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Abstract

We consider multivariate two-sample tests of means, where the location

shift between the two populations is expected to be related to a known graph

structure. An important application of such tests is the detection of differ-

entially expressed genes between two patient populations, as shifts in expres-

sion levels are expected to be coherent with the structure of graphs reflecting

gene properties such as biological process, molecular function, regulation, or

metabolism. For a fixed graph of interest, we demonstrate that accounting

for graph structure can yield more powerful tests under the assumption of

smooth distribution shift on the graph. We also investigate the identifica-

tion of non-homogeneous subgraphs of a given large graph, which poses both

computational and multiple testing problems. The relevance and benefits of

the proposed approach are illustrated on synthetic data and on breast cancer

gene expression data analyzed in context of KEGG pathways.

1 Introduction

The problem of testing whether two data generating distributions are equal has
been studied extensively in the statistical and machine learning literatures. Practi-
cal applications range from speech recognition to fMRI and genomic data analysis.
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Parametric approaches typically test for divergence between two distributions us-
ing statistics based on a standardized difference of the two sample means, e.g.,
Student’s t-statistic in the univariate case or Hotelling’s T 2-statistic in the multi-
variate case [Lehmann and Romano, 2005]. A variety of non-parametric rank-based
tests have also been proposed. More recently, Harchaoui et al. [2007] and Gretton
et al. [2007] devised kernel-based statistics for homogeneity tests in a function space.

In several settings of interest, prior information on the structure of the distribu-
tion shift is available as a graph on the variables. Specifically, suppose we observe
{X1

1 , . . . , X
1
n1
} ∈ R

p from a first multivariate normal distribution N (µ1,Σ) and
{X2

1 , . . . , X
2
n2
} ∈ R

p from a second such distribution N (µ2,Σ). In cases where an
undirected graph G = (V, E) encoding some type of covariance information in R

p

is given, the putative location or mean shift δ = µ1 − µ2 may be expected to be
coherent with G. That is, δ viewed as a function of G is smooth, in the sense that
the shifts δi and δj for two connected nodes vi and vj ∈ V are similar. Classical
tests, such as Hotelling’s T 2-test, consider the null hypothesis H0 : µ1 = µ2 against
the alternative H1 : µ1 6= µ2, without reference to the graph. Our goal is to take
into account the graph structure of the variables in order to build a more powerful
two-sample test of means under smooth-shift alternatives.

Just as a natural notion of smoothness of functions on a Euclidean space can be
defined through the notion of Dirichlet energy and controlled by Fourier decompo-
sition and filtering [Stain and Weiss, 1971], it is well-known [Chung, 1997] that the
smoothness of functions on a graph can be naturally defined and controlled through
spectral analysis of the graph Laplacian. In particular, the eigenvectors of the Lapla-
cian provide a basis of functions which vary on the graph at increasing frequencies
(corresponding to the increasing eigenvalues). In this paper, we propose to compare
two populations in terms of the first few components of the graph-Fourier basis or,
equivalently, in the original space, after filtering out high-frequency components.

An important motivation for the development of our graph-structured test is the
detection of groups of genes whose expression changes between two conditions. For
example, identifying groups of genes that are differentially expressed (DE) between
patients for which a particular treatment is effective and patients which are resistant
to the treatment may give insight into the resistance mechanism and even suggest
targets for new drugs. In such a context, expression data from high-throughput
microarray and sequencing assays gain much in relevance from their association
with graph-structured prior information on the genes, e.g., Gene Ontology (GO;
http://www.geneontology.org) or Kyoto Encyclopedia of Genes and Genomes
(KEGG; http://www.genome.jp/kegg). Most approaches to the joint analysis
of gene expression data and gene graph data involve two distinct steps. Firstly,
tests of differential expression are performed separately for each gene. Then, these
univariate (gene-level) testing results are extended to the level of gene sets, e.g.,
by assessing the over-representation of DE genes in each set based on p-values
for Fisher’s exact test (or a χ2 approximation thereof) adjusted for multiple test-
ing [Beissbarth and Speed, 2004] or based on permutation adjusted p-values for
weighted Kolmogorov-Smirnov-like statistics [Subramanian et al., 2005]. Another
family of methods directly performs multivariate tests of differential expression for
groups of genes, e.g., Hotelling’s T 2-test [Lu et al., 2005]. It is known [Goeman
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and Bühlmann, 2007] that the former family of approaches can lead to incorrect
interpretations, as the sampling units for the tests in the second step become the
genes (as opposed to the patients) and these are expected to have strongly corre-
lated expression measures. This suggests that direct multivariate testing of gene
set differential expression is more appropriate than posterior aggregation of individ-
ual gene-level tests. On the other hand, while Hotelling’s T 2-statistic is known to
perform well in small dimensions, it loses power very quickly with increasing dimen-
sion [Bai and Saranadasa, 1996], essentially because it is based on the inverse of the
empirical covariance matrix which becomes ill-conditioned. In addition, such direct
multivariate tests on unstructured gene sets do not take advantage of information
on gene regulation or other relevant biological properties. An increasing number
of regulation networks are becoming available, specifying, for example, which genes
activate or inhibit the expression of which other genes. As stated before, incorpo-
rating such biological knowledge in DE tests is important. Indeed, if it is known
that a particular gene in a tested gene set activates the expression of another, then
one expects the two genes to have coherent (differential) expression patterns, e.g.,
higher expression of the first gene in resistant patients should be accompanied by
higher expression of the second gene in these patients. Accordingly, the first main
contribution of this paper is to propose and validate multivariate test statistics for
identifying distribution shifts that are coherent with a given graph structure.

