Jacobs [12], consider the case

of a lambertian object under directional illumination aiming

respectively to compute the object motion, the illumination and

the model texture. They have proved that even under arbitrary

complex illumination a nine dimensional linear subspace is

sufficient to recover the illumination function using spherical

harmonics. Freedman and Turek [13] seek to estimate an

illumination invariant optical flow using graph cuts. Hager

and Belhumeur [14] study the case of tracking (but not

motion estimation) when complications such as changes in

pose relative to the camera, changes in illumination relative to

the light source and occlusions arise.

III. DESCRIPTION OF OUR APPROACH

A. Inputs

We assume that an image sequence showing a highly

reflective sphere with center Pc in the camera coordinate and

radius R is available. The camera is static with known pose

and parameters. The goal is to estimate the 3D motion of

the sphere, hence its position and orientation in every image.

We assume that the sphere pose is known for the first frame.

The sphere diameter (i.e. geometric model) and its surface

properties (i.e. texture model) are also supposed to be known.

Phong lighting is provided by a light spot of known intensity

and position.

Our method is recursive : assuming that the sphere pose has

been disclosed till image at time t (It) our algorithm seeks

the 3D motion between times t and t + 1 by analyzing image

at time t + 1 (It+1). In the following, we first explain the

classical image alignment technique applied on two successive

images and then describe our technique that derives from

image alignment. The image reference, i.e. the first image of

the analyzed sequence, is shown in figure 1 where the used

texture is the earth texture. The specular reflection appears

clearly near the middle of the sphere image as a large white

spot.

Fig. 1. Reference image

B. Image alignment technique

In their paper [1], B. Lucas and T. Kanade investigate the

problem of aligning two functions F (x) and G(x) over some

interval R (figure 2). This is done by minimizing the following

expression with respect to h :

L2norm =





∑

x∈R

[F (x + h) − G(x)]
2





1

2

, (1)



where x′ = x + h is the warping vector x undergoes.

G(x)

F(x)

h

G(x)-F(x)

Fig. 2. Two curves to be aligned

When the functions to be aligned are bidimentional func-

tions, It(x, y) and It+1(x, y) that represent the pixel intensities

at position (x, y) of respectively image at time t and image

at time t + 1 of a given sequence, the purpose is to find the

warping matrix that minimizes the following error within a

domain R = [xmin, xmax] × [ymin, ymax] of It :

D =
1

N2
pixels

∑

(x,y)∈R

[It(x
′, y′) − It+1(x, y)]

2
, (2)

where (x′, y′)T = M2D.(x, y)T , M2D is the warping matrix

and N2
pixels = (xmax − xmin + 1).(ymax − ymin + 1) is the

size of the domain or the total number of pixels.

In [1] the optimization method used is the Gauss-Newton

algorithm. In our application, we use a steepest descent

optimization which yields the same result more efficiently as

soon as the warping matrix initially estimated is close to the

actual one.

To reach convergence, the warping matrix M2D must be

the projection onto the image plane of a 3D motion defined

by P = (Tx, Ty, Tz, θx, θy, θz)
T , where Tx, Ty , Tz are the

translational displacement of the object relative to the sphere

reference and θx, θy , θz represent its angular displacement.

Therefore, M2D is a function of the parameters P of the 3D

motion. The 2D warping matrix is computed as follows.

A pixel (x, y) (cf. equation 3) in the image reference is the

projection of a point (X, Y, Z) in the camera reference. This

can be expressed in a homogeneous representation :








sx

sy

s

1









= T2D · H2D · P3D ·









X

Y

Z

1









, (3)

where P3D is the 3D projection matrix onto the image plane

of an ideal pinhole camera, H2D, T2D are respectively the

2D translation-rotation matrix and the scaling matrix. Z is

computed using a sphere equation with known center position

Pc and radius R. This is possible since for the first image the

sphere position and geometrical model are perfectly known,

and then they are updated for each image.

We consider that the 3D motion, with parameters P ,

transforms the point (X ′, Y ′, Z ′) into the point (X, Y, Z)
following:









X

Y

Z

1









= Tc · M3D(P ) · T−1
c ·









X ′

Y ′

Z ′

1









, (4)

where Tc is the matrix translating the origin to the sphere

position at time t and M3D(P ) = T (P ) · Ry(P ) · Rx(P ) ·
Rz(P ). The homogeneous rotation matrices Rx(P ), Ry(P )
and Rz(P ) and the homogeneous translation matrix T (P ) are

computed using the parameter vector P .

