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Abstract— Humans have the capacity to move their eyes.
Thanks to this capacity, they can orient their gaze to look at
a relevant object inside a complex scene. In this paper, we have
implemented a driver assistance application which tries to mimic
this human capacity. We focus specially on highway driving
situations, where the detection of obstacles must be done far away
in front of the car. The implementation of the gaze control and
orientation is obtained by an active vision system. We know that
the human gaze is related to the visual attention which is a result
of human perception and cognitive phenomenon. Several studies
have shown that human perception and more specially the visual
perception can be decomposed into a bottom-up process and a
top-down process. Most of researches focused on the bottom-up
process. In this work, in order to mimic the human behavior or
at least improve vision systems, we use a new active stereovision
setup and a model of the human visual perception based on the
two previous approaches. Moreover, in a bottom-up approach,
we add the depth information obtained with the stereoscopic
sensor to the classical features used by other works. The top-
down process is computed by the global knowledge of the scene
and its features. Some results obtained by mean of a virtual
road sequence, show the orientation of the field of view of the
stereoscopic sensor toward relevant objects, given our criteria.

Keywords— Stereoscopic catadioptric sensor, orientable field of
view, active vision, visual attention, saliency

I. INTRODUCTION

In the context of Advanced Driver Assistance System

(ADAS), a lot of studies have been done during the last decade

[1], [2], [3], [4]. Some of these studies have been devoted to

environment sensors, e.g. radar, lidar, sonar or video-based

sensors in order to provide information to the driver about

the scene surrounding the car. The video-based sensors are

limited in distance. The camera and its lens are not able to

satisfy simultaneously a good accuracy of detection and a wide

field of view to see the entire scene. If we use a large angle

of view then we have a lack of accuracy in the detection

process and consequently in the identification process. If we

have a smaller field of view, the detection and identification

processes will be better but we can miss obstacles in front

of the car especially in curved road. From this analysis we

have developed a new orientable stereoscopic sensor with

a small field of view. This orientation possibility allows to

scan the entire scene in front of the car. Specifically, we can

orient the sensor toward the area of interest. Consequently,

it is necessary to develop a strategy of visual perception for

our active vision system in order to determine: what to look

and when to look. From human visual behavior and specific

criteria dedicated to our application, we develop an hybrid

approach from the bottom-up and the top-down processes. The

proposed approach selects the point of fixation from potential

areas of interest by means of an evaluation function. It allows

to obtain required information, dependent on our application

goals, by controlling the active vision system.

The paper is organized as follows: Section 2 provides

background information and literature review about visual

attention. Section 3 deals with our hybrid approach. Our

stereoscopic active vision sensor is described in section 4. Sec-

tion 5 presents some results and evaluations from a sequence of

synthetic images of road traffic. We conclude with a discussion

about ways of improvement of the proposed approach.

II. RELATED WORK ON FIELD OF VIEW CONTROL

In order to set up a tool for driver assistance, the perception

module has to give priority to relevant objects in the scene.

The benefits that can be drawn are:

• A lower amount of data to analyze since the regions with

relevant objects are limited,

• Better and faster identification of the objects in cluttered

scene.

A. Field of view control based on risk assessment

In the context of assistance system for intelligent vehicle,

Lattner proposed a knowledge-based risk assessment in order

to identify objects which might be dangerous for the vehicle

or other traffic participants [5]. He proposed a qualitative

representation of the scene based on classes which describe

the objects, the spatial and temporal relations between them

and the road and traffic situation. An abstract description of the

situation gives a risk pattern before a pattern matching, which

notifies the risk assessment of the objects, and selects the

region which should be focused. This system seems efficient,

however it does not consider the characteristics of the human

cognitive and visual system.

B. The human visual perception modeling

The human perception system and the related cognitive

mechanisms have been studied both in synthetic faces with the



goal of improving the naturalness of animated virtual agents,

and in road scene analysis to focus on relevant objects [6],

[7].

