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DIFFERENTIAL EXPRESSION OF GENE NETWORKS

BY LAURENT JACOB, PIERRE NEUVIAL AND SANDRINE DUDOIT

University of California, Berkeley, University of California, Berkeley,
and Université d’Évry Val d’Essonne

We consider multivariate two-sample tests of means, where the location
shift between the two populations is expected to be related to a known graph
structure. An important application of such tests is the detection of differen-
tially expressed genes between two patient populations, as shifts in expres-
sion levels are expected to be coherent with the structure of graphs reflecting
gene properties such as biological process, molecular function, regulation or
metabolism. For a fixed graph of interest, we demonstrate that accounting for
graph structure can yield more powerful tests under the assumption of smooth
distribution shift on the graph. We also investigate the identification of non-
homogeneous subgraphs of a given large graph, which poses both computa-
tional and multiple hypothesis testing problems. The relevance and benefits
of the proposed approach are illustrated on synthetic data and on breast and
bladder cancer gene expression data analyzed in the context of KEGG and
NCI pathways.

1. Introduction. The detection of differentially expressed (DE) genes, that is,
genes whose expression levels change between two (or more) experimental condi-
tions, remains a major challenge in biology and medicine, especially in the context
of cancer studies. For example, the identification of DE genes between breast can-
cer patients that are sensitive or resistant to tamoxifen can help understand resis-
tance mechanisms to this drug and eventually improve breast tumor treatment [Loi
et al. (2008)]. Similarly, finding DE genes between low-grade, noninvasive or more
aggressive bladder tumors may help understand the disease better and ultimately
improve its diagnosis and treatment [Stransky et al. (2006)]. The application of the
methods developed in this paper will be illustrated on the data sets from the above
two papers.

However, the detection of a change in gene expression levels among a large
gene list is a difficult problem from a statistical perspective, and lists of differen-
tially expressed genes are generally hard to interpret, as they focus on the level of
genes instead of the level of molecular functions. In such a context, expression data
from high-throughput microarray and sequencing assays gain much in relevance
from their association with graph-structured prior information on the genes, for
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example, Gene Ontology (GO; http://www.geneontology.org), Kyoto Encyclope-
dia of Genes and Genomes (KEGG; http://www.genome.jp/kegg) or NCI Pathway
Integration Database (NCI graphs; http://pid.nci.nih.gov). Most approaches to the
joint analysis of gene expression data and gene graph data involve two distinct
steps. First, tests of differential expression are performed separately for each gene.
Then, these univariate (gene-level) testing results are extended to the level of gene
sets, for example, by assessing the over-representation of DE genes in each set
based on p-values for Fisher’s exact test1 (or a χ2 approximation thereof) adjusted
for multiple testing [Beissbarth and Speed (2004)] or based on permutation ad-
justed p-values for weighted Kolmogorov–Smirnov-like statistics [Subramanian
et al. (2005)]. Another family of methods directly performs multivariate tests of
differential expression for groups of genes, for example, Hotelling’s T 2-test [Lu
et al. (2005)]. It is known [Goeman and Bühlmann (2007)] that the former family
of approaches can lead to incorrect interpretations, as the sampling units for the
tests in the second step become the genes (as opposed to the patients) and these
are expected to have strongly correlated expression measures. This fact suggests
that direct multivariate testing of gene set differential expression is more appro-
priate than posterior aggregation of individual gene-level tests. On the other hand,
while Hotelling’s T 2-statistic is known to perform well in small dimensions, it
loses power very quickly with increasing dimension [Bai and Saranadasa (1996)],
essentially because it is based on the inverse of the empirical covariance matrix
which becomes ill-conditioned. Additionally, such direct multivariate tests on un-
structured gene sets do not take advantage of information on gene regulation or
other relevant biological properties. An increasing number of regulation networks
are becoming available, specifying, for example, which genes activate or inhibit
the expression of which other genes. If it is known that a particular gene in a tested
gene set activates the expression of another, then one expects the two genes to have
coherent (differential) expression patterns, for example, higher expression of the
first gene in resistant patients should be accompanied by higher expression of the
second gene in these patients. Accordingly, the first main contribution of this paper
is to propose and validate multivariate test statistics for identifying differential ex-
pression patterns (or, more generally, shifts in distribution) that are coherent with
a given graph structure.

Next, given a large graph and observations from two data generating distribu-
tions on the graph, a more general problem is the identification of smaller nonho-
mogeneous subgraphs, that is, subgraphs on which the two distributions (restricted
to these subgraphs) are significantly different. This is very relevant in the context
of tests for gene set differential expression: given a large set of genes, together with
their known regulation network, or the concatenation of several such overlapping
sets, it is important to discover novel gene sets whose expression changes sig-
nificantly between two conditions. Currently-available gene sets have often been

1Sometimes referred to as a hypergeometric test in the bioinformatics literature.
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defined in terms of other phenomena than that under study and physicians may be
interested in discovering sets of genes affecting in a concerted manner a specific
phenotype. Our second main contribution is therefore to develop algorithms that
allow the exhaustive testing of all the subgraphs of a large graph, while avoid-
ing one-by-one enumeration and testing of these subgraphs and accounting for the
multiplicity issue arising from the vast number of subgraphs.

As the problem of identifying variables or groups of variables which differ in
distribution between two populations is closely related to supervised learning, our
proposed approach is similar to several learning methods. Rapaport et al. (2007)
use filtering in the Fourier space of a graph to train linear classifiers of gene ex-
pression profiles whose weights are smooth on a gene network. However, their
classifier enforces global smoothness on the large regularization network of all
the genes, whereas we are concerned with the selection of gene sets with locally-
smooth expression shift between populations. In Jacob, Obozinski and Vert (2009)
and Obozinski, Jacob and Vert (2011), sparse learning methods are used to build
a classifier based on a small number of gene sets. While this approach leads in
practice to the selection of groups of variables whose distributions differ between
the two classes, the objective is to achieve the best classification performance with
the smallest possible number of groups. As a result, correlated groups of variables
are typically not selected. Other related work includes Fan and Lin (1998), who
proposed an adaptive Neyman test in the Fourier space for time series. However,
as illustrated below in Section 5, direct translation of the adaptive Neyman statistic
to the graph case is problematic, as assumptions on Fourier coefficients which are
true for time series do not hold for graphs. In addition, the Neyman statistic con-
verges very slowly toward its asymptotic distribution and the required calibration
by bootstrapping renders its application to our subgraph discovery context difficult.
By contrast, other methods do not account for shift smoothness and try to address
the loss of power caused by the poor conditioning of the T 2-statistic by apply-
ing it after dimensionality reduction [Ma and Kosorok (2009)] or by omitting the
inverse covariance matrix and adjusting instead by its trace [Bai and Saranadasa
(1996), Chen and Qin (2010)] or using a diagonal estimator of the covariance ma-
trix [Srivastava and Du (2008), Srivastava (2009)]. Lopes, Jacob and Wainwright
(2011) recently proposed a testing procedure based on random projection of the
data in a lower dimension space, and showed that it was asymptotically more pow-
erful than Bai and Saranadasa (1996), Chen and Qin (2010) and Srivastava and
Du (2008) in the presence of correlation and when the spectrum of the covariance
matrix decays fast enough. Vaske et al. (2010) recently proposed DE tests, where
a probabilistic graphical model is built from a gene network. However, this model
is used for gene-level DE tests, which then have to be combined to test at the level
of gene sets. Several approaches for subgraph discovery, like that of Ideker et al.
(2002), are based on a heuristic to identify the most differentially expressed sub-
graphs and do not amount to testing exactly all possible subgraphs. Concerning
the discovery of distribution-shifted subgraphs, Vandin, Upfal and Raphael (2010)
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propose a graph Laplacian-based testing procedure to identify groups of interact-
ing proteins whose genes contain a large number of mutations. Their approach
does not enforce any smoothness on the detected patterns (smoothness is not nec-
essarily expected in this context) and the graph Laplacian is only used to ensure
that very connected genes do not lead to spurious detection. The Gene Expression
Network Analysis (GXNA) method of Nacu et al. (2007) detects differentially ex-
pressed subgraphs based on a greedy search algorithm and gene set DE scoring
functions that do not account for the graph structure.

The rest of this paper is organized as follows. Section 2 explains how to build a
lower-dimension basis in which to apply the multivariate test of means. Section 3
presents our graph-structured two-sample test statistic and states results on power
gain for smooth-shift alternatives. Section 4 describes procedures for systemati-
cally testing (without fully enumerating) all possible subgraphs of a large graph.
Section 5 presents results for synthetic data and Section 6 on breast and bladder
cancer gene expression data sets analyzed in the light of pathways from the KEGG
and NCI databases. Section 7 presents softwares implementing the proposed meth-
ods. Finally, Section 8 summarizes our findings and outlines ongoing work.

Although this work is motivated by the specific question of differential expres-
sion testing of gene networks, our proposed structured two-sample test of means
on a graph and our nonhomogeneous subgraph discovery algorithm can actually
be used in any situation where one searches for differences between two popula-
tions that are expected to be coherent with a known graph structure. Therefore,
our methodological contributions in Sections 3 and 4 are presented in the general
context of two-sample tests on graphs.

