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Abstract

In this paper, we propose a new implementation of the Ex@rda-Sum (EMS) decoder for
non-binary LDPC codes. A particularity of the new algoritlisrthat it takes into accounts the memory
problem of the non-binary LDPC decoders, together with aifigant complexity reduction per decoding
iteration. The key feature of our decoder is to truncate thetar messages of the decoder to a limited
numbern,, of values in order to reduce the memory requirements. Udiegtituncated messages, we
propose an efficient implementation of the EMS decoder whextuces the order of complexity to
O(nm log, ny). This complexity starts to be reasonable enough to compittebinary decoders. The
performance of the low complexity algorithm with proper qoenmsation is quite good with respect to
the important complexity reduction, which is shown bothhaét simulated density evolution approach

and actual simulations.

Index Terms

Iterative decoding, non-binary LDPC codes, low complesityorithm

. INTRODUCTION

It is now well known that binary low density parity check (LB} codes achieve rates close
to the channel capacity for very long codeword lengths [hY] enore and more LDPC solutions
have been proposed in standards (DVB, WIMAX, etc). In terfhpasformance, binary LDPC
codes start to show their weaknesses when the code wordhlengimall or moderate, or when
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higher order modulation is used for transmission. For tleases, non-binary LDPC (NB-LDPC)
codes designed in high order Galois fields have shown graanhpal [2], [3], [4], [5].

However, the performance gain provided by LDPC codes ovefg{GEomes together with
a significant increase of the decoding complexity. NB-LDR{dles can be decoded efficiently
with message passing algorithms as the belief propagaB&) (lecoder, but the size of the
messages varies in the ordeof the field. Therefore, a straightforward implementatidrtiee
BP decoder has complexity i1(¢?). A Fourier domain implementation of the BP is possible like
in the binary case, reducing the complexity@q log q) [2], [6], but this implementation is only
convenient for messages expressed in the probability donddiis is a problem since several
authors have identified that the use of log-density-ratid3R) representation is mandatory to
avoid complicated operations like multiplications andisiomns. Any LDR-based implementation
of the BP requires alsg — 1 values per message in the graph.

In this paper, we propose a new decoding algorithm for NB-CDd®des. Our algorithm has
both low computing complexity and reduced storage requar@s) and therefore becomes a good
solution for hardware implementation.

In one of the algorithms presented in [7] the authors intoedlthe idea of using only a limited
numbern,, of reliabilities in the messages at the input of the checkeniodorder to reduce the
computational burden of the check node update. The conplakeach check node was reduced
to the order ofO(n,, q), and the same memory storage complexity as BP was neededisIn t
paper, we keep the basic idea of using only < ¢ values for the computation of messages,
but we extend the principle to all the messages in the Tanraghg that is, both at the check
nodes and the variable nodes input. Moreover, we propostte enlyn,, reliabilities instead
of ¢—1 for each message. The truncation of messages frem to n,, values has to be done in
an efficient way in order to reduce its impact on the perforceaof the decoder. The truncation
technique that we propose is described in details in Settiptogether with an efficient offset
correction to compensate the performance loss. Using thecated messages representation,
and a recursive implementation of the check node update,roope a new implementation of
the Extended Min-Sum (EMS) decoder whose complexity is dated byO(n,, logn,,), with
n, < ¢. This is an important complexity reduction compared to alseng methods [7], [8],
[9]. Our new algorithm is developed in Section IV and a studyt® complexity/performance
trade-off is presented in Section V. Section VI is dedicatechon-binary adaptation of the

shuffled scheduling for the special class of cycle codes.dcti®n VII the robustness of the
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algorithm to the effects of a finite precision representatid messages is studied. In Section
VIII-A, the simulation results verify that the proposed lavamplexity decoder still performs
very close to the BP decoder that we use as benchmark. Weuckanttie paper in section VIlI-
A by a fair comparison between the proposed non-binary dagodlgorithm and the binary
corrected Min-Sum (MS) algorithm [10] applied to binaryeigular LDPC codes, in terms of

computational complexity and error performance.