1) The visual attention: For living beings, the relevant

information is selected in the perceptual available data stream,

before being prioritized processed by other stages. This pro-

cess is called the selective visual attention. One aspect that

emerges from studies in various fields like neuro-sciences and

cognitive psychology is that the attention is controlled by the

salience. The attention has a filter function that enables a gaze

control on salient features of the scene, avoiding an exhaustive

or random exploration when looking for information. For the

development of our analysis scene tool, we can use this idea

of visual attention to orient the field of view of the sensor to

salient regions.

a) The saliency: an object is salient when it draws our

attention. The salience depends on the observer, the objects

and the context. An interesting study conducted by Landragin

proposes a classification of the physical and cognitive factors,

that make an entity salient in a linguistic utterance or in a

visual scene [8]. Two main processes involved in the saliency

mechanism are resumed below:

• The bottom-up process (or ascendant process) is driven by

scene features, generally fast, spontaneous and automatic.

The features cover information specific to the nature of an

item, a singularity of an item in a set, and factors related

to the cohesion and the structure of the scene [8]. Various

stimuli contribute in putting forward an item when it is

different from its neighbors on a given property.

• The top-down process (or descendant process) : some

high-level controlled processes determine the visual at-

tention because objects become salient according to a

specific goal that we have to achieve or a succession

of reasonings we can have. According to Landragin,

cognitive factors in visual perception include the intention

(the influence of the task ongoing on the perception),

the attention (this is an attitude of preparation to the

perception), the short-term and long-term memories [8],

[9].

However, the human visual attention is guided by the two

above processes. That leads to react to unpredicted event

and to focus on the goals which were previously defined

simultaneously. There exists a time-limited retroaction of the

bottom-up process on the top-down process.

b) Personal factors affecting the visual attention: some

factors related to the affect (stress, fear) influence the visual

attention according to the personality of people. The effects of

these factors are difficult to predict and are almost inordinate.

c) Inhibition process: there are some phenomenon of

inhibition which control the saliency and therefore the visual

attention. The attention is first shifted to the most salient loca-

tion, then the saliency of this region decreases and the attention

is shifted to the next most salient location. This inhibition

has several dimensions: temporal, spatial and elimination of

stimulus that appear not quite relevant (signal to noise rate).

2) Computational model of visual attention: The first com-

putational models worked with static frames [10], [11] before

to be extended to the analysis of dynamic scenes [12], [13],

[14]. Meanwhile, descendant models (relevant map) have been

added to the ascendant models (saliency map) to achieve so-

called hybrid models [15], [16].

A computational model of bottom-up process, incorporating

the biologically inspired ideas of Koch and Ullman, has been

proposed by Niebur [10]. Thereafter Itti refined and improved

this model [11]. The saliency is determined by how different

a stimulus is from its surround, in many submodalities and at

many scales. His method gives a saliency map in a several

stages calculation.

Rosenholtz proposed a statistical approach. First a search

display is represented in an appropriate feature space, then

the saliency is computed by essentially performing a test for

outliers [17]. This saliency model has been implemented to

extract motion saliency from video and to predict where people

look at through the windshield of a car.

Frintrop presented an application of visual attention mech-

anisms for the selection of point of interest in an arbitrary

system. She used a 3D laser scanner mounted on a mobile

robot. Her saliency-based region search indicates areas of

interest of the scene. However, she didn’t use this information

to drive the robot to the interesting area or to identify the

objects present in that region [18].

Michalke presents an attention system as a part of a bi-

ologically motivated advanced driver assistance system. He

focuses on robustness enhancements in order to cope with the

challenges a system is faced with when using saliency on real

outdoor scenes [19].

In top-down attentional modulation, the knowledge could be

modeled by a fuzzy logic algorithm [20], a bayesian network

[16] or belief functions [21]. These models give additional

information about the objects depending on the situation and

the task-relevance of an entity [15]. This knowledge is used

to determine the actions to make on the saliency map creation

process. The information raise to the ascendant part of the

system and the actions are asked by the descendant part. This

process, often associated with a memorization process, runs on

until a condition is verified, like the recognition of a situation.