Next, given a large graph and observations from two data generating distribu-
tions on the graph, a more general problem is the identification of smaller non-
homogeneous subgraphs, i.e., subgraphs on which the two distributions (restricted
to these subgraphs) are significantly different. This is very relevant in the context
of tests for gene set differential expression: given a large set of genes, together with
their known regulation network, or the concatenation of several such overlapping
sets, it is important to discover novel gene sets whose expression change significantly
between two conditions. Currently-available gene sets have often been defined in
terms of other phenomena than that under study and physicians may be interested
in discovering sets of genes affecting in a concerted manner a specific phenotype.
Our second main contribution is therefore to develop algorithms that allow the
exhaustive testing of all the subgraphs of a large graph, while accounting for the
multiplicity issue arising from the vast number of subgraphs.

As the problem of identifying variables or groups of variables which differ in
distribution between two populations is closely-related to supervised learning, our
proposed approach is similar to several learning methods. Rapaport et al. [2007]
use filtering in the Fourier space of a graph to train linear classifiers of gene expres-
sion profiles whose weights are smooth on a gene network. However, their classifier
enforces global smoothness on the large regularization network of all the genes,
whereas we are concerned with the selection of gene sets with locally-smooth ex-
pression shift between populations. In Jacob et al. [2009], sparse learning methods
are used to build a classifier based on a small number of gene sets. While this ap-
proach leads in practice to the selection of groups of variables whose distributions
differ between the two classes, the objective is to achieve the best classification
performance with the smallest possible number of groups. As a result, correlated
groups of variables are typically not selected. Other related work includes Fan
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and Lin [1998], who proposed an adaptive Neyman test in the Fourier space for
time-series. However, as illustrated below in Section 5, direct translation of the
adaptive Neyman statistic to the graph case is problematic, as assumptions on
Fourier coefficients which are true for time-series do not hold for graphs. In addi-
tion, the Neyman statistic converges very slowly towards its asymptotic distribution
and the required calibration by bootstrapping renders its application to our sub-
graph discovery context difficult. By contrast, other methods do not account for
shift smoothness and try to address the loss of power caused by the poor condi-
tioning of the T 2-statistic by applying it after dimensionality reduction [Ma and
Kosorok, 2009] or by omitting the inverse covariance matrix and adjusting instead
by its trace [Bai and Saranadasa, 1996, Chen and Qin, 2010]. Vaske et al. [2010]
recently proposed DE tests, where a probabilistic graphical model is built from a
gene network. However, this model is used for gene-level DE tests, which then have
to be combined to test at the level of gene sets. Several approaches for subgraph
discovery, like that of Ideker et al. [2002], are based on a heuristic to identify the
most differentially expressed subgraphs and do not amount to testing exactly all
the subgraphs. Concerning the discovery of distribution-shifted subgraphs, Vandin
et al. [2010] propose a graph Laplacian-based testing procedure to identify groups
of interacting proteins whose genes contain a large number of mutations. Their
approach does not enforce any smoothness on the detected patterns (smoothness
is not necessarily expected in this context) and the graph Laplacian is only used
to ensure that very connected genes do not lead to spurious detection. The Gene
Expression Network Analysis (GXNA) method of Nacu et al. [2007] detects differ-
entially expressed subgraphs based on a greedy search algorithm and gene set DE
scoring functions that do not account for the graph structure.

The rest of this paper is organized as follows: Section 2 introduces elements
of Fourier analysis for graphs which are needed to develop our method. Section 3
presents our graph-structured two-sample test statistic and states results on power
gain for smooth-shift alternatives. Section 4 describes procedures for systematically
testing all the subgraphs of a large graph. Section 5 presents results for synthetic
data as well as breast cancer gene expression and KEGG data. Finally, Section 6
summarizes our findings and outlines ongoing work.

2 Fourier analysis on graphs

The fundamental idea of harmonic analysis for functions defined on a Euclidean
space is to build a basis of the function space, such that each basis function varies
at a different frequency. The basis functions are typically sinusoids. They were
originally obtained in an attempt to solve the heat equation, as the eigenfunctions of
the Laplace operator, with corresponding eigenvalues proportional to the frequencies
of the sinusoids. Any function can then be decomposed on the basis as a linear
combination of sinusoids of increasing frequency. The set of projections of the
function on the basis sinusoids gives a dual representation of the function, often
referred to as Fourier transform. This representation is useful for filtering functions,
by removing or shrinking coefficients associated with high frequencies, as these are
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typically expected to reflect noise, and then taking the inverse Fourier transform.
The resulting filtered function contains the same signal in the low frequencies as
the original function. A related concept is the Dirichlet energy of a function f on
an open subspace Ω, defined as 1

2

∫

Ω
|∇f(x)|2dx where ∇ is the gradient operator, a

measure of variation that is consistent with the Laplace operator. In particular, the
Dirichlet energy of the basis functions is proportional to their associated frequencies.

For functions on a Euclidean space, natural notions of smoothness, along with
the Dirichlet energy and dual representation in the frequency domain by projection
on a Fourier basis, are therefore classically defined from the Laplace operator and
its spectral decomposition. Likewise, notions of smoothness for functions on graphs
can be defined based on the graph Laplacian. Specifically, consider an undirected
graph G = (V, E), with |V| = p nodes, adjacency matrix A, and degree matrix
D = Diag (A1), where 1 is a unit column-vector, Diag(x) is the diagonal matrix
with diagonal x for any vector x, and Dii = di. Let f : R

|V| → R denote a
function that associates a real value to each node of the graph G. The Laplacian
matrix of G is typically defined as L = D − A or Lnorm = I − D− 1

2AD− 1

2 for the
normalized version. More generally, given any gradient matrix ∇ ∈ R

|E|,|V|, defined
on G and associating to each function on the graph its variation on each edge, it is
possible to derive a corresponding Laplacian matrix following the classical definition
of the Laplace operator, L = −div∇ = ∇⊤∇, where div is the divergence operator
defined as the negative of the adjoint operator of the gradient [Zhou and Schölkopf,
2005]. Any desired notion of variation may be encoded in a gradient function and
thus translated into its associated Dirichlet energy 1

2
f⊤Lf , for a function f defined

on the graph G. A common choice of gradient is the finite difference operator
∇f = (fi − fj)i,j∈V . This definition leads to the unnormalized Laplacian above.