2. Graph-based dimensionality reduction. As stated in the Introduction,
each of the two main paradigms for testing differential expression of a gene
set have their limitations. Two-step methods generally do not directly test the
existence of a mean shift between two multivariate distributions [Goeman and
Bühlmann (2007)]. The second step, which often treats the genes as the sampling
units, renders the interpretation of p-values problematic and may lead to a large
loss of power or Type I error control when sets of genes have correlated expression.
Multivariate statistics, on the other hand, allow a direct formulation of and solu-
tion to the testing question: the sampling units are vectors of gene expression mea-
sures (e.g., corresponding to patients) and the question is whether two such sets
of random vectors are likely to have arisen from distributions with equal means.
Figure 1 illustrates another classical advantage of multivariate approaches: genes
taken individually may have extremely small mean shifts between two popula-
tions, although their joint distributions clearly differ between the two populations.
Here, again, this phenomenon typically happens for sets of genes whose expres-
sion measures are correlated, which is not unlikely for pathways or annotated gene
sets.
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FIG. 1. Synthetic example of the joint distribution of the expression measures of two genes in two
patient populations. The color and shape of the plotting symbols indicate the patient group and the
x- and y-axes correspond to the expression measures of the first and second gene, respectively.

Unfortunately, with moderate sample sizes, multivariate statistics lose power
quickly in a high dimension. If some type of side information is available regard-
ing particular properties of the expression shift, a possible approach to get the best
of both worlds would be to: (1) project the vectors of covariates in a new space of
lower dimension that preserves the distribution shift, that is, the distance between
the expression measures of the two groups, and (2) apply the multivariate statis-
tic in this new space. One could thus perform the appropriate multivariate test,
while avoiding the loss of power caused by the high-dimensionality of the original
covariate space.

A possible source of information about the expression shift is the growing num-
ber of available gene networks. Indeed, while the difference in mean expression
between two groups of patients may not be entirely coherent with an existing net-
work (e.g., because of noise in the data, errors in the annotation, or inappropriate-
ness of the chosen network for the biological question of interest), it is reasonable
to expect that this shift will not be entirely contradictory with the given graph struc-
ture. For example, repressed genes should be more connected to other repressed
genes than to overexpressed genes. Given this assumption, we intend to build a
space of lower dimension than the original gene space, but which preserves most
of the distribution shift between the two populations.

More precisely, consider a network of p genes, represented by a graph G =
(V, E ), with |V| = p nodes and edge set E . Let δ ∈ R

p denote the mean shift, that
is, the vector of differences in mean expression measures for these p genes be-
tween the two populations of interest. Suppose we expect the shift δ to be coherent
with the graph G , in the sense that it has low energy EG (δ) for a particular energy
function EG defined on G . Then, we wish to build a space of lower dimension
k � p capturing most of the low energy functions. To this end, we start by finding
the function that has the lowest possible energy, then the function that has lowest
possible energy in the orthogonal space of the first one, up to the kth function with
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lowest energy in the orthogonal subspace of the first k − 1 functions. That is, for
each i ≤ k, we define

ui =
⎧⎨
⎩

arg min
f ∈Rp

EG (f )

such that ui ⊥ uj , j < i.
(2.1)

If EG is a positive semi-definite quadratic form EG (δ) = δ�QG δ, for some pos-
itive semi-definite matrix QG = U�U�, where U is an orthogonal matrix and � a
diagonal matrix with elements λi, i = 1, . . . , p, then the solution to equation (2.1)
is given by the k eigenvectors of QG corresponding to the smallest k eigenvalues.
It is easy to check that these eigenvalues are the energies of the corresponding
functions ui , that is, EG (ui) = λi .

Different choices of QG lead to different notions of coherence of the expression
shift with the network. A classical choice is the graph Laplacian L. Suppose G is
an undirected graph with adjacency matrix A, with aij = 1 if and only if (i, j) ∈ E
and aij = 0 otherwise, and degree matrix D = Diag(A1), where 1 is a unit column-
vector, Diag(x) is the diagonal matrix with diagonal x for any vector x, and
Dii = di . The Laplacian matrix of G is then typically defined as L = D − A

or Lnorm = I − D−1/2AD−1/2 for the normalized version, leading to energies∑
i,j∈V (δi −δj )

2 and
∑

i,j∈V ( δi√
di

− δj√
dj

)2, respectively. Note that, in this case, the

Laplacian matrix L, energy E and basis functions ui extend the classical Fourier
analysis of functions on Euclidean spaces to functions on graphs, by transfer-
ring the notions of Laplace operator, Dirichlet energy and Fourier basis, respec-
tively [Evans (1998)].

More generally, any positive semi-definite matrix can be chosen. In the case of
gene regulation networks, we do not necessarily expect as strong a coherence as
that corresponding to the Dirichlet energy defined by the graph Laplacian, since
some of the annotated interactions may not be relevant in the studied context and
some antagonist interactions may cancel each other. For example, if a gene is ac-
tivated by two others, one who is underexpressed and the other overexpressed,
we may observe no change in the expression of the gene, but a nonzero Dirich-
let energy

∑
i,j∈V (δi − δj )

2. Additionally, for applications like structured gene set
differential expression detection, one may use negative weights for edges that re-
flect a negative correlation between two variables, for example, a gene i whose
expression inhibits the expression of another gene j . In this case, a small variation
of the shift on the edge between i and j should correspond to a small |δi + δj |.
This can be achieved in the same formalism by simply considering a signed ver-
sion of the adjacency matrix A, that is, aij = 1 if gene i activates gene j and −1 if
it inhibits gene j . A signed version of the graph Laplacian is then Lsign = D − A,
where D = Diag(|A|1) is the degree matrix and |A| denotes the entry-wise ab-
solute value of A. Note that such a signed Laplacian was used as a penalty for
semi-supervised learning in Goldberg (2007).
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In the context of this work, we, moreover, consider directed graphs G = (V, E ),
where the edge set E consists of ordered pairs of nodes. The adjacency matrix A

may be asymmetric, with entries aij �= 0 if and only if (i, j) ∈ E , that is, there is
an (directed) edge pointing from node vi to node vj . We then use the following
energy function:

EG (δ) =
p∑

i:d−
i �=0

(
δi − 1

d−
i

∑
(j,i)∈E

ajiδj

)2

,(2.2)

where d−
i

�= ∑p
j=1 |aji | is the indegree of node vi , that is, the number of directed

edges pointing from any node to vi . According to this definition, an expression
shift will have low energy if the difference in mean expression of any given gene
between the two populations is similar to the (signed) average of the differences in
mean expression for the genes that either activate or inhibit it.

It is immediate to check that EG (δ) = δ�MG δ, with MG
�= (Ĩ − D−1− A�)�(Ĩ −

D−1− A�), where D− �= Diag((d−
i )i=1,...,p) is the matrix of indegrees, Ĩ

�=
Diag((I(d−

i �= 0))i=1,...,p) is a modification of the identity matrix where diago-
nal elements corresponding to nodes with zero indegree are set to zero, and the
value of the indicator function I is 1 if its argument is true and zero otherwise.
Note that a very similar function was used in the context of regularized supervised
learning by Sandler et al. (2009).

Following our principle to build a lower dimension space, we use the first few
eigenvectors of MG to obtain orthonormal functions with low energy. As an exam-
ple, Figure 2 displays the eigenvectors of MG for a simple four-node graph with

D =

⎛
⎜⎜⎜⎝

1 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ , A =

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 1 −1
0 1 0 0
0 −1 0 0

⎞
⎟⎟⎟⎠ ,(2.3)

FIG. 2. Eigenvectors of the signed Laplacian Lsign for the simple undirected four-node graph of
example (2.3). The eigenvectors of MG for this particular network are the same. The corresponding

eigenvalues are 0,1,1, 16
3 for MG and 0,1,1,4 for Lsign. Nodes are colored according to the value

of the eigenvector, where green corresponds to high positive values, red to high negative values, and
black to 0. “T”-shaped edges have negative weights.
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FIG. 3. Eigenvectors of the signed Laplacian Lsign (top) and of MG (bottom) for the simple di-

rected four-node graph of example (2.4). The corresponding eigenvalues are 0,1,1,4 and 0,0,0, 4
3 ,

respectively. Nodes are colored according to the value of the eigenvector, where green corresponds
to high positive values, red to high negative values, and black to 0.

where A takes on negative values for negative interactions, such as expression
inhibition. The first eigenvector, corresponding to the smallest energy (eigenvalue
of zero), can be viewed as a “constant” function on the graph, in the sense that
its absolute value is identical for all nodes, but nodes connected by an edge with
negative weight take on values of opposite sign. By contrast, the last eigenvector,
corresponding to the highest energy, is such that nodes connected by positive edges
take on values of opposite sign and nodes connected by negative edges take on
values of the same sign. Note that, for this particular example, the adjacency matrix
is symmetric, which need not always be the case. Here, the signed Laplacian turns
out to have the same eigenvectors as MG , which is not the case generally.