[I. PRELIMINARIES

An NB-LDPC code is defined by a very sparse random parity cheekrix H, whose
components belong to a finite field Gfy. The matrix # consists ofM rows andN columns;
the code rate is defined by < % Decoding algorithms of LDPC codes are iterative message
passing decoders based on a factor (or Tanner) graph repaése of the matrixd [11]. In
general, an LDPC code has a factor graph consistingy ofariable nodes and/ parity check
nodes with various degrees. To simplify the notations, wieamily present the decoder equations
for isolated nodes with given degrees. We dengtdhe degree of a symbol node add the
degree of a check node. In order to apply the decoder to ilmeduDPC codes, simply let,
(resp.d.) vary with the symbol (resp. check) index. A single parityeck equation involvingl,

variable nodes (codeword symbols) is of the form:
de—1

> hnen =0 in GF(g) 1)
n=0
where each,, is a nonzero value of the parity matri.

As for binary decoders, there are two possible represemmtior messages : probability
weights vectors or LDR vectors. The use of the LDR form for sag®es has been advised
by many authors who proposed practical LDPC decoders. ThB kBlues, which represent
real reliability measures on the bits or the symbols are E=ssitive to quantization errors
due to the finite precision coding of the messages [12]. Al4OR measures operate in the
logarithm domain, which avoids complicated operationstéims of hardware implementation)
like multiplications or divisions. The following notatiowill be used for an LDR vector of a

random variable: € GF(q):

where

(2)
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with P(z = «;) being the probability that the random variabléakes on the values; € GF(q).
With this definition L[0] =0, L[i] € R.

The log-likelihood-ratio (LLR) messages at the channepatireq — 1 dimensional vectors
The values of the probability weight8(z = «;) depend on the transmission channel statistics.
The decoding algorithm that we propose is independent ofcttennel, and we just assume
that a demodulator provides the LLR vecloy, to initialize the decoder. We have applied the
NB-LDPC codes to communicate over two types of channelsABIGN and QAM-AWGN.

For the BI-AWGN case, each symbol of the codewaydn € {0,..., N—1} can be converted
into a sequence dbg,(q) bitsc,, € GF(2), i € {0,...,log,(¢) —1}. The binary representation
of the codeword is then mapped into a BPSK constellation antl @ the AWGN channel:

Yn; = BPSK (an) + Wp,

with y,. being the received noisy BPSK symbol, ang, being a real white Gaussian noise
random variable with variancg%, where% is the SNR per information bit.

The NB-LDPC iterative decoding algorithms are characegtiay three main steps corresponding
to the different nodes depicted in Fig. @) the variable node updatéj) the permutation of
the messages due to non zeros values in the matriand (iii) the check node update which
is the bottleneck of the decoder complexity, since the BPraimn at the check node is a
convolution of the input messages, which makes the comipattcomplexity grow inO(¢?)

with a straightforward implementation.

.....

.....

output messages for this variable node. The ingex indicates that the message comes from
a permutationnode to avariable node and ‘vp' is for the other direction. We define similarly
d. check node.

In [7], the EMS algorithm reduces the complexity of the chedde update by considering
only the n,, largest values of the messages at the input of the check rdoleever, the
output messages of the check node are still composedvafues. As a consequence, the EMS
complexity of a single parity check node varies@in,,.q) and all messages in the graph are

stored with their full representation gfreal values, which implies a high memory requirements.
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In this paper, we present a new implementation of the EMSrdihgn, whose main originality
is to store exactly.,, < ¢ values in all vector messag®s,, V.,. As a result not only the memory
requirements are reduced but also the computational complén the following section we
present our procedure to truncate the messages jréonn,, values and discuss the impact on

the error correction performance of the decoder.

[[l. STRUCTURE AND COMPENSATION OF THE TRUNCATED MESSAGES

The vector messages,, andU,,, are now limited to onlyn,, entries which are assumed to
be the largest reliability values of the corresponding mandvariable. Moreover, the values in a
message are sorted in decreasing order. That Walf)] is the maximum value antl,,[n,, — 1]
is the minimum value invV.,. We need to associate to the vectMs,, U,, of size n,, the
additional vectorsgy_, and 3y, (of size n,,) which store the field elements, € GF(q),
associated to the largest LDR values of vectdrs and U,,,. For examplel,,[k] is the LDR
value that corresponds to the symbol valtie, [k] € GF(q).