The corresponding energy function is 1
2

∑

i,j∈V (fi − fj)
2. Let L = UΛU⊤ denote

the spectral decomposition of the Laplacian, where Λ is the diagonal matrix of
eigenvalues λi and the columns of the matrix U are the corresponding eigenvectors
ui. Then, by definition, the eigenvectors of L are functions of increasing energy,
as u⊤

i Lui = λi for all i = 1, . . . , p. In the remainder of this paper, we denote by
f̃ = U⊤f the Fourier coefficients of a function f defined on a graph.

If the above two notions of smoothness are not appropriate for a particular
application, other gradients, leading to other Laplacian matrices, may be devised to
build the function basis. For example, introducing weights on the edges of a graph
and using these weights in the normalized version of the finite differences allows
the incorporation of prior belief on where a shift in distributions is expected to be
smooth. For applications like structured gene set differential expression detection,
one may use negative weights for edges that reflect an expected negative correlation
between two variables, e.g., a gene i whose expression inhibits the expression of
another gene j. In this case, a small variation of the shift on the edge between
i and j should correspond to a small |δi + δj |. Accordingly, the gradient should
be defined as (fi − sijfj)i,j∈V , where sij is −1 for negative interactions and 1 for
positive interactions. The eigenvectors of the corresponding Laplacian Lsign are
functions of increasing 1

2

∑

i,j∈V (fi − sijfj)
2, an appropriate notion of smoothness

for the application at hand. A signed Laplacian can be recovered from the classical
definition Lsign = D − Asign, where Asign is allowed to have negative entries. Note
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that such a smoothness function is used as a penalty for semi-supervised learning
in Goldberg [2007].

As an example, Figure 1 displays the eigenvectors of the signed Laplacian Lsign

for a simple four-node graph with

D =









1 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1









, Asign =









0 1 0 0
1 0 1 −1
0 1 0 0
0 −1 0 0









, Lsign =









1 −1 0 0
−1 3 −1 1
0 −1 1 0
0 1 0 1









.

The first eigenvector, corresponding to the smallest frequency (eigenvalue of zero),
can be viewed as a “constant” function on the graph, in the sense that its absolute
value is identical for all the nodes, but nodes connected by an edge with nega-
tive weight take on values of opposite in sign. By contrast, the last eigenvector,
corresponding to the highest frequency, is such that nodes connected by positive
edges take on values of opposite sign and nodes connected by negative edges take
on values of the same sign.

Figure 1: Eigenvectors of the signed Laplacian Lsign for a simple four-node graph.
The corresponding eigenvalues are 0, 1, 1, 4. Nodes are colored according to the
value of the eigenvector, where green corresponds to high positive values, red to
high negative values, and black to 0. “T”-shaped edges have negative weights.

3 Graph-structured two-sample test of means un-

der smooth-shift alternatives

For multivariate normal distributions, Hotelling’s T 2-test, a classical test of location
shift, is known to be uniformly most powerful invariant against global-shift alter-
natives. The test statistic is based on the squared Mahalanobis norm of the sample
mean shift and is given by T 2 = n1n2

n1+n2

(x̄1− x̄2)
⊤Σ̂−1(x̄1− x̄2), where ni, x̄i, and Σ̂−1

denote, respectively, the sample sizes, means, and pooled covariance matrix, for
random samples drawn from two p-dimensional Gaussian distributions, N (µi,Σ),
i = 1, 2. Under the null hypothesis H0 : µ1 = µ2 of equal means, NT 2 follows a
(central) F -distribution F0(p, n1 + n2 − p − 1), where N = n1+n2−p−1

(n1+n2−2)p
. In general,
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NT 2 follows a non-central F -distribution F ( n1n2

n1+n2

∆2(δ,Σ); p, n1+n2−p−1), where
the non-centrality parameter is a function of the Mahalanobis norm of the mean
shift δ, ∆2(δ,Σ) = δ⊤Σ−1δ, which we refer to as distribution shift. In the remainder
of this paper, unless otherwise specified, T 2-statistics are assumed to follow the
nominal F -distribution, e.g., for critical value and power calculations.

For any graph-Fourier basis U , direct calculation shows that T 2 = T̃ 2 ∆
= n1n2

n1+n2

(x̄1−

x̄2)
⊤U

(

U⊤Σ̂U
)−1

U⊤(x̄1 − x̄2), i.e., the statistic T 2 in the original space and the

statistic T̃ 2 in the graph-Fourier space are identical. More generally, for k ≤ p, the
statistic in the original space after filtering out frequencies above k is the same as
the statistic T̃ 2

k restricted to the first k coefficients in the graph-Fourier space:

T̃ 2
k

∆
=

n1n2

n1 + n2
(x̄1 − x̄2)

⊤U[k]

(

U⊤
[k]Σ̂U[k]

)−1

U⊤
[k](x̄1 − x̄2)

=
n1n2

n1 + n2
(x̄1 − x̄2)

⊤U1kU
⊤
(

U1kU
⊤Σ̂U1kU

⊤
)+

U1kU
⊤(x̄1 − x̄2),

where A+ denotes the generalized inverse of a matrix A, the p × k matrix U[k]

denotes the restriction of U to its first k columns, and 1k is a p×p diagonal matrix,
with ith diagonal element equal to one if i ≤ k and zero otherwise. Note that
as retaining the first k Fourier components is a non-invertible transformation, this
filtering indeed has an effect on the test statistic, that is, we have T̃ 2

k 6= T̃ 2 in
general. As the Mahalanobis norm is invariant to linear invertible transformations,
using an invertible filtering (such as weighting each Fourier component according
to its corresponding eigenvalue) would have no impact on the test statistic.