Consider now a slightly different graph, with directed edges, only positive in-
teractions to avoid confusion, and adjacency matrix

A =

⎛
⎜⎜⎜⎝

0 1 0 0
0 0 0 0
0 1 0 0
0 1 0 0

⎞
⎟⎟⎟⎠ .(2.4)

For this graph, Figure 3 shows that the two notions of energy lead to two different
bases. While the signed Laplacian matrix (by definition based on a symmetrized
version of A for an undirected graph) has only one (constant) eigenvector of null
energy, two of energy 1, and one of 4, MG has three orthogonal vectors of null
energy. Note, however, that the first and last eigenvectors are still the same across
the two bases.

More generally, this illustration suggests that projecting on the first eigenvectors
of MG will not preserve the same shifts as projecting on the first eigenvectors of
Lsign. It is possible for a shift vector to have low energy (2.2) but larger signed
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Dirichlet energy
∑

i,j∈V (δi − aij δj )
2, where we recall that aij is 1 for an edge

indicating a positive interaction between i and j and −1 for an edge indicating
a negative interaction. This is, for example, the case of the second eigenvector
of MG on the bottom row of Figure 3. It is therefore conceivable that such a shift
essentially lies in the space spanned by the first few eigenvectors of MG , but that its
projection in the space formed by the first few eigenvectors of Lsigned is smaller. As
a consequence, for a particular shift using one basis or the other for dimensionality
reduction will lead to more or less gain in power, which means that the choice of
basis should be adapted to the expected type of smoothness of the shift.

While we introduce the idea in the context of gene regulation networks and test-
ing for differential expression, the same dimensionality reduction principle applies
to any multivariate testing problem for which the variables have a known structure,
as represented by a graph.

As a last remark, we emphasize that our requirement that the shift be coher-
ent with the network is not too strict in practice. It may sound like most pairs of
nodes must have shifts whose directions are consistent with the nature of the edge
connecting the nodes, but:

• In practice, keeping a few eigenvectors already allows to represent several types
of shifts which are not perfectly coherent with the network, as illustrated on
Figure 2. The projection only shrinks those shifts which severely contradict the
prior given by the network.

• In Section 5.2 we illustrate the fact that this type of projection still leads to gain
in power even in case of strong misspecifications in the network, that is, when a
lot of edges are missing or wrong.

• Lopes, Jacob and Wainwright (2011) show that in a high dimension, random
projection of the data in a lower dimension space yields gains in power against
the regular Hotelling T 2 in the presence of correlation and if the spectrum of the
covariance matrix decays fast enough. This result suggests that there is hope to
gain power even in the case where the network doesn’t bring much information
about the shift.

In the remainder of this paper we denote by f̃ = U�f the coefficients of a
vector f ∈ R

|V| after projection on a basis U (typically the eigenvectors of a QG
matrix).

3. Graph-structured two-sample test of means under smooth-shift alterna-
tives. For multivariate normal distributions, Hotelling’s T 2-test, a classical test of
location shift, is known to be a uniformly most powerful invariant against global-
shift alternatives. The test statistic is based on the squared Mahalanobis norm
of the sample mean shift and is given by T 2 = n1n2

n1+n2
(x̄1 − x̄2)

��̂−1(x̄1 − x̄2),

where ni , x̄i and �̂ denote, respectively, the sample sizes, means and pooled co-
variance matrix, for random samples drawn from two p-dimensional Gaussian
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distributions, N (μi,�), i = 1,2. Under the null hypothesis H0 : μ1 = μ2 of
equal means, NT 2 follows a (central) F -distribution F0(p,n1 + n2 − p − 1),
where N = n1+n2−p−1

(n1+n2−2)p
. In general, NT 2 follows a noncentral F -distribution

F( n1n2
n1+n2

�2(δ,�);p,n1 + n2 − p − 1), where the noncentrality parameter is a

function of the Mahalanobis norm of the mean shift δ, �2(δ,�) = δ��−1δ, which
we refer to as the distribution shift. In the remainder of this paper, unless other-
wise specified, T 2-statistics are assumed to follow the nominal F -distribution, for
example, for critical value and power calculations.

For any orthonormal basis U and, in particular, for our graph-based basis, direct

calculation shows that T 2 = T̃ 2 �= n1n2
n1+n2

(x̄1 − x̄2)
�U(U��̂U)−1U�(x̄1 − x̄2),

that is, the statistic T 2 in the original space and the statistic T̃ 2 in the new graph-
based space are identical. More generally, for k ≤ p, the statistic in the original
space after filtering out dimensions above k is the same as the statistic T̃ 2

k restricted
to the first k coefficients in the new space defined by U :

T̃ 2
k

�= n1n2

n1 + n2
(x̄1 − x̄2)

�U[k]
(
U�[k]�̂U[k]

)−1
U�[k](x̄1 − x̄2)

= n1n2

n1 + n2
(x̄1 − x̄2)

�U1kU
�(U1kU

��̂U1kU
�)+U1kU

�(x̄1 − x̄2),

where A+ denotes the generalized inverse of a matrix A, the p × k matrix U[k]
denotes the restriction of U to its first k columns, and 1k is a p×p diagonal matrix,
with ith diagonal element equal to one if i ≤ k and zero otherwise. Note that, as
retaining the first k dimensions corresponds to a noninvertible transformation, this
filtering indeed has an effect on the test statistic, that is, we have T̃ 2

k �= T̃ 2 in
general. As the Mahalanobis norm is invariant to invertible linear transformations,
using an invertible filtering (such as weighting each component according to its
corresponding eigenvalue) would have no impact on the test statistic.

Hotelling’s T 2-test is known to behave poorly in the high dimension; Lemma 1
stated and proved in the supplemental article Supplement A [Jacob, Neuvial and
Dudoit (2011a)] shows that gains in power can be achieved by filtering. Specifi-
cally, let δ̃ = U�δ and �̃ = U��U denote, respectively, the mean shift and covari-
ance matrix in the new space. Given k ≤ p, let �2

k(δ,�) = δ�[k](�[k])−1δ[k] denote
the distribution shift restricted to the first k dimensions of δ and �, that is, based
on only the first k elements of δ, (δi : i ≤ k), and the first k × k diagonal block of
�, (σij : i, j ≤ k). Under the assumption that the distribution shift is smooth, that
is, lies mostly in the first few graph-based coefficients, so that �2

k(δ̃, �̃) is nearly
maximal for a small value of k, Lemma 1 states that performing Hotelling’s test in
the new space restricted to its first k components yields more power than testing in
the entire new space. Equivalently, the test is more powerful in the original space
after filtering than in the original unfiltered space. The increase in shift η(α, k, l)
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FIG. 4. Left: Increase in distribution shift required for Hotelling’s T 2-test to maintain a given
power when increasing the number of tested new coefficients: �2

k+l − �2
k vs. l such that

βα,k+l (�
2
k+l ) = βα,k(�

2
k). Power βα,k+l (�

2
k+l ) computed under the noncentral F -distribution

F(
n1n2

n1+n2
�2

k+l;k + l, n1 +n2 − (k + l)− 1), for n1 = n2 = 100 observations, k = 5, and α = 10−2.

Each line corresponds to the fixed shift �2
k and power βα,k(�

2
k) pair indicated in the legend. Right:

Zoom on the first 30 dimensions.

required to maintain power when increasing dimension can be evaluated numeri-
cally for any (α, k, l). Note that this result holds because retaining the first k new
components is a noninvertible transformation.

Corollary 1 in the supplemental article Supplement A [Jacob, Neuvial and Du-
doit (2011a)] states that if the distribution shift lies in the first k new coefficients,
then testing in this subspace yields strictly more power than using additional coef-
ficients. In particular, if there exists k < p such that δ̃j = 0 ∀j > k (i.e., the mean
shift is smooth) and �̃ is block-diagonal such that σ̃ij = 0 ∀i < k, j > k, then
gains in power are obtained by testing in the first k new components. Although
nonnecessary, this condition is plausible when the mean shift lies at the beginning
of the spectrum (i.e., has low energy), as the coefficients which do not contain the
shift are not expected to be correlated with the ones that do contain it.

Note that the result in Lemma 1 is more general, as testing in the first k new
components can increase power even when the distribution shift partially lies in
the remaining components, as long as the latter portion is below a certain thresh-
old. Figure 4 illustrates, under different settings, the increase in distribution shift
necessary to maintain a given power level against the number of added coefficients.

Under the assumption of block-diagonal covariance, Corollary 2 (in the supple-
mental article Supplement A [Jacob, Neuvial and Dudoit (2011a)]) directly relates
the energy of the mean shift vector to the gain in power. It states that if the energy
of the mean shift vector δ is small enough, that is, if the mean shift is coherent
enough with the network, then testing in the first k dimensions of the new ba-
sis is more powerful than testing in the original space. The corresponding upper
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bound on the mean shift energy can be quantified for a given generative setting
(μ1,μ2,�), graph G and level α. Tighter and looser bounds can be straightfor-
wardly derived using the same principle for the diagonal and general covariance
cases, respectively.