Although interesting in terms of memory and computationucttbn, the truncation of mes-
sages obviously looses potentially valuable informatidmnclv leads to performance degradation
on the error rate curves. This loss of performance could hggated by using a proper compen-
sation of the information that has been truncated. Becausenain concern is the development
of low complexity decoders, we have chosen to compensate the,, truncated values with a
single scalar value, which is the simplest model one can use. The following didimiis used

for a compensated message:
Definition

Let A be any message in the graph which represents an LDR vectoze®f;sA truncated
versionB of A is composed of the,, largest values oA sorted in decreasing order, plus an
additional (n,, + 1)-th valuey, € R, whose goal is to compensate for the information loss due

to the truncation ofy — n,, values. "

The compensated-truncated messBgkas then(n,, + 1) components, and the valug, is
seen as a constant real value that replaceg the,,, missing reliabilities. A full representation

of the truncated messadewould then be:

B=[B[0]...Blnm —1]va...74]"
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This means in particular thaty < Bn,, — 1].

Let us first analyze a possible solution to compute the vafueousing normalization of
probability messages. We consides the probability domain representation of the LDR vector
A

Pulk] = P(z = ay) = Pa[0]e*™ ke{o,....,q—1}

and letPg be the vector of sizes,, with the values
Pplk] = P(z = Bp[k]) = Pa0]e”™ ke {0,...,n, — 1}

Remember thaf is unsorted whileB is sorted, which explains the difference in these two
definitions.

BecauseP, is a probability weight vector, we have:

Nom—1

S P=1 Y Pk <1 ©)

A clever way to fix a good value on the scalar compensatigns to assume that the trun-
cated message should represent a probability weight vedgtbra sum equal to one, so that
vt Plk] 4 (¢ —nm) Py, = 1 is satisfied. The probability weight associated with LDRueal

4 1S Pm = P,4[0]e™. The normalization of vectoPy is then

Nom—1

(4= )Py =1= Paf0] 3

N —1
P, _ PA[O — il 0 et
P4[0] q— N
P q_l N —1
log —2- = log Al — ePH | —log(q — nm)
ZRE PR
and finally
qg—1
ya=log | > ) —log(g —np) 4)
k=0,A[k]¢B

As a first remark, we note that the computation of the addiidarm requires the — n,,
ignored values of vectok, and the computation of a non linear function. The non lirfieaction
can be expressed in terms of thex *(x;, ) operator, used in many papers (e.g. [9]), and in

order to simplify (4), we approximate this operator by:

max *(z1, ry) = log (! + €*?) ~ max(zy, z2) (5)
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Equation (4) becomes:

va =, max ALK} —log(g — nm)
~mnax {AlK]} — log(g = nm)
~ Blnp] —log(q — nm) (6)

where B[n,,] is the largest value among thie — n,,) ignored values of vectoA.

By using the approximation (6) we obtain a simple computatidormula for the supplemen-
tary term~,, since we just need to truncate the LDR vedtowith its (n,, + 1) largest values
instead of itsn,,, largest values. On the other hand, this approximation dhuces a degradation
of the error performance of the decoder. The approximati)ng well known to over-estimate
the values of the LDR messages [13], and needs compensation.

In principle, the compensation of the over-estimation $thdae different for each message
since the accuracy of approximation (5) depends on the salues applied to. An adaptive
compensation would be obviously too complicated with rdgao our goal of proposing a low
complexity algorithm. We have then chosen to compenghibally the over-estimation of the
additional termy, with a single scalar offset, constant for all messages ingtlaph and also

constant for all decoding iterations:
va = Blnm,] —log(q — ny) — of fset = Blny,| — Of fset @)

There are several ways of optimizing the value of a globadeiftorrection in message passing
decoders. We have chosen to follow the technique proposgd, iwhich consists of minimizing
the decoding threshold of the LDPC code, computed with satedl density evolution. Because
of the lack of space, we do not discuss in this paper the opéitioin of the global offset, and
we recall that estimated density evolution is just used asitarion to choose the correction

factor and not to compute accurate thresholds.

IV. DESCRIPTION OF THE ALGORITHM
A. Decoding steps with messages of size< ¢

We now present the steps of the EMS decoder that uses contgeitaancated messages of
sizen,,. We assume that the LLR vectors of the received symbols avekat the variable nodes,
either stored in an external memory or computed on the fly ftbenchannel measurements.

Using the notations of Fig. 1, the basic steps of the algaoridre:
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1) Initialization: then,, largest values of the LLR vectors are copied in the graph @n th

.....