Hotelling’s T 2-test is known to behave poorly in high dimension; the following
lemma shows that gains in power can be achieved by filtering. Specifically, let
δ̃ = U⊤δ and Σ̃ = U⊤ΣU denote, respectively, the mean shift and covariance

matrix in the graph-Fourier space. Given k ≤ p, let ∆2
k(δ,Σ) = δ⊤[k]

(

Σ[k]

)−1
δ[k]

denote the distribution shift restricted to the first k dimensions of δ and Σ, i.e.,
based on only the first k elements of δ, (δi : i ≤ k), and the first k×k diagonal block
of Σ, (σij : i, j ≤ k). Under the assumption that the distribution shift is smooth,
i.e., lies mostly at the beginning of the graph spectrum, so that ∆2

k(δ̃, Σ̃) is nearly
maximal for a small value of k, Lemma 1 states that performing Hotelling’s test
in the graph-Fourier space restricted to its first k components yields more power
than testing in the full graph-Fourier space. Equivalently, the test is more powerful
in the original space after filtering than in the original unfiltered space. Note that
this result holds because retaining the first k Fourier components is a non-invertible
transformation.

Lemma 1. For any level α and any 1 < l ≤ p− k, there exists d(α, k, l) > 0 such
that

∆2
k+l(δ̃, Σ̃)−∆2

k(δ̃, Σ̃) < d(α, k, l) ⇒ βα,k(∆
2
k(δ̃, Σ̃)) > βα,k+l(∆

2
k+l(δ̃, Σ̃)),

where βα,k(∆
2) is the power of Hotelling’s T 2-test at level α in dimension k for a

distribution shift ∆2, according to the nominal F -distribution F ( n1n2

n1+n2

∆2; k, n1 +
n2 − k − 1).
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Proof. This lemma is a direct application of Corollary 2.1 in Das Gupta and Perlman
[1974] to Hotelling’s T 2-test in the graph-Fourier space. The bottom line of the
proof of Das Gupta and Perlman [1974]’s result is that βα,k can be shown to be a
continuous and strictly decreasing function of k, so that a strictly positive increase
in the non-centrality parameter ∆2 of the F -distribution is necessary to maintain
power when increasing dimension.

In particular, a direct application of Lemma 1 yields the following Corollary:

Corollary 1. If ∀ 1 < l ≤ p− k, ∆2
k(δ̃, Σ̃) = ∆2

k+l(δ̃, Σ̃), then

βα,k(∆
2
k(δ̃, Σ̃)) > βα,k+l(∆

2
k+l(δ̃, Σ̃)).

According to Corollary 1, if the distribution shift lies in the first k Fourier coeffi-
cients, then testing in this subspace yields strictly more power than using additional
coefficients. In particular, if there exists k < p such that δ̃j = 0 ∀ j > k (i.e., the
mean shift is smooth) and Σ̃ is block-diagonal such that σ̃ij = 0 ∀ i < k, j > k, then
gains in power are obtained by testing in the first k Fourier components. Although
non-necessary, this condition is plausible when the mean shift lies at the beginning
of the spectrum, as the coefficients which do not contain the shift are not expected
to be correlated with the ones that do contain it.

Note that the result in Lemma 1 is even more general, as testing in the first k
Fourier components can increase power even when the distribution shift partially
lies in the remaining components, as long as the latter portion is below a certain
threshold. Figure 2 illustrates, under different settings, the increase in distribu-
tion shift necessary to maintain a given power level against the number of added
coefficients.

If for some reason one expects that the mean shift δ is smooth (rather than
the distribution shift ∆), i.e., δ̃ lies at the beginning of the spectrum, and that
the covariance between coefficients that contain the shift and those that do not is
non-zero, then one should use test statistics based on estimators of the unstandard-
ized Euclidean norm ‖δ‖ of this shift, e.g., Z [Bai and Saranadasa, 1996][Equation
(4.5)] or Tn [Chen and Qin, 2010]. Results similar to Lemma 1 can be derived
for these statistics. Namely, the corresponding tests gain asymptotic power when
applied at the beginning of the spectrum, provided the Euclidean norm of δ only
increases moderately as coefficients for higher frequencies are added. The results
follow from Bai and Saranadasa [1996][Theorem 4.1] and Chen and Qin [2010][Equa-
tions (3.11)–(3.12)], using the fact that, by Cauchy’s interlacing theorem, the trace
of the square of any positive semi-definite matrix is larger than the trace of the
square of any principal submatrix.

4 Non-homogeneous subgraph discovery

A systematic approach for discovering non-homogeneous subgraphs, i.e., subgraphs
of a large graph that exhibit a significant shift in means, is to test all of them.
In practice, however, this can represent an intractable number of tests, so it is
important to be able to rapidly identify sets of subgraphs that all satisfy the null

8



Figure 2: Left: Increase in distribution shift required for Hotelling’s T 2-test to
maintain a given power when increasing the number of tested Fourier coefficients:
∆2

k+l −∆2
k vs. l such that βα,k+l(∆

2
k+l) = βα,k(∆

2
k). Power βα,k+l(∆

2
k+l) computed

under the non-central F -distribution F ( n1n2

n1+n2

∆2
k+l; k + l, n1 + n2 − (k + l)− 1), for

n1 = n2 = 100 observations, k = 5, and α = 10−2. Each line corresponds to the
fixed shift ∆2

k and power βα,k(∆
2
k) pair indicated in the legend. Right: Zoom on

the first 30 dimensions.

hypothesis of equal means. To this end, we devise a pruning approach based on an
upper bound on the value of the test statistic for any subgraph containing a given
set of nodes.