4. Nonhomogeneous subgraph discovery. A systematic approach for dis-
covering nonhomogeneous subgraphs, that is, subgraphs of a large graph that ex-
hibit a significant shift in means, is to test all of them one-by-one.

This poses a huge combinatorial problem even for moderately large graphs (p =
50, say), as the number of (connected) subgraphs of size k of a graph of size p can
be exponential in p and k. Exhaustive search is therefore not feasible in practice,
especially for differential expression on gene networks, where p is typically in
the dozens or hundreds of genes. Therefore, it is important to rapidly identify sets
of subgraphs that all satisfy the null hypothesis of equal means. To this end, we
prove an upper bound on the value of the test statistic for any subgraph containing
a given set of nodes (Lemma 2 in the supplemental article Supplement A [Jacob,
Neuvial and Dudoit (2011a)]). An exact algorithm is derived from this upper bound
in Section 4.1, and a quicker, approximate algorithm is proposed in Section 4.2.

4.1. Exact algorithm. Given a large graph G with p nodes, we adopt a branch-
and-bound-like approach [Land and Doig (1960)] to test subgraphs of size q ≤ p

at level α, as described in Algorithm 1. We start by checking, for each node in G ,
whether the Hotelling T 2-statistic in the first k new components of any subgraph of
size q containing this node can be guaranteed (by virtue of Lemma 2) to be below
the level-α critical value T 2

α,k , for example, (1 − α)-quantile of F0(k, n1 + n2 −
k − 1) distribution. If this is the case, the node is pruned, that is, removed from
the graph. The algorithm iteratively enriches a list of pruned subgraphs and a list
of candidate subgraphs (called prunedSubgraphs and currentSubgraphs
in Algorithm 1, resp.) of increasing number of nodes s = 1, . . . , q − 1. Pruned
subgraphs are those for which one can guarantee that no supergraph of size q

can reach significance level α, and candidate subgraphs are those for which this
guarantee cannot be given. The key of the algorithm is that at step s, only those
graphs containing a candidate subgraph have to be considered.

This guarantee is obtained by applying Lemma 2 in the supplemental arti-
cle Supplement A [Jacob, Neuvial and Dudoit (2011a)], which gives an upper
bound on the value of the test statistic for any subgraph containing a given set of
nodes. For a subgraph g of G of size q ≤ p, Hotelling’s T 2-statistic in the first
k ≤ q new components of g is defined as

T̃ 2
k (g) = n1n2

n1 + n2

(
x̄1(g) − x̄2(g)

)�
U[k]

(
U�[k]�̂(g)U[k]

)−1
U�[k]

(
x̄1(g) − x̄2(g)

)
,

where U[k] is the q × k restriction of the matrix of q eigenvectors of Qg to its
first k columns [i.e., U[k](g), where we omit g to ease notation] and x̄i(g), i =
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Algorithm 1: Nonhomogeneous subgraph discovery algorithm. The sub-
graphBoundary of a subgraph g of G is defined as the set of supergraphs
of g obtained by adding any one node of G which is connected to a node of g.

Input: G,X1,X2, α, q

Output: selectedSubgraphs
selectedSubgraphs = ∅;1

previousSubgraphs = nodes (G );2

prunedSubgraphs = ∅;3

foreach s ∈ {1 . . . q − 1} do4

checkedSubgraphs = ∅;5

foreach previousSubgraph do6

foreach subgraph ∈ subgraphBoundary(previousSubgraph) do7

if subgraph has been checked or has a pruned subgraph then next;8

if s < q − 1 then9

if upperBound(subgraph, G,X1,X2, q) < T 2
α,k then10

add subgraph to prunedSubgraphs;11

else12

add subgraph to currentSubgraphs;13

end14

else15

foreach q-subgraph ∈ subgraphBoundary(subgraph) do16

if q-subgraph has been checked or has a pruned subgraph then17

next18

else19

if T̃ 2
k (q-subgraph,X1,X2) > T 2

α,k then20

add q-subgraph to selectedSubgraphs21

end22

add q-subgraph to checkedSubgraphs23

end24

end25

end26

add subgraph to checkedSubgraphs27

end28

end29

set previousSubgraphs to currentSubgraphs30

end31

1,2, and �̂(g) are, respectively, the empirical means and pooled covariance matrix
restricted to the nodes in g. Lemma 2 states that for any number k of retained
components, and for any subgraph g′ of size q ′ of g, T̃ 2

k (g) is upper bounded by
the T 2 statistic of the subgraph whose nodes are in ν(g′, q − q ′), that is, the union
of the nodes of g′ and the nodes of g whose shortest path to a node of g′ is less than
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or equal to r . The set ν(g′, r) is called the r-neighborhood of g′. As a corollary of
Lemma 2, the subgraphs returned by Algorithm 1 are exactly those who exhibit a
significant shift in means at the prescribed level α.

Note that the bound in Lemma 2 takes into account the fact that the T 2-statistic
is eventually computed in the first few components of a basis which is not known
beforehand: at each step, for each potential subgraph g′ which would include the
subgraph g which we consider for pruning, the T̃ 2

k (g′) that needs to be bounded
above depends on Qg′ .

4.2. Mean-shift approximation. For “small-world” graphs above a certain
level of connectivity and q large enough, ν(g′, q − s), the (q − s)-neighborhood
of g′, tends to be large, at least at the beginning of the above exact algorithm, and
the number of tests actually performed may not decrease much compared to the
total number of possible tests. One can, however, identify much more efficiently
the subgraphs whose sample mean shift in the first k components of the new space

has Euclidean norm ‖ˆ̃
δ[k](g)‖ = ‖U�[k](x̄1(g) − x̄2(g))‖ above a certain threshold.

Indeed, it is straightforward to see that
∥∥U�[k]

(
x̄1(g) − x̄2(g)

)∥∥2

≤ ∥∥U�(
x̄1(g) − x̄2(g)

)∥∥2

= ‖x̄1(g) − x̄2(g)‖2

≤ ‖x̄1(g
′) − x̄2(g

′)‖2

+ max
v1,...,vq−s∈ν(g′,q−s)

‖x̄1(v1, . . . , vq−s) − x̄2(v1, . . . , vq−s)‖2.

Using this inequality yields an upper bound on T̃ 2
k (g) that can be used as up-

perBound at line 10 of Algorithm 1. This defines a procedure that identifies
all subgraphs for which the Euclidean norm of the sample mean shift exceeds a

given threshold: ‖ˆ̃
δ[k](g)‖2 > θ . For any α, if this threshold θ is low enough, all

the subgraphs with T̃ 2
k (g) > T 2

α,k are included in this set. Performing the actual
T 2-test on these preselected subgraphs then yields exactly the set of subgraphs
that would have been identified using the exact procedure of Section 4.1. More
precisely, Lemma 4, in the supplemental article Supplement A [Jacob, Neuvial
and Dudoit (2011a)], states that for any subgraph which would be detected by

Hotelling’s T 2-statistic T̃ 2
k (g) but not by the Euclidean criterion ‖ˆ̃

δ[k](g)‖2, the
sample covariance matrix in the restricted new space (after filtering) has an eigen-
value below a certain threshold. This implies that such false negative subgraphs
(from the Euclidean approximation to the exact algorithm) have a small mean shift
in the new space, but in a direction of small variance. In the context of gene ex-
pression, this is related to the well-known issue of the detection of DE genes by
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virtue of their small variances. Even though the differences in expression appear to
be significant for these genes, they correspond to small effects that may not be in-
teresting from a practical point of view (i.e., biologically nonsignificant). Methods
for addressing this problem are proposed in Lönnstedt and Speed (2002). Note that
λmin(�̂(g)) ≤ λmin(

ˆ̃
�[k](g)); thus, the remark on variances holds for both the new

and the original spaces. However, if q is large, we expect λmin(�̂(g)) to be very
small, while filtering somehow controls the conditioning of the covariance matrix.

4.3. Multiple hypothesis testing. Testing for homogeneity over the potentially
large number of subgraphs investigated as part of the above algorithms immedi-
ately raises the issue of multiple testing. However, because one does not know in
advance the total number of tests and which tests will be performed specifically,
standard multiple testing procedures, such as those in Dudoit and van der Laan
(2008), are not immediately applicable.

In an attempt to address the multiplicity issue, we apply a permutation proce-
dure to control the number of false positive subgraphs under the complete null
hypothesis of identical distributions in the two populations. Specifically, one per-
mutes the class/population labels (1 or 2) of the n1 + n2 observations and applies
the nonhomogeneous subgraph discovery algorithm to the permuted data to yield a
certain number of false positive subgraphs. Repeating this procedure a sufficiently
large number of times produces an estimate of the distribution of the number of
Type I errors under the complete null hypothesis of identical distributions.

We evaluate the empirical behavior of the procedures proposed in Sections 3
and 4, first on synthetic data, then on breast cancer microarray data analyzed in the
context of KEGG pathways.