Combining (3) and (4) yields:








sx′

sy′

s′

1









= M2D(P ) ·









sx

sy

s

1









, (5)

where M2D(P ) denotes the following warping matrix:

M2D(P ) = T2D · H2D · P3D · Tc ·

M−1
3D (P ) ·

(T2D · H2D · P3D · Tc)
−1 . (6)

As mentioned earlier the purpose is to minimize equation (2)

with respect to P by applying the iterative steepest descent al-

gorithm. The parameter at iteration i+1 is computed from the

parameter at iteration i using Pi+1 = Pi−µ∇It, where µ is the

step size and ∇It denotes the gradient of It(M2D(P )(x, y)),
i.e. the partial derivatives of It(M2D(P )(x, y)) along each of

the 6 coordinates of P .

Generally, this algorithm yields good results with a low

computational cost. However, all pixels undergo the same

warping process regardless of whether they represent specular

or diffuse reflection. In reality, the two light components move

with two different apparent motions under the influence of

object motion with parameter P . For a rotating sphere, the

specular component remains static while the diffuse compo-

nent apparently rotates.

Let us consider the case of a pure rotation θy = 0.01 rd

about the vertical axis y of the sphere. To show the error

induced by the specular component, we consider the case of a

40×40 (figure 3(a)) image patch centered on the white spot in

the reference image. In this patch, we notice that the ”reliable”

information provided by the diffuse component is poor.

a b c d

Fig. 3. Different patches used to induce different specular over diffuse ratios :
(a) Patch 40×40, (b) Patch 50×50, (c) Patch 60×60, (d) Patch 144×144

Indeed, when we compute the error vector relative to θy

while the 5 other parameters are set to their real value (zero)



(dash dotted blue line in figure 4), we notice that the position

of the minimum value of the error function does not coincide

with the real value θy = 0.01 rd. We can also compute the

same error while considering different patch sizes so as to

obtain different specular over diffuse ratios. In figure 4, the

big dashed red line corresponds to the patch with size 50×50
of figure 3(b), the small dashed green line corresponds to the

patch with size 60 × 60 of figure 3(c) and the solid black

corresponds to the patch with size 144 × 144 of figure 3(d).

We can see that the minimum of the error function approaches

the real value (0.01) of θy when the level of information con-

tained in the diffuse component increases, i.e. when the patch

becomes larger. Therefore, in order to guaranty a convergence

toward the real value, we must consider a patch containing

enough diffuse information. This can hardly be achieved when

the patch position is automatically set or when the surface is

highly specular.
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Fig. 4. Error D with respect to θy . Real value of θy which is equal to 0.01 rd,
is not compatible with the minimum of error when considering small patches.

In fact, with this method, since both specular and diffuse

components are processed with the same warp they are sup-

posed to represent the same image motion. This is shown in

figure 7(b) where ”realistic” images of a rotating sphere are

shown. Figure 7(a) shows the warped images relative to real

values of θy : we can see how the warping matrix induces a

rotation of the specular component. Therefore, this will cause

inconsistency problems between the transformed image and

the real one, which explains why the minimum value of the

error function is not a good indication of the actual value.

C. Our approach

In the previously described technique we endeavor to align

It and It+1 by searching for the 3D motion parameters. Hence,

inconsistencies between the warped patch and the real one

are expected to drive the algorithm to diverge when diffuse

information is not sufficient. In the following section we

present an approach that enables us to overcome this difficulty

in the case of a reflective sphere.

Given the geometry of the tracked object, in addition to

its texture model and a priori information about the lighting

conditions and the camera parameters, it is possible to render a

realistic image of this model. Here, we render it twice : the first

time considering a pure lambertian surface to obtain the diffuse

image (Rd, see figure 6(b)) and the second time considering

a black highly reflective surface to obtain the specular image

(Rs, see figure 6(a)). These images are then warped using two

different warping matrices since their corresponding apparent

motions are different. The diffuse image warping matrix

Md
2D(P ) is the same as M2D(P ) of the regular method. The

specular image warping matrix Ms
2D(P ) is computed using

vector P as follows.