.....

to a variable nodes passed to a check nodeare computed given all the information
propagated from all adjacent check nodes and the chanrmpeihis check node itself.
3) Permutation step: this step permutes the messages amgpdoodthe nonzero values dff

(see (1)). In our algorithm, it just modifies the indices westand not the message values:
Bu, .. k] = hi.Bu,, (k]  k€{0,...,n, —1} (8)

where the multiplication is performed in GH.

4) Check-node update: for each check node, the valligs(k|}icqo,... d.—1}.kef0,...nm—1} SENT
from check a node to a permutation node are defined as the lplitlba (expressed in
LDR format) that the parity-check equation is satisfied & trariable node is assumed
to be equal to3y, , [k].

5) Inverse permutation step: this is the permutation stepfcheck nodes to symbol nodes,

so it is identical to step 3), but in the reverse order.

For steps 2) and 4), a recursive implementation combinel aforward/backward strategy is
a well known efficient implementation of node update whenabgociated degree is larger than
four. This implementation technique has been widely preskim the literature for binary LDPC
codes, and also for non-binary LDPC codes in [9]. It is base& @lecomposition of the node
neighborhood using dummy variables and adding correspgnéedges that carry intermediate
messages, that are namkdn this paper. This decomposition allows to express the lcluec
variable node equations using seveetémentary stepsOne elementary step is defined by a
node update that assumes only two input messages and ondg mgpsage. The decomposition
of a degreed. = 5 check node and the associated forward/backward schedigdinigpicted
on figure 2. In this figure, the intermediate messabeme assumed to be stored also with
n,, values, like the other messages. Using this strategydthmcoming messages are used
to compute2 x (d. — 3) intermediate messages by a forward/backward recursi@n thed.
outgoing messages are computed using either a combindtionecinput and one intermediate
message, or two intermediate messages. Note that the sdeate messages are stored only

until the outputs have been updated.
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Remark

In order to ensure the numerical stability of the EMS aldumit a post-processing step is
necessary. We simply substrate to all values the smallest\Without this step, the values of the
LDR messages would converge to the highest achievable rmahealue in a few iterations.

The LDR values equation (9) are real numbers in dom@in-oco).

Upp, (k] = Upp, (k] = Upp, [0, — 1] 1€ {0,...,d, — 1} k€{0,...,n, —1}
(9)
Vepi k] = Vip, (k] = Vep,[nm — 1] i€ {0,...,d. — 1} ke {0,...,n, —1}

Since the EMS algorithm only involves linear operationg termsU.,,, k], V.,.[k] have the

same LDR structure as defined in (2). .

B. Variable node elementary step

Let assume that an elementary step describing the variaigle npdate ha¥ and!| as input
messages and as output message. The vectdtsl andU of sizen,, are sorted in decreasing
order. We note also bgy, 1 and gy their associated index vectors. Using the BP equations in
the log-domain for the variable node update [9], the goalroekementary step is to compute
the output vector containing the,, largest values among tha,,, candidates (10) (stored in an
internal vector messagg). The processing of the elementary step in the case of ablanede

update is described by:
Tkl =VE+Y Tl + k| =y + I[K] ked{0,...,n,—1} (10)

with
I[l] if ﬂ[[l] :ﬂv[k] k,le {O,,nm—l}
VI if 51[1] ¢ By

The compensation value is used when the required symbol index is not present in aatinp

Y —

message.
Whenever theV input corresponds to the LLR channel vector of the receiwad®l, the

equation (10) becomes:
Tkl =V[kl+Y T[ny, + k] = Len[0Br[k]] + I[K] ke{0,...,n, —1}

since we do not assume that LLR vectors are truncated/cosapssh messages.
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C. Low complexity implementation of a check node elemerstay

This section describes in details the algorithm that we psepfor an elementary component
of the check node. This step is the bottleneck of the algoridtomplexity and we discuss its
implementation in details in the rest of the paper. The chrexde elementary step haksandl as
input messages and as output message. All these vectors are of sjzare sorted in decreasing
order. Similar to the variable node update, we note alsgdys; and Gy their associated index
vectors. Following the EMS algorithm presented in [7], wdineS (5 [:]) as the set of all the
possible symbol combinations which satisfy the parity éiquas, [i| © Gy [j] © Fr[p] = 0. With
these notations, the output message values are obtainked wit

Vil = max (U[j]+I[p]) i€{0,...,n,—1} (11)
S(Bv i)
Just as in the variable node update, when a required indeatiprasent in the truncated vector
U or I, its compensated value is used in equation (11). Without a particular strategy, the
computation complexity of an elementary step is dominatedbn?).