4.1 Exact algorithm

Given a large graph G with p nodes, we adopt the following classical branch-and-
bound-like approach to test subgraphs of size q ≤ p at level α. We start by checking,
for each node in G, whether the Hotelling T 2-statistic in the first k graph-Fourier
components of any subgraph of size q containing this node can be guaranteed to be
below the level-α critical value T 2

α,k (e.g., (1− α)-quantile of F0(k, n1 + n2 − k − 1)
distribution). If this is the case, the node is removed from the graph. We then
repeat the procedure on the edges of the remaining graph and, iteratively, on the
subgraphs up to size q − 1, at which point we test all the remaining subgraphs of
size q.

Specifically, for a subgraph g of G of size q ≤ p, Hotelling’s T 2-statistic in the
first k ≤ q graph-Fourier components of g is defined as

T̃ 2
k (g) =

n1n2

n1 + n2
(x̄1(g)− x̄2(g))

⊤U[k]

(

U⊤
[k]Σ̂(g)U[k]

)−1

U⊤
[k](x̄1(g)− x̄2(g)),

where U[k] is the q×k restriction of the matrix of q eigenvectors of the Laplacian of g
to its first k columns (i.e., U[k](g), where we omit g to ease notation) and x̄i(g), i =

1, 2, and Σ̂(g) are, respectively, the empirical means and pooled covariance matrix
restricted to the nodes in g. We make use of the following upper bound on T̃ 2

k (g).
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Lemma 2 (Upper bound on T̃ 2
k ). For any subgraph g of G of size q ≤ p, any

subgraph g′ of g of size q′ ≤ q, and any k ≤ q, then

T̃ 2
k (g) ≤ T 2(ν(g′, q − q′)) ,

where ν(g′, r) is the r-neighborhood of g′, that is, the union of the nodes of g′ and
the nodes whose shortest path to a node of g′ is less than or equal to r.

The proof involves the following result:

Lemma 3 (Bessel inequality for Mahalanobis norm). Let Σ ∈ R
p,p be an invertible

matrix and P ∈ R
p,k, k ≤ p, be a matrix with orthonormal columns. For any

x ∈ R
p,

x⊤Σ−1x ≥ x⊤P
(

P⊤ΣP
)−1

P⊤x.

Proof. First note that, by orthonormality of the columns of P , P⊤ΣP is indeed
invertible, and that

Σ−1 − P
(

P⊤ΣP
)−1

P⊤ = Σ− 1

2

(

I − Σ
1

2P
(

P⊤Σ
1

2Σ
1

2P
)−1

P⊤Σ
1

2

)

Σ− 1

2 ,

where Σ
1

2P
(

P⊤Σ
1

2Σ
1

2P
)−1

P⊤Σ
1

2 is an orthogonal projection, with eigenvalues ei-

ther 0 or 1. Thus, I − Σ
1

2P
(

P⊤Σ
1

2Σ
1

2P
)−1

P⊤Σ
1

2 is positive-semi-definite, as its

eigenvalues are also either 0 or 1. The result follows from properties of products of
positive-semi-definite matrices.

We can now prove Lemma 2.

Proof. By Lemma 3,

T̃ 2
k (g) ≤

n1n2

n1 + n2

(x̄1(g)− x̄2(g))
⊤U

(

U⊤Σ̂(g)U
)−1

U⊤(x̄1(g)− x̄2(g))

=
n1n2

n1 + n2
(x̄1(g)− x̄2(g))

⊤Σ̂(g)−1(x̄1(g)− x̄2(g)) = T 2(g).

As g ⊂ ν(g′, q − q′), applying Lemma 3 a second time with the compression from
ν(g′, q − q′) to the nodes of g yields the result.

Note that the bound takes into account the fact that the T 2-statistic is eventually
computed in the first few components of a basis which is not known beforehand :
at each step, for each potential subgraph g′ which would include the subgraph g

which we consider for pruning, the T̃ 2
k (g

′) that we need to upper bound depends on
the graph Laplacian of g′.
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4.2 Mean-shift approximation

For “small-world” graphs above a certain level of connectivity and q large enough,
the (q−s)-neighborhood of g′, ν(g′, q−s), tends to be large, at least at the beginning
of the above exact algorithm, and the number of tests actually performed won’t
decrease much compared to the total number of possible tests. One can, however,
identify much more efficiently the subgraphs whose sample mean shift in the first k

components of the graph-Fourier space has Euclidean norm ‖ˆ̃δ[k](g)‖ = ‖U⊤
[k](x̄1(g)−

x̄2(g))‖ above a certain threshold. Indeed, it is straightforward to see that

‖U⊤
[k](x̄1(g)− x̄2(g))‖

2 ≤ ‖U⊤(x̄1(g)− x̄2(g))‖
2

= ‖x̄1(g)− x̄2(g)‖
2

≤ ‖x̄1(g
′)− x̄2(g

′)‖2

+ max
v1,...,vq−s∈ν(g′,q−s)

‖x̄1(v1, . . . , vq−s)− x̄2(v1, . . . , vq−s)‖
2.

This inequality can then be used in the procedure of Section 4.1, to identify all
subgraphs for which the Euclidean norm of the sample mean shift exceeds a given

threshold: ‖ˆ̃δ[k](g)‖2 > θ. For any α, if this threshold θ is low enough, all the

subgraphs with T̃ 2
k (g) > T 2

α,k are included in this set. Performing the actual T 2-test
on these pre-selected subgraphs yields exactly the set of subgraphs that would have
been identified using the exact procedure of Section 4.1. More precisely, we have
the following result:

Lemma 4. For any threshold θ > 0, k ≤ q ≤ p, and any subgraph g of size q such

that ‖ˆ̃δ[k](g)‖
2 < θ,

NT̃ 2
k (g) > T 2

α,k ⇒ λmin(
ˆ̃Σ[k](g)) <

Nn1n2θ

(n1 + n2)T 2
α,k

,

where T 2
α,k is the level-α critical value for T̃ 2

k ( e.g., (1 − α)-quantile of F0(k, n1 +

n2 − k − 1)), N = n1+n2−k−1
(n1+n2−2)k

and λmin(
ˆ̃Σ[k](g)) denotes the smallest eigenvalue of

ˆ̃Σ[k](g) = U[k]Σ̂(g)U
⊤
[k].