5. Results on synthetic data. The performance of the graph-structured test
is assessed in cases where the distribution shift �2 satisfies the smoothness as-
sumptions described in Section 3. We first generate a connected random graph G
with p = 20 nodes and 20 edges. Next, we generate 10,000 data sets in the space
corresponding to the basis U defined by the eigenvectors of the QG matrix for
the graph G ; an inverse transformation is applied to random vectors generated is
this new space. Each data set comprises n1 = n2 = 20 Gaussian random vectors
in R

p , with null mean shift δ for 5000 data sets and nonnull mean shift δ for
the remaining 5000. For the latter data sets, the nonzero shift is built in the first
k0 = 3 graph-based coefficients (the shift being zero for the remaining p − k0 co-
efficients): δ̃i �= 0 if and only if i ≤ k0 and �2(δ,�) = �2(δ̃, �̃) = δ̃��̃−1δ̃ = 1.
We consider two covariance settings. In the first one, the covariance matrix in the
new space is diagonal, with diagonal elements equal to 1√

p
. In the second, correla-

tion is introduced between the shifted coefficients only. Specifically, for i, j ≤ k0,
�̃ij = 0.5√

p
if i �= j , �̃ii = 0.9√

p
otherwise.
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5.1. Fixed known network. Figure 5 displays receiver operator characteristic
(ROC) curves for mean shift detection by the standard Hotelling T 2-test, T 2 in the
first k0 graph-based coefficients, T 2 in the first k0 principal components (PC), the
adaptive Neyman test of Fan and Lin (1998), and a modified version of this fourth
test where the correct value of k0 is specified. Note that we do not consider sparse
learning approaches [Jacob, Obozinski and Vert (2009), Jenatton, Audibert and
Bach (2009), Obozinski, Jacob and Vert (2011)], but it would be straightforward
to design a realistic setting where such approaches are outperformed by testing,
for example, by adding correlation between some of the functions under H1.

The first important comparison is between the classical Hotelling T 2-test vs.
the T 2-test in the new graph-based space (Figure 5, top row). As expected from
Lemma 1, testing in the restricted space where the shift lies performs much better
than testing in the full space which includes irrelevant coefficients. The difference
can be made arbitrarily large by increasing the dimension p and keeping the shift
unchanged. The graph-structured test retains a large advantage even for moderately
smooth shifts, for example, when k0 = 3 and p = 5. Of course, this corresponds to
the optimistic case where the number of shifted coefficients k0 is known. Figure 6
shows the power of the test in the new space for various choices of k. Even when
missing some coefficients (k < k0) or adding a few irrelevant ones (k > k0), the
power of the graph-structured test is higher than that of the T 2-test in the full space.
The principal component approach is shown in Figure 5 (top row) because it was
proposed for the application which motivated our work [Ma and Kosorok (2009)]
and because it also illustrates that the improvement in performance originates not
only from dimensionality reduction, but also from the fact that this reduction is
in a direction that does not decrease the shift. We emphasize that power entirely
depends on the nature of the shift and that a PC-based test would outperform our
graph-based test when the shift lies in the first principal components rather than
graph-based coefficients.

The panels in the middle row show that the statistics of Bai and Saranadasa
(1996), Chen and Qin (2010) and Srivastava and Du (2008) are also largely outper-
formed by our graph-structured statistic. This observation suggests that when such
a graph-based prior on the shift is available, working in the new, lower-dimensional
space does better at solving the problem of high-dimensionality than methods
based on diagonal approximations of the covariance matrix. In addition, as one
could expect, the procedures of Bai and Saranadasa (1996), Chen and Qin (2010)
and Srivastava and Du (2008) perform very poorly in the presence of correlation.
Here again, for a nonsmooth shift, the comparison would be less favorable to our
procedure. We also considered the recently-proposed random projection approach
of Lopes, Jacob and Wainwright (2011). Random projection was shown to give
more power than Bai and Saranadasa (1996), Chen and Qin (2010) and Srivastava
and Du (2008) in high-dimensional cases. However, as expected in our simulation
setting where the sample size is twice the number of dimensions, it did not improve
upon the Hotelling T 2-test (ROC curve not shown for the sake of readability). The
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FIG. 5. Synthetic data: ROC curves for the detection of a smooth shift. Left: Diagonal covariance
structure. Right: Block-diagonal covariance structure. Top: Comparison of tests based on the stan-
dard Hotelling T 2-statistic in the original space, T 2-statistic in the first k0 graph-based coefficients,
and T 2-statistic in the first k0 principal components. Middle: Comparison with the statistics of Bai
and Saranadasa (1996) (BS), Chen and Qin (2010) (CQ), and Srivastava and Du (2008) (SD). Bot-
tom: Comparison with the Neyman statistics of Fan and Lin (1998).
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FIG. 6. Synthetic data: Sensitivity to choice of k. Power of the T 2-test in the first k graph-based
coefficients for a graph of 20 nodes, when the actual distribution shift �2 = 1 is evenly distributed
among the first k0 = 5 graph-based coefficients and with n1 = n2 = 20.

method of Lopes, Jacob and Wainwright (2011) is more appropriate in a higher
dimension and when no prior on the shift direction is available.

Finally, we consider the adaptive Neyman test of Fan and Lin (1998) (bottom
two panels of Figure 5), which takes advantage of smoothness assumptions for
time series. This test differs from our graph-structured test, as Fourier coefficients
for stationary time series are known to be asymptotically independent and Gaus-
sian. For graphs, the asymptotics would be in the number of nodes, which is typ-
ically small, and necessary conditions such as stationarity are more difficult to
define and unlikely to hold for data such as gene expression measures. In the un-
correlated setting, the modified version of the Fan and Lin (1998) statistic based
on the true number of nonzero coefficients performs approximately as well as the
graph-structured T 2. However, for correlated data, it loses power and both versions
of the Neyman test can have arbitrarily degraded performance. This, together with
the need to use the bootstrap to calibrate the test, illustrates that direct transposition
of the Fan and Lin (1998) test to the graph context is not optimal.

5.2. Fixed network with errors. We now consider the less idealistic case where
the network used for testing is not exactly the one which was used to generate the
data. More precisely, we follow the same procedure as in the correlated case of
Section 5.1, but remove or add some edges to the network between the moment
where we use it to generate the two samples and the moment where we use it in
our testing procedure. This setting is much closer to what is likely to happen with
real data, as available networks may miss several gene interactions which are not
known yet and may include some incorrect interactions or some which are irrel-
evant for the problem under consideration. It is easy to see that in a worst case
scenario, removing or adding an edge to the network can arbitrarily shrink the T 2

k
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statistic. Take, for example, two disconnected nodes and assume without loss of
generality that the empirical covariance matrix is the identity matrix and the em-
pirical mean shifts for the two nodes are 1 and −1. Then, δ�δ is 2, but adding an
edge between the two nodes and projecting on the first eigenvector of the graph
Laplacian matrix shrinks the observed shift to 0. A probabilistic analysis over
random perturbations would be out of the scope of this paper, but the following
simulation study is intended to give insight into what would happen in practice if
randomly chosen edges are either wrongly added or omitted.

For the sake of clarity, Figure 7 only shows ROC curves for our graph-structured
T 2 with k = 2,3,4, and the standard Hotelling T 2-statistic. The other competitors
[Bai and Saranadasa (1996), Ma and Kosorok (2009), Chen and Qin (2010), Fan
and Lin (1998), Srivastava and Du (2008), Lopes, Jacob and Wainwright (2011)]
considered above all perform similarly to the Hotelling T 2-statistic. In the case
where edges are erroneously removed, we start with a true network having 60

FIG. 7. Synthetic data: ROC curves for the detection of a smooth shift in the presence of errors in
the network. Comparison of tests based on the standard Hotelling T 2-statistic in the original space
and T 2-statistic in the first k graph-based coefficients. Top: After randomly removing 20 (left) and
40 (right) edges. Bottom: After randomly adding 20 (left) and 40 (right) edges.
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FIG. 8. Synthetic data: Examples of corrupted networks used to generate Figure 7. Left column:
original network used to generate the data of Section 5.2 before removing (top row) and adding
(bottom row) edges. Middle column: one instance of removing/adding 20 edges. Right column: one
instance of removing/adding 40 edges.

edges instead of 20 in Section 5. Figure 7 shows that our graph-based approach
can still perform much better than all competing methods, even in cases where the
topology of the observed network is very incomplete (1/3 of the true number of
edges) or noised by a lot of spurious edges. Figure 8 shows examples of networks
corrupted by removing (top row) or adding (bottom row) edges to the original one
and used in this experiment. It is visually clear that the information provided to our
procedure is very different from the one, that is, used to generate the data. Again,
this is an encouraging result, as it is well known that the gene networks available
in the literature are missing a lot of interactions and often include incorrect infor-
mation.

5.3. Branch-and-bound subgraph discovery. To evaluate the performance of
the subgraph discovery algorithms proposed in Section 4, we generated a graph of
100 nodes formed by tightly-connected hubs of sizes sampled from a Poisson dis-
tribution with parameter 10 and only weak connections between these hubs (Fig-
ure 9). Such a graph structure is intended to mimic the typical topology of gene
regulation networks. We randomly selected one subgraph of 5 nodes to be nonho-
mogeneous, with smooth shift in the first k0 = 3 coefficients. The mean shift was
set to zero on the rest of the graph. We set the norm of the mean shift to 1 and the
covariance matrix to identity, so that detecting the shifted subgraph is impossible
by just looking at the mean shift on the graph.