First, M3D(P ) is computed using P and represents motion

relative to the sphere reference. Then, the homogeneous matrix

M3D(P ) is modified by considering only the translational

values, i.e. by setting the rotational parameters of the 3D

motion to zero. This corresponds to computing the same

matrix as M2D(P ), but for a parameter vector P ′ equal to

(Tx, Ty, Tz, 0, 0, 0)T . The warping matrix Ms
2D(P ) for the

specular component is therefore given by:

Ms
2D(P ) = M2D(P ′)

= T2D · H2D · P3D · Tc · M
−1
3D (P ′) ·

(T2D · H2D · P3D · Tc)
−1 . (7)

The final synthetic image used for parameter estimation

by minimizing equation (2) combines information from both

specular and diffuse sources and corresponds in our case, to a

simple pixel to pixel addition of the two warped components :

It(x
′, y′) = Rs(M

d
2D(P )(x, y)) + Rd(M

s
2D(P )(x, y)).

Using this approach we notice that the problem generated

by the presence of specular components is now solved. The

error function’s minimum corresponds better to the real value

of θy than in the previous case. Figure 5 shows this error

function relative to the different patches shown in figure 3.
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Fig. 5. Error D with respect to θy . Real value of θy which is equal to
0.01 rd, corresponds to the minimum of error even when considering small
patches.



We see that even with a high level of specular reflection the

error function still has its minimum marked at θy = 0.01 rd.

In fact, we can see in figure 7(c) that when we process the

two components separately we can obtain a more realistic

estimation of the transformed image.

(a) Specular Rs (b) Diffuse Rd

Fig. 6. Specular and diffuse images obtained by rendering 3D model set on
the initial known location values.

IV. RESULTS

We first tested our algorithm on a series of six situations

observed by two successive images. In those image pairs,

only one basic motion was considered each time (arbitrary

limited motion of 0.01 rd for rotations and between 1 and

2 pixels for translations). We tried recovering this motion by

first comparing the two successive images then by comparing

the sum of the transformed specular and diffuse images under

fixed number of iterations (200 iterations). To do this we tried

different patch sizes so as to have different specular over

diffuse ratios.

We notice that when comparing successive images, if the

chosen patch shows a high ratio of specular reflection, the

tracking fails with the classical alignment function while our

algorithm continues to give good results. Overall results are

better with our algorithm than with the classical alignment

approach even when we consider a purely translational motion.

In this case, the warping matrix applied to Rd, M2D(P ), is

equal to the warping matrix applied to Rs, M2D(P ′). This

means that we were able to use the specular component as

an information about the real motion. It is clear that when

the information provided by the diffuse component increases,

hence when the patch gets larger, results are generally more

accurate. Anyway, estimating the depth information is always

troublesome using a single camera and errors are always rather

important.

Please refer to http://lagis-vi.univ-lille1.

fr/˜yb/recherche.php?langue=uk to view videos

showing these results.

Then, we tried our algorithm on a sequence of 150 images

showing a small frame to frame motion. The patch size used

is 40 × 40. A bigger patch means more computational cost

specially since Z is computed for each pixel (If we use the

assumption of a plane at known Z the patch should also be

small enough to limit the depth error). In this case, the patch

position is chosen automatically as centered on the projection

of the previously computed center of the sphere. This means

that the amount of specular component is not controlled and

the patch can therefore either be with high specular presence or

the opposite. The sphere texture should therefore be adequate

(not homogeneous) for the matching to succeed. Our approach

allows us to reconstruct the 3D motion rather accurately.

However, we notice from figure 9 that the error is cumula-

tive. Fully rendering of the diffuse and specular components

after a certain number of iterations should normally correct this

error. In this case, the estimated parameters can be expected

to be more accurate. This is the subject of a future work.

In order to validate this approach, we also tried different

scenarios.

• The sphere diameter was approximated with an error of

10 and 15% yielding a loss of respectively 3 and 4.7%

of accuracy.

• A Gaussian noise with a variance of 10 was added to the

model’s texture yielding 18% of loss of accuracy.

• A 10 degrees error in the illumination source position

yielded less than 1% additional error.

• An error in the initial position of the sphere gave a 12%

loss of accuracy.

With challenges imposed by the fact that for small motions,

the x-translation (resp. y-translation) cannot be distinguished

from the y-rotation (resp. x-rotation), results are better when

specular reflections are present and used explicitly like in our

approach. To verify this assumption, we have considered a

single parameter motion, i.e. a translation along the y axis

Ty = 0.01. We endeavor to estimate this motion on the same

patch for the same gradient-descent parameters considering

the case of a lambertian surface using the conventional image

alignement technique and the case of a reflective surface using

our approach. Results with a precision of 10−3 are shown in

the following table :

Conventional approach our approach sought values

Tx 0 0 0

Ty −0.001 −0.008 −0.01

Tz 0.001 0 0

θx −0.007 0 0

θy 0 0.001 0

θz −0.004 −0.002 0

We can clearly see that the specularity reveals part of

the ambiguity imposed by the similar 2D projection of the

y-translation and the x-rotation 3D motions. In fact, Ty is

estimated with an error of only 20%. When the surface is

lambertian, this error reaches 90% and the y-translation is

confused with an x-rotation which is approximated to −0.007.