Proof. As I − ( ˆ̃Σ[k](g))
−1λmin(

ˆ̃Σ[k](g)) � 0, it follows that, for any x,

x⊤( ˆ̃Σ[k](g))
−1x ≤

‖x‖2

λmin(
ˆ̃Σ[k](g))

.

Lemma 4 states that for any subgraph which would be detected by Hotelling’s

T 2-statistic T̃ 2
k (g) but not by the Euclidean criterion ‖ˆ̃δ[k](g)‖

2, the sample co-
variance matrix in the restricted graph-Fourier space has an eigenvalue below a
certain threshold. This implies that such false negative subgraphs (from the Eu-
clidean approximation to the exact algorithm) always have a small mean shift in
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the graph-Fourier space, but in a direction of small variance. In context of gene
expression, this is related to the well-known issue of the detection of DE genes by
virtue of their small variances. Even though the differences in expression appear to
be highly significant for these genes, they correspond to small effects that are not
interesting from a practical point of view (i.e., biologically insignificant). Methods
for addressing this problem are proposed in Lönnstedt and Speed [2001]. Note

that λmin(Σ̂(g))) ≤ λmin(
ˆ̃Σ[k](g))); thus, the remark on variances holds for both the

graph-Fourier and original spaces. However, if q is large, we expect λmin(Σ̂(g)) to
be very small, while filtering somehow controls the conditioning of the covariance
matrix.

4.3 Multiple testing

Testing for homogeneity over the potentially large number of subgraphs investigated
as part of the above algorithms immediately raises the issue of multiple testing.
However, the present multiplicity problem is unusual, in the sense that one does
not know in advance the total number of tests and which tests will be performed
specifically. Standard multiple testing procedures, such as those in Dudoit and
van der Laan [2008], are therefore not immediately applicable.

In an attempt to address the multiplicity issue, we apply a permutation pro-
cedure to control the number of false positive subgraphs under the complete null
hypothesis of identical distributions in the two populations. Specifically, one per-
mutes the class/population labels (1 or 2) of the n1 + n2 observations and applies
the non-homogeneous subgraph discovery algorithm to the permuted data to yield a
certain number of false positive subgraphs. Repeating this procedure a sufficiently
large number of times produces an estimate of the distribution of the number of
Type I errors under the complete null hypothesis of identical distributions.

5 Results

We evaluate the empirical behavior of the procedures proposed in Sections 3 and 4,
first on synthetic data, then on breast cancer microarray data analyzed in context
of KEGG pathways.

5.1 Synthetic data

The performance of the graph-structured test is assessed in cases where the distri-
bution shift ∆2 satisfies the smoothness assumptions described in Section 3. We
first generate a connected random graph with p = 20 nodes. Next, we generate
10, 000 datasets, each comprising n1 = n2 = 20 Gaussian random vectors in R

p,
with null mean shift δ for 5, 000 datasets and mean shift δ = 1 for the remaining
5, 000. For the latter datasets, the non-zero shift is built in the first k0 = 3 Fourier
coefficients (the shift being zero for the remaining p−k0 coefficients) and an inverse
Fourier transformation is applied to random vectors generated in the graph-Fourier
space. We consider two covariance settings: in the first one, the covariance matrix

12



in the graph-Fourier space is diagonal with diagonal elements at 1√
p
. In the second

one, correlation is introduced between the shifted coefficients only. Specifically, for
i, j ≤ ko, Σij =

0.5√
p
if i 6= j, Σii =

0.9√
p
otherwise.

Figure 3 displays receiver operator characteristic (ROC) curves for mean shift
detection by the standard Hotelling T 2-test, T 2 in the first k0 Fourier coefficients, T 2

in the first k0 principal components (PC), the adaptive Neyman test of Fan and Lin
[1998], and a modified version of this test where the correct value of k0 is specified.
Note that we do not consider sparse learning approaches [Jacob et al., 2009, Jenatton
et al., 2009], but it would be straightforward to design a realistic setting where such
approaches are outperformed by testing, e.g., by adding correlation between some
of the functions under H1.

Figure 3: ROC curves for the detection of a smooth shift using various test statistics.
Left: Diagonal covariance structure. Right: Block-diagonal covariance structure.

The first important comparison is between the classical Hotelling T 2-test ver-
sus the T 2-test in the graph-Fourier space. As expected from Lemma 1, testing in
the restricted space where the shift lies performs much better than testing in the
full space which includes irrelevant coefficients. The difference can be made arbi-
trarily large by increasing the dimension p and keeping the shift unchanged. The
graph-structured test retains a large advantage even for moderately smooth shifts,
e.g., when k0 = 3 and p = 5. Of course, this corresponds to the optimistic case
where the number of shifted coefficients k0 is known. Figure 4 shows the power
of the test in the graph-Fourier space for various choices of k. Even when missing
some coefficients (k < k0) or adding a few non-relevant ones (k > k0), the power of
the graph-structured test is higher than that of the T 2-test in the full space. The
principal component approach is shown because it was proposed for the applica-
tion which motivated our work [Ma and Kosorok, 2009] and as it illustrates that
the performance improvement originates not only from dimensionality reduction,
but also from the fact that this reduction is in a direction that does not decrease
the shift. We emphasize that power entirely depends on the nature of the shift
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and that a PC-based test would outperform our Fourier-based test when the shift
lies in the first principal components rather than Fourier coefficients. The statistics
of Bai and Saranadasa [1996] and Chen and Qin [2010] are also largely outperformed
by our graph-structured statistic (ROC curves not shown in Figure 3 for the sake
of readability), which illustrates that working in the graph-Fourier space solves the
problem of high-dimensionality for which these statistics were designed. Here again,
for a non-smooth shift, the comparison would be less favorable. Finally, we consider
the adaptive Neyman test of Fan and Lin [1998], which takes advantage of smooth-
ness assumptions for time-series. This test differs from our graph-structured test,
as Fourier coefficients for stationary time-series are known to be asymptotically in-
dependent and Gaussian. For graphs, the asymptotics would be in the number of
nodes, which is typically small, and necessary conditions such as stationarity are
more difficult to define and unlikely to hold for data like gene expression measure-
ments. In the uncorrelated setting, the modified version of the Fan and Lin [1998]
statistic based the true number of non-zero coefficients performs approximately as
well as the graph-structured T 2. However, for correlated data, it loses power and
both versions can have arbitrarily degraded performance. This, together with the
need to use the bootstrap to calibrate this test, illustrates that direct transposition
of the Fan and Lin [1998] test to the graph context is not optimal.