III. THE PROPOSED MODEL

The proposed model of our visual attention focusing system

using an active stereoscopic vision sensor is displayed in

figure 1.

From the images of the stereoscope we compute a saliency

map. Also with the sequence of images, in an other process

we detect the road and the obstacles to construct a map of

the environment. The bottom-up process exhibits regions that

are salient because of specific conspicuities, the top-down

process emphasizing the features of the chosen scenarii. Both

the saliency map and the observation strategy compete in an
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Fig. 1. The active visual system model

algorithm to search for the regions of interest (ROI). The

coordinates (center of gravity) of these ROI are converted in

a sequence of angles to control the orientation of the field of

view of the stereoscope.

A. The bottom-up process

1) 2D information: We compute a saliency map to model

the bottom-up process. This model uses stimuli from the

scene: luminosity, color, orientation. For every characteristic,

the visual system computes the differences between stimuli in

order to see the most relevant ones. In our study, we use:

• the saliency based on the contrast, the luminosity and the

color,

• the movement for the dynamic aspect,

• the orientation of the object which changes in time and

appears more salient for human.

With each studied feature, we compute a conspicuity map

(see [13]) for the right and the left stereoscopic images. This

conspicuity map represents the information which differs from

the others for a particular feature. For n features, we obtain

n conspicuity maps and for a stereoscopic pair of images, we

obtain 2n conspicuity maps.

2) 3D information: In addition to the previous 2D features

used to make the saliency map, we add the depth infor-

mation which is given by our stereoscopic vision system.

This depth information is computed with a similarity-based

adaptive neighborhood (SBAN) dense stereovision algorithm

[22]. Figure 2 represents a pair of stereoscopic images (a) and

the corresponding dense depth map (b). In this map, each pixel

represents a distance information : light gray pixels belong to

the nearest objects and dark gray pixels belong to the most

distant objects.

a b

Fig. 2. Right and left stereoscopic images (a) and depth map (b)

In human vision, depth information plays an important

role. Particularly, a driver always needs to use the distance

information to locate his car to the others. In computer vision,

in robotics for obstacle avoidance for example, it is important

to know the distance between the sensor and the scene objects.

Authors like Ouerhani [23] show that we can use the depth

information to compute the saliency map. As it was made with

the other features, we compute a conspicuity map based on the

distance information. So, the objects closer than the others will

be brought to light.

3) Combining 2D and 3D related conspicuity maps:

To the 2n conspicuity maps computed from the color image

for each feature, we add one conspicuity map based on the

depth map. So, in order to compute the saliency map S,

2n + 1 conspicuity maps Ci (where i is a feature) have to

be combined :

S =

2n+1∑

i=1

γiN(Ci) (1)

Here N is a normalization operator [12] and γ is a factor

used to adjust the weight of each parameter. In our tests, we

give more importance to the movement and distance of objects

than to the brightness and color. Their coefficient is therefore

higher.

B. The task guided model

We can note many reasons why the analysis of the salience

is not sufficient to control the orientation of the field of view :

• If we have some a priori information, it is better to

integrate them into the model.

• The algorithm for computing the salience does not nec-

essarily give the most interesting region to observe.

• Since the salience is also related to the will of human and

the job they are doing, we must control the orientation

of the field of view by both the bottom-up and top-down

processes.

A machine does not have the capacity to decide for all en-

countered situations. We propose some context-based control

mechanisms of the field of view. Of course, these mechanisms

will influence the search of the most interesting region to

explore.

1) Periodic imposed orientation of the field of view: To

avoid the system to focus on the same region during a too long

period and ignore other parts, we impose a periodic return of

the field of view to the center of the road, in front of the car.



Another option would be a periodic total scan of the scene in

front of the car.