We evaluated run-time for full enumeration, the exact branch-and-bound algo-
rithm based on Lemma 2 (Section 4.1), and the approximate algorithm based on
the Euclidean norm (Section 4.2). We also examined run-time on data with per-
muted class labels, as the subgraph discovery procedure is to be run on such data
to evaluate the number of false positives and adjust for multiple testing. Averag-
ing over 20 runs, the full enumeration procedure took 732 ± 9 seconds per run
and the exact branch-and-bound 627 ± 59 seconds on the nonpermuted data and
578 ± 100 seconds on permuted data. Over 100 runs, the approximation at θ = 0.5
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FIG. 9. Synthetic data: Random graph used in the evaluation of the pruning procedure.

(λmin = 0.52) took 204±86 seconds (129±91 on permuted data) and the approxi-
mation at θ = 1 (λmin = 1.04) took 183±106 seconds (40±60 on permuted data).
The latter approximation missed the nonhomogeneous subgraph in 5% of the runs.

While neither the exact nor the approximate bounds are efficient enough to al-
low systematic testing on huge graphs for which the full enumeration approach
would be impossible, they allow a significant gain in speed, especially for per-
muted data, and will thus prove to be very useful for multiple testing adjustment.

6. Results on cancer gene expression data. We also validated our methods
using the following two microarray expression data sets: a breast cancer data set
[Loi et al. (2008)] and a bladder cancer data set [Stransky et al. (2006)].

Breast cancer data set. The first data set by Loi et al. (2008) comprises the
expression measures of 15,737 genes for 255 ER+ breast cancer patients treated
with tamoxifen. Breast tumors are generally classified into three main categories
[Perou et al. (2000)]: luminal epithelial/ER+, HER2+, and triple negative. ER+
tumors typically express estrogen receptors at a high level and often rely on estro-
gen for their growth. Tamoxifen is an antagonist of estrogen receptors and there-
fore prevents its activation by endogenous estrogen. Some ER+ tumors, however,
keep growing after being treated with tamoxifen. An important goal is to detect
structured groups of genes which are differentially expressed between resistant
and sensitive patients, as detecting such groups could help understand resistance
mechanisms and eventually improve ER+ breast tumor treatment. Using distant
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metastasis-free survival as a primary endpoint, 68 patients from this data set are
labeled as resistant to tamoxifen and 187 are labeled as sensitive to tamoxifen.

Bladder cancer data set. The second data set by Stransky et al. (2006) consists
of the expression measures of 8323 genes for 57 urothelial tumors. Urothelial tu-
mors are known to be arising and evolving through two distinct pathways, one
typically leading to low-grade noninvasive tumors (Ta tumors), the other involv-
ing more aggressive tumors [Bakkar et al. (2003), Knowles (2006)]. These two
subtypes, however, are not distinguishable from simple markers such as estrogen
receptor or HER2 status for breast tumors. Mutation of the FGFR3 gene is some-
times used as a proxy, as about 70% of the noninvasive tumors carry it. As this
information was unfortunately not available for this data set, we used the second
best proxy which is tumor stage. We defined two groups: 25 tumors either at the Ta
or T1 stages (TaT1 group) and 32 tumors at the T2, T3 or T4 stages (T2+ group).
The muscle invasive T2+ tumors are aggressive and present a high risk of metas-
tasis, while the Ta tumors have high recurrence level but low chance of progression
into muscle invasive tumors. Identifying pathways which differ in expression be-
tween the two subtypes could help understand the disease better and improve its
treatment.

6.1. KEGG networks.
Breast cancer data set. Starting with the breast cancer data set, we tested indi-

vidually 351 connected components from 100 KEGG pathways corresponding to
known gene regulation networks listed in the supplemental article Supplement B
[Jacob, Neuvial and Dudoit (2011b)], using the classical Hotelling T 2-test and
the T 2-test in the new graph-based space retaining only the first 20% coefficients
(k = 0.2p). This value was the one chosen in Rapaport et al. (2007) on the same
networks, accordingly with an argument based on loss minimization, not on hy-
pothesis testing. The analysis of Lopes, Jacob and Wainwright (2011) suggests
that the projection method (on random subspaces in their case) is quite robust to
the choice of k. More refined heuristics could be based on eigengaps, that is, on the
distances between successive eigenvalues. Indeed, matrix perturbation results sug-
gest that eigenspaces can vary a lot even under small perturbations of the network
if the largest discarded eigenvalue is close to the smallest kept eigenvalue [Davis
and Kahan (1969), Stewart and Sun (1990), Ipsen (2010)]. Values of k such that
λk − λk+1 is as large as possible could therefore be generally preferable.

The networks had 36 nodes in average, with a median of 23. For each of the 351
graphs, (unadjusted) p-values were computed under the nominal F -distributions
F0(p,n1 + n2 − p − 1) and F0(k, n1 + n2 − k − 1), respectively. The Benjamini
and Hochberg (1995) procedure was then applied to control the false discovery
rate (FDR) at level 0.05.

Since there is no gold standard regarding which pathways are actually involved
in endocrine resistance, practical validation of the entire set of detected pathways
requires advanced biological expertise and further experiments and is the subject
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FIG. 10. Breast cancer data set: KEGG prostate cancer pathway. Scaled difference in sample mean
expression measures between tamoxifen-resistant and sensitive patients, for genes in one component
of the KEGG prostate cancer pathway. Nodes are colored according to the value of the difference in
means, with green corresponding to high positive values, red to high negative values, and black to 0.
Red arrows denote activation, blue arrows inhibition.

of ongoing collaborations. Nonetheless, inspection of our list reveals several path-
ways which would not have been detected (or would have been further down in
the list) without accounting for the network structure and which have recently
been shown to be central in tamoxifen resistance. Many of these pathways involve
the Ras/Raf-1/MAPK cascade [McGlynn et al. (2009)], like one of the connected
components of the prostate cancer pathway shown in Figure 10 and one connected
component of the GnRH pathway shown in Figure 11. The former also involves the
overexpressed FGFR1, whose amplification was very recently shown to be impli-
cated in endocrine therapy resistance by Turner et al. (2010). The latter pathway
involves overexpressed SRC, which is also a well-studied target when trying to
prevent tamoxifen resistance [Herynk et al. (2006)]. Both pathways have a much
smaller p-value when accounting for their graph structure than when testing in the
original gene space: 10−4 vs. 0.02 for the prostate cancer pathway and 10−3 vs.
0.11 for the GnRH signaling pathway. This is because the differences in expres-
sion of individual genes are insufficient to be significant in 36 and 19 dimensions,
respectively, while the expression shift projected in the first 8 and 4 graph-based
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FIG. 11. Breast cancer data set: KEGG GnRH signaling pathway. Scaled difference in sample
mean expression measures between tamoxifen-resistant and sensitive patients, for genes in one com-
ponent of the KEGG GnRH signaling pathway. Nodes are colored according to the value of the
difference in means, with green corresponding to high positive values, red to high negative values,
and black to 0. Red arrows denote activation, blue arrows inhibition.

directions, respectively, is significant. Note that the corresponding p-values for the
hypergeometric enrichment test are 0.15 and 0.31. The complete gene lists of the
two components are reported in Tables 3 and 4, respectively, in the supplemental
article Supplement C [Jacob, Neuvial and Dudoit (2011c)]. Using a system-based
approach like our proposed graph-based test therefore allows us to recover sev-
eral known results (which may not have been obvious from the same data when
looking at each gene individually) and may give insight regarding other resistance
mechanisms by highlighting connections between these results.

Another example of a network selected only when accounting for graph struc-
ture is Leukocyte transendothelial migration, shown in Figure 12. To the best of
our knowledge, this pathway is not specifically known to be involved in tamox-
ifen resistance. However, its role in resistance is plausible, as leukocyte infiltration
was recently found to be involved in breast tumor invasion [Man (2010)]; more
generally, the immune system and inflammatory response are closely related to the
evolution of cancer. Here again, the p-value of the hypergeometric test is extremely
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FIG. 12. Breast cancer data set: KEGG leukocyte transendothelial migration pathway. Scaled dif-
ference in sample mean expression measures between tamoxifen-resistant and sensitive patients, for
genes in one component of the KEGG leukocyte transendothelial migration pathway. Nodes are col-
ored according to the value of the difference in means, with green corresponding to high positive
values, red to high negative values, and black to 0. Red arrows denote activation, blue arrows inhi-
bition.

high (0.31). The entire list of genes in this component is reported in Table 5 in the
supplemental article Supplement C [Jacob, Neuvial and Dudoit (2011c)].