Figure 4: Power of the T 2-test in the graph-Fourier space with an actual mean shift
evenly distributed among the first k0 = 5 coefficients.

To evaluate the performance of the subgraph discovery algorithms proposed in
Section 4, we generated a graph of 100 nodes formed by tightly-connected hubs
of sizes sampled from a Poisson distribution with parameter 10 and only weak
connections between these hubs (Figure 5). Such a graph structure mimics the
typical topology of gene regulation networks. We randomly selected one subgraph
of 5 nodes to be non-homogeneous, with smooth shift in the first k0 = 3 Fourier
coefficients. The mean shift was set to zero on the rest of the graph. We set the
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norm of the mean shift to 1 and the covariance matrix to identity, so that detecting
the shifted subgraph is impossible by just looking at the mean shift on the graph.

Figure 5: Random graph used in the evaluation of the pruning procedure.

We evaluated run-time for full enumeration, the exact branch-and-bound algo-
rithm based on Lemma 2 (Section 4.1), and the approximate algorithm based on the
Euclidean norm (Section 4.2). We also examined run-time on data with permuted
class labels, as the subgraph discovery procedure is to be run on such data to eval-
uate the number of false positives and adjust for multiple testing. Averaging over
20 runs, the full enumeration procedure took 732±9 seconds per run and the exact
branch-and-bound 627± 59 seconds on the non-permuted data and 578± 100 sec-
onds on permuted data. Over 100 runs, the approximation at θ = 0.5 (λmin = 0.52)
took 204±86 seconds (129±91 on permuted data) and the approximation at θ = 1
(λmin = 1.04) took 183 ± 106 seconds (40 ± 60 on permuted data). The latter
approximation missed the non-homogeneous subgraph in 5% of the runs.

While neither the exact nor the approximate bounds are efficient enough to
allow systematic testing on huge graphs for which the exact approach would be
impossible, they allow a significant gain in speed, especially for permuted data, and
will thus prove to be very useful for multiple testing adjustment.

5.2 Breast cancer expression data

We also validated our methods using the microarray dataset of Loi et al. [2008],
which comprises expression measures for 15, 737 genes in 255 patients treated with
tamoxifen. Using distant metastasis free survival as a primary endpoint, 68 patients
are labeled as resistant to tamoxifen and 187 are labeled as sensitive to tamoxifen.
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Our goal was to detect structured groups of genes which are differentially expressed
between resistant and sensitive patients.

We first tested individually 323 connected components from 89 KEGG pathways
corresponding to known gene regulation networks, using the classical Hotelling T 2-
test and the T 2-test in the graph-Fourier space retaining only the first 20% Fourier
coefficients (k = 0.2p). For each of the 323 graphs, (unadjusted) p-values were
computed under the nominal F -distributions F0(p, n1+n2−p−1) and F0(k, n1+n2−
k−1), respectively. Figure 6 shows the pathway for which the ratio of graph-Fourier
to full space p-values is the lowest (i.e., most significant for graph-structured test
relative to classical test) and the pathway for which it is the highest. As expected,
the former corresponds to a shift which appears to be coherent with the network
(even on edges corresponding to inhibition), while the latter is a small network with
non-smooth shift. More generally, the classical approach tends to select very small
networks. The coherent pathway selected by our graph-structured test corresponds
to Leukocyte transendothelial migration. To the best of our knowledge, this pathway
is not specifically known to be involved in tamoxifen resistance. However, its role
in resistance is plausible, as leukocyte infiltration was recently found to be involved
in breast tumor invasion [Man, 2010]; more generally, the immune system and
inflammatory response are closely-related to the evolution of cancer.

We then ran our branch-and-bound non-homogeneous subgraph discovery pro-
cedure on the cell cycle pathway, which, after restriction to edges of known sign
(inhibition or activation), has 86 nodes and 442 edges. Specifically, we sought to
detect differentially expressed subgraphs of size q = 5, after pre-selecting those for
which the squared Euclidean norm of the empirical shift exceeded θ = 0.1; for a
test in the first k = 3 Fourier components at level α = 10−4, this corresponded to
λmin < 0.23 and to an expected removal of 95% of the subgraphs under the approxi-
mation that the squared Euclidean norm of the subgraphs follows a χ2