2) Priorized scanning: On the assumption that the field

of view is focused on the most salient region, if the salient

region given by the bottom-up process changes frequently, the

motorized stage of the sensor will also turn permanently. We

will not only consider the most salient region, but several

regions with the highest saliencies and affect them by a cost

coefficient which would guide the orientation. On figure 3,

suppose the current orientation is towards i, and the candidate

regions to explore are j and k, with k being more salient

than j. In this situation, shall we go to k then come back

to j according to the saliency analysis, or go to j and then

continue to k? To make a decision, we will compute a cost

coefficient λij which is proportional to the time required to

bring the motorized stage from the angular position i to the

angular position j: λij =
αij

∆α
, with ∆α the maximum angle of

rotation authorized for the prism. αij is calculated from the

mechanical specifications of the stereocopic sensor [24]. A

priority coefficient pi is then affected to the region to explore.

This coefficient is obtained after an identification stage of

the object in the highlighted area. We will give a greater

coefficient, for example, to a pedestrian crossing the road than

a vehicle driving in the same direction as ours. Finally, we

compute Lij = λij ∗
1
pi

. Thus, we can evaluate and compare

the total costs Lij +Ljk and Lik +Lkj to choose the sequence

of exploration. This analysis of the map of the environment

provides a priority score P̄ i(t) for objects to observe.

Fig. 3. Candidate directions to orient the field of view

C. Determining the region of interest to orient the stereoscope

The region of interest is the area of scene, in front of us, to

which we orient the field of view of the sensor. This region

is determined by an analysis of the saliency maps and the

analysis of the environment map, built after the detection of

the road and objects [25], [26].

We define four driving scenarii identified in the case of

motorway driving :

• following : following a car in our lane ;

• overtaking : moving to the left side of the road, pass the

car and going back to the right side of the road ;

• insertion : entering a highway based on the flow of traffic ;

• exit : exiting a highway.

According to these scenarii, we define sequences of actions

and controls the driver has to do. The analysis of the road

(GPS + road map + environment map), the intention of he

driver (for example flashing) and the destination help us in

this stage. The sequence of control is, per example, look at

the left-look straight away-look at the right-look straight away

in a passing situation. Obviously, this sequence is updated

regularly, according the information arriving from the scene

analysis.

The top-down aspect can influence the region of interest in

two ways :

• guide the bottom-up analysis to highlight some objects

(by adjusting the disparity map to reach more or less

close objects) ;

• we modify the information search stage, in planning areas

to observe, based on the will of the driver and the traffic

situation.

We note Si(t) the saliency score of the subject i computed

at frame t by the algorithm of saliency analysis. This saliency

value is weighted by a function which decreases the score of

the salience when the elapsed time from the observation of

this object grows. We obtain σi(t) :

σi(t) = Si(t)e−a(t−ti
0
) (2)

ti0 is the time from the beginning of the observation of the

object i. The weighting by the exponential function limit the

importance of an object seen for some time. The coefficient a

controls the decay of the exponential function. Then, we define

also an average score of salience σ̄, taking into account the

historical values of salience of an object over several frames :

σ̄i(t) =
1

n

∑

j=0:n−1,n<t−ti
0

σi(t − j) (3)

The window size n and the coefficient a are adjusted to

orient our sensor toward a new object that appears in the scene,

even if the saliency value of the new object is lower than the

saliency of the object already present for some time.

Finally, the region of interest arises from the comparison of

the two scores :

ROI = Max(S̄i, P̄ i) (4)

The position of the object with the largest score is analyzed

to determine to what angle orient the sensor. This approach

takes into account the predicted position of the object to be

seen in terms of its dynamics, and mechanical limits of the

sensor.

IV. SENSOR DESCRIPTION

A schematic top view of the stereoscopic sensor is presented

in figure 4(a). The stereoscopic sensor is composed of a single

camera, two lateral plane mirrors, labeled as (a) and (b)



figure 4(a), and a central prism with two planar reflective

surfaces, labeled (c).