Bladder cancer data set. Testing the same KEGG networks on the bladder can-
cer data set, we immediately notice that several gene sets which are well known to
be specific of one of the two bladder cancer progression pathways have much lower
p-values under our graph-based approach than using the Hotelling T 2-statistic.
This is the case, in particular, for the p53 signaling pathway [Spruck et al. (1994),
Sanchez-Carbayo et al. (2006)], which is displayed in Figure 13 and for which
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FIG. 13. Bladder cancer data set: KEGG p53 signaling pathway. Scaled difference in sample mean
expression measures between T2+ and TaT1 tumors, for genes in one component of the KEGG p53
signaling pathway. Nodes are colored according to the value of the difference in means, with green
corresponding to high positive values, red to high negative values, and black to 0. Red arrows denote
activation, blue arrows inhibition.

the graph-based procedure outputs a p-value of 8.5 × 10−6 vs. 0.3 for the classi-
cal T 2-statistic. The TP53 gene itself is overexpressed in invasive (T2+) tumors.
van Rhijn et al. (2004) suggested that FGFR3 and TP53 mutations characterize the
two growth pathways and are mutually exclusive. A more recent study [Hernández
et al. (2005)] contradicts the exclusion, but the observed underexpression of TP53
in the invasive group could be coherent with its typical mutation in invasive tumors.
Genes coding for cyclins, such as CCNB1, CCNB2 and CDC2, are overexpressed.
Cyclins are positively involved in cell proliferation, which is coherent with their
overexpression in invasive tumors, as it was already observed for other genes of
the cyclin family [Levidou et al. (2010)]. IGF1 is also overexpressed in T2+ tu-
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FIG. 14. Bladder cancer data set: KEGG ErbB signaling pathway. Scaled difference in sample
mean expression measures between T2+ and TaT1 tumors, for genes in one component of the KEGG
ErbB signaling pathway. Nodes are colored according to the value of the difference in means, with
green corresponding to high positive values, red to high negative values, and black to 0. Red arrows
denote activation, blue arrows inhibition.

mors, known to induce cell proliferation [Dunn et al. (1997)] and was selected as
a prognosis predictor for bladder cancer in Mitra et al. (2009).

We also observe a much lower p-value using our procedure than using the clas-
sical T 2-statistic (2.3 × 10−5 vs. 0.066) for the ErbB signaling pathway, shown in
Figure 14 and known to behave differently in the two bladder cancer growth path-
ways [Mellon et al. (1996)]. In particular, the network involves the PIK3, RAS
and MAPK genes, which are known to be oncogenes specific to one of the growth
pathways [Eswarakumar, Lax and Schlessinger (2005)].
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FIG. 15. Bladder cancer data set: KEGG TGF-β signaling pathway. Scaled difference in sample
mean expression measures between T2+ and TaT1 tumors, for genes in one component of the KEGG
TGF-β signaling pathway. Nodes are colored according to the value of the difference in means, with
green corresponding to high positive values, red to high negative values, and black to 0. Red arrows
denote activation, blue arrows inhibition.

Finally, changes in the TGF-β signaling pathway are also known to be related to
the aggressiveness of bladder cancers [Hung et al. (2008)]. The network is shown
in Figure 15 and here again our procedure results in a much lower p-value than
the Hotelling test (2.6 × 10−6 vs. 0.049).

Unsurprisingly, these three networks have a relatively large size with respect
to the low sample size of this data set and several of their genes show only very
moderate differential expression when tested individually.

6.2. NCI networks. We also tested 75 connected components coming from
gene networks of the NCI Pathway IntegrationDatabase.2 The NCI networks con-
sidered are listed in the supplemental article Supplement B [Jacob, Neuvial and

2http://pid.nci.nih.gov.

http://pid.nci.nih.gov
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Dudoit (2011b)]. Unlike KEGG pathways for which the Bioconductor R pack-
age KEGGgraph had already been developed, NCI pathways were not readily
available as R objects. We therefore developed NCIgraph [Jacob (2011)], a Bio-
conductor R package which converts pathways available in BioPAX format to R
objects. In addition, instead of importing a gene network as is into R, we provide
an option to convert as well as possible the original network, whose nodes can
represent proteins, protein complexes or concepts like transport or biochemical
reactions, into one whose nodes correspond to genes and whose edges represent
direct or indirect interactions at the expression level. For instance, if protein A is
known to activate protein B, which is a transcription factor for gene C, a relevant
network in terms of gene expression should be A and B pointing to C, whereas
the BioPAX network will most likely be represented as A pointing to B point-
ing to C. As discussed in Section 5.2, our method is robust to irrelevant edges in
the graph. Such a transformation is nonetheless important, since the method es-
sentially uses biological networks as a prior on the covariance structure of gene
expression. After this transformation, however, most networks have much simpler
topologies, typically with all genes pointing to one or a few targets. As a result,
Laplacian eigenvalues often have high multiplicities, which makes the effect of fil-
tering less drastic.3 In addition, the networks we consider here have much smaller
size than the KEGG networks on average (8.9 vs. 36 for means, 7.5 vs. 23 for me-
dians), which also explain the milder difference between results before and after
dimensionality reduction.

For the breast cancer data, the 75 connected components we consider are those
which have a nonempty intersection with the genes in this microarray data set. As
for the KEGG networks, we compare the classical Hotelling T 2-test and the T 2-
test in the new graph-based space retaining only the first 20% coefficients (k =
0.2p).

As an example, NFkB activation by Nontypeable Hemophilus influenzae shown
in Figure 16 includes 21 genes from the breast cancer data set, but keeping the
first 20% of the eigenvalues amounts to keeping 16 dimensions because of mul-
tiplicities. As a consequence, the p-value obtained after filtering is only slightly
lower than that before filtering. Here again, the original context of study for this
pathway has nothing to do with breast cancer: the purpose was to uncover the in-
flammation and mucin overproduction mechanism caused by a particular bacteria.
Nevertheless, this network contains several genes which are either known actors
of endocrine resistance or whose activity can be directly linked to the resistance
phenomenon. Moreover, as one may expect, most of the observed gene-wise dif-
ferential expression is coherent with the annotated interactions. On the lower part
of the figure, IL1B is shown to be overexpressed in sensitive patients. Consistent

3If the eigenvalue 0 has a very high multiplicity, for example, then even the most extreme filtering
still retains a large number of dimensions.
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FIG. 16. Breast cancer data set: NCI Nfkb activation by nontypeable hemophilus influenzae path-
way. Scaled difference in sample mean expression measures between tamoxifen-resistant and sensi-
tive patients, for genes in one component of the NCI imported BioCarta Nfkb activation by nonty-
peable hemophilus influenzae pathway. Nodes are colored according to the value of the difference in
means, with green corresponding to high positive values, red to high negative values, and black to 0.
Red arrows denote activation, blue arrows inhibition.

with this fact, its negative regulator p38 (MAPK11 and MAPK14) is downregu-
lated in sensitive patients and its positive regulator CREBBP is upregulated. Note
that DUSP1 was incorrectly annotated as a negative regulator in the automatic net-
work conversion process of NCIgraph but is actually a positive regulator, as it
is involved in the inactivation of p38. NR3C1 is involved in the transcription of
DUSP1 and is also upregulated in sensitive patients. A few inconsistencies can be
observed, like MAP2K3 and MAP2K6 which are negative regulators of IL1B, yet
are overexpressed in sensitive patients. Recall, however, that the criterion we use
for coherence is based on the difference between the expression of each gene and
the (interaction-sign corrected) average expression of its regulators. The second
main output of the pathway, MUC2, is downregulated in sensitive patients, which
makes sense both in terms of the expression of its negative regulator TGFBR2,
which is upregulated, and the already observed fact [Srinivasan et al. (2007)] that
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the estrogen receptor upregulates MUC2 and that tamoxifen could block its ex-
pression.

The role of MUC2 in resistance to tamoxifen treatment of ductal carcinoma
does not seem to be clearly established. Overexpression of MUC2 is sometimes
found to be mildly correlated with good prognosis [Walsh et al. (1993), Rakha
et al. (2005)], but this may be caused by its correlation with ER+ status. Its over-
expression in resistant patients observed in this data set may well be noncausal,
but would deserve further investigation. As for TGFBR2, inactivating mutations
of the gene have been reported to be associated with recurrence and tamoxifen re-
sistance [Lücke et al. (2001)], which is coherent with underexpression in resistant
patients. Regarding IL1B, the main output of the pathway, its overexpression has
been shown to be related to inhibition of cancer growth through apoptosis [Roy,
Sarkar and Felty (2006)]. DUSP1 is a known negative regulator of cell prolifer-
ation and overexpression of p38 is known to be related to tamoxifen resistance
[Gutierrez et al. (2005)]. Interestingly, NR3C1 activity has also been described by
Wu et al. (2005) as being related to breast cancer cell survival through its induc-
tion of MAPK1 expression, which illustrates the interest of studying differential
expression patterns at a system level rather than at the single-gene level.

It is also important to note that at least two interpretations can be given for the
fact that sensitive patients have several gene expression patterns corresponding to
known factors of good prognosis. Some of these patterns may be caused by the
treatment, in which case understanding how tamoxifen affects these genes in some
patients and not in others may be a proxy to understanding resistance mechanisms.
Some of the patterns though may also have been caused by phenotypic traits of the
sensitive patients, leading to better prognosis but without any link to the treatment.