5-distribution.
For α = 10−4, none of the 50 runs on permuted data gave any positive subgraph

and 31 overlapping subgraphs (Figure 7) were detected on the original data, corre-
sponding to a connected subnetwork of 22 genes. Some of these genes have large in-
dividual differential expression, namely TP53 whose mutation has been long-known
to be involved in tamoxifen resistance [Andersson et al., 2005, Fernandez-Cuesta
et al., 2010]. E2F1, whose expression level was recently shown to be involved in
tamoxifen resistance [Louie et al., 2010], is also part of the identified network, as
well as CCND1 [Barnes, 1997, Musgrove and Sutherland, 2009]. Some other genes
in the network have quite low t-statistics and would not have been detected in-
dividually. This is the case of CCNE1 and CDK2, which were also described in
[Louie et al., 2010] as part of the same mechanism as E2F1. Similarly, CDKN1A
was recently found to be involved in anti-œstrogene treatment resistance [Musgrove
and Sutherland, 2009] and in ovarian cancer which is also a hormone-dependent
cancer [Cunningham et al., 2009]. The networks also contains RB1, a tumor sup-
pressor whose expression or loss is known to be correlated to tamoxifen resistance
[Musgrove and Sutherland, 2009]. RB1 is inhibited by CDK4, whose inhibition has
been described in Sutherland and Musgrove [2009] as acting synergistically with
tamoxifen or trastuzumab. More generally, a large part of the network displayed
on Figure 2A of Musgrove and Sutherland [2009] is included in our network, along
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with other known actors of tamoxifen resistance. Our system-based approach to
pathway discovery therefore directly identifies a set of interacting important genes
and may therefore prove to be more efficient than iterative individual identification
of single actors.

6 Discussion

We developed a graph-structured two-sample test of means, for problems in which
the distribution shift is assumed to be smooth on a given graph. We proved quanti-
tative results on power gains for such smooth-shift alternatives and devised branch-
and-bound algorithms to systematically apply our test to all the subgraphs of a
large graph. The first algorithm is exact and reduces the number of explicitly tested
subgraphs. The second is approximate, with no false positives and a quantitative
result on the type of false negatives (with respect to the exact algorithm). The
non-homogeneous subgraph discovery method involves performing a larger number
of tests, with highly-dependent test statistics. However, as the actual number of
tested hypotheses is unknown, standard multiple testing procedures are not directly
applicable. Instead, we use a permutation procedure to estimate the distribution
of the number of false positive subgraphs. Such resampling procedures (bootstrap
or permutation) are feasible due to the manageable run-time of the pruning algo-
rithms of Section 4. Results on synthetic data illustrate the good power properties
of our graph-structured test under smooth-shift alternatives, as well as the good
performance of our branch-and-bound-like algorithms for subgraph discovery. Very
promising results are also obtained on the drug resistance microarray dataset of Loi
et al. [2008].

Future work should investigate the use of other bases, such as graph-wavelets [Ham-
mond et al., 2009], which would allow the detection of shifts with spatially-located
non-smoothness, for example, to take into account errors in existing networks. More
systematic procedures for cutoff selection should also be considered, e.g., two-step
method proposed in Das Gupta and Perlman [1974] or adaptive approaches as
in Fan and Lin [1998]. The pruning algorithm would naturally benefit from sharper
bounds. Such bounds could be obtained by controlling the condition number of
all covariance matrices, using, for example, regularized statistics which still have
known non-asymptotic distributions, such as those of Tai and Speed [2008]. Con-
cerning multiple testing, procedures should be devised to exploit the dependence
structure between the tested subgraphs and to deal with the unknown number of
tests. The proposed approach could also be enriched to take into account different
types of data, e.g., copy number for the detection of DE gene pathways. More sub-
tle notions of smoothness, e.g., “and” and “or” logical relations [Vaske et al., 2010],
could also be included. An interesting alternative application would be to explore
the list of pathways which are known to be differentially expressed (or detected by
the classical T 2-test), but which are not detected by the graph-Fourier approach,
to infer possible mis-annotation in the network. Other applications of two-sample
tests with smooth-shift on a graph include fMRI and eQTL association studies.

Finally, it would be of interest to compare our testing approach with struc-
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tured sparse learning, for the purpose of identifying expression signatures that are
predictive of drug resistance. Methods should be compared in terms of prediction
accuracy and stability of the selected genes across different datasets, a central and
difficult problem in the design of such signatures [Ein-Dor et al., 2005, He and Yu,
2010, Haury et al., 2010]. The comparison should also take into account the merits
of the sparsity-inducing norm over the hypothesis testing-based selection, as well
as the influence of the smoothness assumption. The latter could indeed also be
integrated in a sparsity-inducing penalty by applying, e.g., Jacob et al. [2009] to
the reduced graph-Fourier representation of the pathways, yielding a special case of
multiple kernel learning [Bach et al., 2004].
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J J Goeman and P Bühlmann. Analyzing gene expression data in terms of gene
sets: methodological issues. Bioinformatics, 23(8):980–987, April 2007. doi:
10.1093/bioinformatics/btm051. URL http://www.ncbi.nlm.nih.gov/pubmed/

17303618.

Andrew B. Goldberg. Dissimilarity in graph-based semisupervised classification. In
Eleventh International Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2007.

Arthur Gretton, Karsten M. Borgwardt, Malte Rasch, Bernhard Schlkopf, and
Alexander J. Smola. A kernel method for the two-sample-problem. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Informa-
tion Processing Systems 19, pages 513–520. MIT Press, Cambridge, MA, 2007.

David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on
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Figure 6: Difference in sample mean expression measures between tamoxifen-
resistant and sensitive patients, for genes in two KEGG regulation networks. Top:
Regulation network (Leukocyte transendothelial migration) with the lowest ratio
of graph-Fourier to full space p-values. Bottom: Regulation network (Alzheimer’s
disease) with the highest ratio of graph-Fourier to full space p-values. Nodes are
colored according to the value of the difference in means, with green corresponding
to high positive values, red to high negative values, and black to 0. Red arrows
denote activations, blue arrows inhibition.
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Figure 7: Difference in sample mean expression measures between tamoxifen-
resistant and sensitive patients, for genes in the two overlapping subgraphs detected
at α = 10−4. Nodes are colored according to the value of the difference in means,
with green corresponding to high positive values, red to high negative values, and
black to 0. Red arrows denote activations, blue arrows inhibition.
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