ϕ

ϕ

ϕ

(a) without rotation

γ

γ

(b) rotation of angle γ

Fig. 4. Stereoscopic setup with and without rotation of the prism

We can find a description of the stereoscope and the

characteristics of the active vision setup in [27], [28]. As this

sensor has a small field of view, we can observe only a part

of the scene in front of the vehicle. The sensor is designed

to see two lanes of the road at one hundred meters. Without

orientation of the prism and in straight road, the lane of our

car and two half neighbored lanes in each side are visible. In

order to observe the road scene and to identify the most salient

objects, at long distance with a good accuracy, we orient the

field of view of the system.

V. EXPERIMENTS

For our tests, we need information about the scene. Particu-

larly, we have to detect the road and the roadsides, evaluate the

dynamic and the evolution of the detected objects. All these

informations are expressed in x,y,z in our coordinate system

reference, id est our car. This description takes into account

the rotation of the field of view. Also, it is worth identifying

the other objects in the scene in order to know or predict their

evolutions. An obstacle or a pedestrian or a vehicle do not

have the same behavior. These aspects are out of the scope of

this paper. For our experiments, we use summary data from

which this information is available.

1) Tested scenario: It is not possible for the moment to

equip a car with our sensor laboratory prototype. So, in order

to validate our approach, we generate video sequences with

POVRAY [29]. Several scenari of road traffic were generated,

with a screenplay by cars at different speeds on the motorway.

In the frames shown by figure 5, a passing car situation, with

three cars, is simulated. A car overtake, our car and another

car driving ahead of us, before we overtake this last one.

For this sequence, we compute the saliency map as de-

scribed in §III-A. We keep the three most salient elements. As

we use summary data, we can identify each salient object. This

information is used to evaluate the cost coefficient (see §III-

B.2) of each salient region. According to this cost coefficient

and the saliency score, we compute an attraction rate which

guides the focus.

The result of our visual strategy is illustrated figure 5. From

frames 1 to 4, we observe the most prior car which should be

the car to monitor at that time. On frame 5, we orient the field

of view straight away. In this configuration, we observe the

lane where our car is located. After, we orient the field of view

to the most prior car again. With our sensor, we can observe

the entire scene at one hundred meters in three stages : a left

orientation, a straight away orientation and a right orientation.

When the sensor is oriented straight away, we observe the lane

on which we are located. Every five frame, we start again and

again the described procedure.

The developed method seems to be efficient in order to

observe and detect correctly the salient objects of the scene. It

also allows a periodic scan of the entire road. It is designed to

be similar to a real situation of driving when an object appears

in the scene while we follow an itinerary.

The proposed method is not yet completely implemented.

But the first results on these generated video sequences with

POVRAY seem to be encouraging. Note that the evaluation of

our results on the focus of attention is very difficult because

there is no ground truth.

VI. CONCLUSION AND FUTURE WORK

This paper presents an approach of field of view control

of a stereoscopic active vision system based on the human

perception. We have presented the human cognitive perception

and its two main mechanisms, the bottom-up and the top-down

processes, studied in order to develop a strategy of observation.

We tried to adopt a hybrid method by combining the two

previous processes, in order to get a behavior of the system

close to the human’s one, or more concretely to improve our

visual attention focusing system. The process of saliency map

creation allows to consider the sensibilities of human eyes such

as the color and the orientation. The top-down part influences

the bottom-up part and modifies focus parameters got from

the saliency map. Thus, the top-down approach guides the

research of particular elements in the scene according to the

situation. Finally, we have presented some first results with

our developed system. In the future, it could be interesting

to compare our results with an occulometer placed in a car

driving simulator.



frame 1 frame 2 frame 3

frame 4 frame 5 frame 6

frame 231 frame 232 frame 233

frame 234 frame 235 frame 236

Fig. 5. Sequence of frames, simulation of a passing car situation. Frame 1-4 :
monitoring the left car, frame 5 : switching straight away. frames 231-234 :
monitoring a car appearing on our right, frame 235 : switching straight away
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[22] M. Pérez-Patricio, O. Colot, F. Cabestaing : A SBAN stereovision
algorithm using hue as pixel similarity criterion. Computational Imaging
and Vision, 32: 552-557, Springer, 2005.

[23] O. Ouerhani : Visual attention : from bio-inspired modeling to real time
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