Another small but relevant example is the sonic hedgehog receptor ptc1 regu-
lates cell cycle pathway shown in Figure 17, which is entirely overexpressed in
resistant patients, yielding a 10-fold change between the p-value with and without
dimensionality reduction. The genes in this pathway are known to be related to
tamoxifen resistance: CCNB1 is related to proliferation and is part of several ex-
isting tamoxifen-resistance signatures [Paik et al. (2004)] and inhibition of CDC2
was already proposed as an alternative treatment for endocrine resistant tumors
[Johnson et al. (2010)].

6.3. Branch-and-bound subgraph discovery. We ran our branch-and-bound
nonhomogeneous subgraph discovery procedure on the cell cycle pathway, whose
largest connected component, after restriction to edges of known sign (inhibition
or activation), has 86 nodes and 442 edges. Specifically, we sought to detect dif-
ferentially expressed subgraphs of size q = 5, after preselecting those for which
the squared Euclidean norm of the empirical shift exceeds θ = 0.1; for a test in
the first k = 3 components at level α = 10−4, this corresponds to λmin < 0.23 and
to an expected removal of 95% of the subgraphs under the approximation that the
squared Euclidean norm of the subgraphs follows a χ2

5 -distribution.
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FIG. 17. Breast cancer data set: NCI sonic hedgehog receptor ptc1 regulates cell cycle pathway.
Scaled difference in sample mean expression measures between tamoxifen-resistant and sensitive
patients, for genes in one component of the NCI imported BioCarta sonic hedgehog receptor ptc1
regulates cell cycle pathway. Nodes are colored according to the value of the difference in means,
with green corresponding to high positive values, red to high negative values, and black to 0. Red
arrows denote activation, blue arrows inhibition.

For α = 10−4, out of 100 runs on permuted data, only 9 rejected the null hypoth-
esis for at least one subgraph. More precisely, 4 of these 9 runs detected 1 subgraph
and the others detected 3, 6, 6, 21 and 26 subgraphs. In contrast, 41 overlapping
subgraphs (Figure 18) were detected on the original data, corresponding to a con-
nected subnetwork of 25 genes. Some of the genes belonging to these networks
exhibit large individual differential expression, namely, TP53 whose mutation has
been long known to be involved in tamoxifen resistance [Andersson et al. (2005),
Fernandez-Cuesta et al. (2010)]. Accordingly, its negative regulator MDM2 is
overexpressed and its positive regulator CREBBP is underexpressed. E2F1, whose
expression level was recently shown to be involved in tamoxifen resistance [Louie
et al. (2010)], is also part of the identified network, as well as CCND1 [Barnes
(1997), Musgrove and Sutherland (2009)]. Some other genes in the network have
quite low t-statistics and would not have been detected individually. This is the
case of CCNE1 and CDK2, which were also described in Louie et al. (2010) as
part of the same mechanism as E2F1. Similarly, CDKN1A was recently found to be
involved in anti-estrogen treatment resistance [Musgrove and Sutherland (2009)]
and in ovarian cancer, which is also a hormone-dependent cancer [Cunningham
et al. (2009)]. Interestingly, RBX1, a gene coding for a RING-domain E3 ligase
known to be involved in degradation of estrogen receptor α (ERα) [Ohtake et al.
(2007)], appears to be overexpressed in resistant patients. This fact may suggest
that some of the resistant ER+ patients had fewer receptors and, as a result, their
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FIG. 18. Breast cancer data set: Subgraph discovery. Difference in sample mean expression mea-
sures between tamoxifen-resistant and sensitive patients, for genes in the two overlapping subgraphs
detected at α = 10−4. Nodes are colored according to the value of the difference in means, with
green corresponding to high positive values, red to high negative values, and black to 0. Red arrows
denote activation, blue arrows inhibition.

tumors were relying less on estrogen for their growth, hence, the limited effect
of a selective estrogen receptor modulator (SERM) like tamoxifen. The networks
also contain CDK4, whose inhibition was described in Sutherland and Musgrove
(2009) as acting synergistically with tamoxifen or trastuzumab. More generally,
a large part of the network displayed in Figure 2A of Musgrove and Sutherland
(2009) is included in our network, along with other known actors of tamoxifen
resistance. Admittedly, selecting an important regulator like TP53 is not a surpris-
ing result, but our system-based approach to pathway discovery directly identifies
an important set of interacting genes and may therefore prove to be more efficient
than iterative individual identification of single actors.
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7. Software implementation. The graph-structured test of Section 3 is im-
plemented in the R software package DEGraph, released through the Bioconduc-
tor Project (release 2.7). Instructions for download and installation are available at
http://www.bioconductor.org. Note that implementations of the branch-and-bound
algorithms are not yet included in this package, but are available upon request.

As mentioned in Section 6.2, we also developed NCIgraph [Jacob (2011)],
a Bioconductor R package which converts pathways available in BioPAX format
to R objects with various preprocessing options.

8. Discussion. We developed a graph-structured two-sample test of means,
for problems in which the distribution shift is assumed to be smooth on a given
graph. We proved quantitative results on power gains for such smooth-shift al-
ternatives and devised branch-and-bound algorithms to systematically apply our
test to all the subgraphs of a large graph, without enumerating and testing these
subgraphs one-by-one. The first algorithm is exact and reduces the number of ex-
plicitly tested subgraphs. The second one is approximate, with no false positives
and a quantitative result on the type of false negatives (with respect to the exact al-
gorithm). The nonhomogeneous subgraph discovery method involves performing
a large number of tests, with highly-dependent test statistics. However, as the ac-
tual number of tested hypotheses is unknown, standard multiple testing procedures
are not directly applicable. Instead, we use a permutation procedure to estimate
the distribution of the number of false positive subgraphs. Such resampling pro-
cedures (bootstrap or permutation) are feasible due to the manageable run-time of
the pruning algorithms of Section 4. Results on synthetic data illustrate the good
power properties of our graph-structured test under smooth-shift alternatives, as
well as the good performance of our branch-and-bound-like algorithms for sub-
graph discovery. Very promising results are also obtained on the gene expression
data sets of Loi et al. (2008) and Stransky et al. (2006).

Future work should investigate the use of other bases, such as graph-wavelets
[Hammond, Vandergheynst and Gribonval (2009)], which would allow the de-
tection of shifts with spatially-located nonsmoothness, for example, to take into
account errors in existing networks. As for the cutoff selection, more system-
atic procedures should be considered, for example, the two-step method proposed
in Das Gupta and Perlman (1974), adaptive approaches as in Fan and Lin (1998) or
heuristics based on the eigengap as mentioned in Section 6. The pruning algorithm
would naturally benefit from sharper bounds. Such bounds could be obtained by
controlling the condition number of all covariance matrices, using, for example,
regularized statistics which still have known nonasymptotic distributions, such as
those of Tai and Speed (2009). Concerning multiple testing, procedures should
be devised to exploit the dependence structure between the tested subgraphs and
to deal with the unknown number of tests. The proposed approach could also be
enriched to take into account different types of data, for example, copy number
for the detection of DE gene pathways. More subtle notions of smoothness, for

http://www.bioconductor.org
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example, “and” (resp., “or”) logical relations [Vaske et al. (2010)], could also be
included to represent regulation mechanisms where the simultaneous presence of
two transcription factors (resp., the presence of one or the other) is necessary to ac-
tivate the transcription of another gene. Other applications of two-sample tests with
smooth-shift on a graph include fMRI and eQTL association studies. For fMRI
data, the goal would be to detect whether the brain activity changes between two
conditions, using the prior information that parts of the brain which are close up to
brain convolutions or known connection patterns should exhibit the same kind of
change. One could also want to identify specific areas of the brain whose activity
changes between two conditions. In eQTL studies, people are often interested in
finding genes whose expression is influenced by single-nucleotide polymorphisms
(SNPs), resulting in a large number of individual tests which often need to be ag-
gregated a posteriori at the pathway level. Our method could be used to identify
pathways whose expression is associated with particular SNPs.

Finally, it would be of interest to compare our testing approach with structured
sparse learning (which we briefly described in Section 1) for the purpose of identi-
fying expression signatures that are predictive of drug resistance. Methods should
be compared in terms of prediction accuracy and stability of the selected genes
across different data sets, a central and difficult problem in the design of such sig-
natures [Ein-Dor et al. (2005), He and Yu (2010), Haury, Jacob and Vert (2010),
Haury, Gestraud and Vert (2011)].
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SUPPLEMENTARY MATERIAL

Supplement A: Technical results and proofs (DOI: 10.1214/11-
AOAS528SUPPA; .pdf). This section contains our technical results (Lemma and
Corollaries) on gain in power along with their proofs. It also contains the upper
bound used in the branch and bound algorithm with its proof. Finally, it contains
the lemma characterizing the subgraphs that would be missed by the approximated
subgraph discovery algorithm presented in Section 4.2 along with its proof.

Supplement B: Pathways considered in the experiments (DOI: 10.1214/11-
AOAS528SUPPB; .pdf). This section lists the names of the pathways considered
in the experiments.

Supplement C: Gene lists (DOI: 10.1214/11-AOAS528SUPPC; .pdf). This
section lists the genes belonging to each of the pathways studied in detail in the
experiments along with their t-statistic and corresponding p-value.
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