In addition, in this case, overall errors (Tz , θz) are bigger when

the surface is purely lambertian.

V. CONCLUSION AND FUTURE RESEARCH

The main contribution of this work is that it recovers the

3D motion of a highly reflective sphere. It consists in an

image alignment technique processing differently specular and



diffuse components. We were able to obtain good results

while considering the worst case scenario where the patch

is positioned on a region of the image with a high level

of specular reflections. We even noticed that the specular

reflection is a source of information about the 3D motion not

to be discarded. The extension to other objects will be taken

into consideration in future works where we will consider a

coarse to fine approach : given the geometric model as well

as the the texture model and the scene a priori information,

we endeavor to match 2D rendered image with the analyzed

image for more complex convex shapes.

Future works aim at using less prior information about the

scene by automatically separating specular and diffuse com-

ponents using the property of polarization [19] or color [20]

instead of rendering the model twice. The challenge consists

then in computing Ms
2D(P ).

(a) The 2D warping affects specular and diffuse components
similarly here rotation of a sphere about θy on a patch of the
size of the image (zoomed image)). The texture and the white
spot move with the same apparent motion during the sequence.

(b) In reality, specular component remains static when the sphere
rotates about one of its axes, i.e. the texture moves with an
apparent motion to the left whereas the white spot remains at
the same position.

(c) Our warping applied on a patch of the size of the image
showing the same motion as in (b). Specular component remains
static under pure rotation.

Fig. 7. Specular versus diffuse

VI. APPENDIX

Dragonflies are excellent predators. They wait, perched on

a vegetation stick, and choose the appropriate moment to take

off after small insects. Prey pursuit strategy is remarkable,

with success rates as high as 97% [17]. In addition, prey

interception happens during the flight as the dragonfly swoops

upwards from underneath its flying prey, grabbing it with its

outstretched legs. This complex behavior is an example of

visually guided interception, which is composed of at least

three different processes: decision to take off after the prey,

steering towards the prey and coordinating leg movements in

time and space to grab the prey. The biologists are interested

in understanding those separate but interdependent processes.

The neural guidance system is also interesting for control

scientists who look forward to developing effective biomimetic

guidance mechanisms.

Since dragonflies do not normally forage in captivity, in

order to capture their chase maneuver on video (figure 8),

biologists had to reconstruct their natural environment inside

a cage mounted outdoors. They attached a 2 mm white glass

bead that resembles a small insect and moved it above the

perching dragonfly. This setting attracted the dragonfly and

drove it to start the pursuit. It was then possible to acquire

high-speed videos (500 frames/s) with a camera fixed in a

position and orientation allowing the dragonfly and its prey to

remain in the camera viewfield during the whole pursuit. To

restrict the behavior to a single plane, the bead was moved in

the same plane as the dragonfly, on a path orthogonal to the

camera optical axis. Biologists analyzed those sequences man-

ually, while trying to validate a certain number of hypotheses

in which the head location was essential [17], [16], [18].

Fig. 8. A perching dragonfly

This task is cumbersome due to several obstacles: it is not

evident to define marks on the dragonfly’s head due to the

non consistency of its texture (specular reflections, etc. . . ), the

small number of sequences where the head is not occluded by

other parts of the body or blurred, assumptions made on the

size of the dragonfly’s head and body used to estimate the

depth.

Contributions of automatic analysis : automatic analysis of

the image sequences would therefore be very useful. These

analysis will have the advantage of avoiding the time cost

required to extract different information from the sequence im-

ages. In addition, we expect it to be more accurate by avoiding

human errors induced by manual analysis. Finally, automatic

analysis have the advantage of reconstructing directly the 3D

motion and do not require further computations based on point

correspondence.
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Frame 1 Frame 25 Frame 50

Frame 75 Frame 100 Frame 149

The reference sequence showing the following apparent motion of the sphere: combinations of a vertical downward

translation, horizontal right translation as well as rotations about the vertical and the horizontal axes.

Frame 1 Frame 25 Frame 50

Frame 75 Frame 100 Frame 149

Sequence reconstructed based on the computed motion parameters using our approach on a 40 × 40 patch.

Fig. 9. Comparison between the actual sequence and the sequence reconstructed based on our approach for a patch size of 40 × 40.