We propose a low computational strategy to skim the two doreztorsU andl, that provide
a minimum number of operations to process the sorted values of the output vectet The
main component of our algorithm is a sorter of sizg, which is used to fill the output message.
For the clarity of presentation, we use a virtual mathik built from the vectorsU and | (cf.
Fig.3), each element a¥/ being of the formA/[i, p] = U] + I[p]. This matrix contains the?,
candidates to update the output vecthrThe goal of our algorithm is to explore in a efficient
way M in order to compute iteratively its,, largest values, using the fact thaf is build from
sorted messages. For instance, we remark that:thdéargest values of\/ are located in the
upper part of the anti diagonal of the matrix. The basic ojpena of the elementary step are:

1) Initialization: the values of the first column @f are introduced in the sorter.

2) Output: the largest value is computed.

3) Test: does the associated @Findex of the output value already exist in the output vector.

« Yes: no action
« No: the value is moved in the vectdr

4) Evolution: The right neighbor - with regard to the M matrixof the filled value is

introduced in the sorter.

5) Go to (2)
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In order to ensure that all values of the output vectbrcorrespond to different symbols
ay € GF(q), we can not stop the algorithm after only,, steps, because it is possible that
among the computed values aftey, steps, two or more values correspond to the same index
ay. Let us definen,. as the number of necessary steps so that allnthevalues of the output

vector are computed. The parameteris used to indicate the computational complexity of our

2
im

2

new EMS implementation. We note that € [n,,, “]. Of course, the value of. depends on
the LDR vectordJ andl, and a strictly valid implementation of the elementary sthpuld take
into account the possibility of the worst case. However, &eetfound that,. is most of the time
quite small. As a matter of fact, the distribution of has an exponential shape and decreases
very rapidly, e.gprob(n. < n,, +4) = 0.9816, for a regular GF256)-LDPC code,,, = 32 and

a signal to noise ratio in the waterfall region of the codes&hon this observation, it seems
natural to consider that the bad situations with largeare sufficiently rare so that they do not
really impact on the decoder performance. We have verifiesddlaim by simulations of density

evolution and found that using., .. = 2n,, does not change the value of the decoding threshold

for various LDPC code parameters. Note that with = = 2n,,, Sometimes the output vector
V could be filled with less tham,, values and in those cases, we fill the rest of the vector
with a constant value equal to the additional teymn The worst case for the complexity of an
elementary step is the®(n..,,,, log, n,,) = O(2n,, log, n,,,), which corresponds to the number

of max operations needed to insett elements into a sorted list of size,. In the next

max

section, we study in details the complexity of our new impdenation of the EMS algorithm.

V. COMPLEXITY AND MEMORY EVALUATION OF THE ALGORITHM

The computational complexity per bit of a single parity nate a single variable node are
indicated in table | in terms of their connexion degrée(resp.d,). This complexity applies
both for regular and irregular non binary LDPC codes, thalo@lue of the connexion degree
following the connectivity profile of the code. This complyxassumes the use of truncated
messages of size,,, and the implementation of the check node update presemteittis
paper. Note that we indicated the worst case complexity lier ctheck node witm,. = n. .
and that the average complexity is often less than that. Tmeptexity associated with the
update of vectordJ at the variable node output is obtained with a recursive @mantation
of the variable node, which is used only for connexion degrée > 3. As a result, the

complexity of our decoding algorithm is dominated Kn,, log,(n,,)) for both parity and
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variable nodes computation. Interestingly, the compyeXitmpcy of a check node an@ompy v

of a variable node are somewhat balanced, which is a niceepggothat should help an efficient
hardware implementation based on a generic processor middeeover, one can remark that
the complexity of the decoder does not depend;pthe order of the field in which the code is
considered. Let us again stress the fact that the complekxiur decoder varies in the order
of O(ny, log,(ny,)) and withn,, < ¢, which is a great computational reduction compared to
existing solutions [7], [8], [9].

Finally, for a complete characterization of the computadilocomplexity of our non-binary
LDPC decoding algorithm, we also reported in table | the eisged complexity of the permu-
tation step Compp.,») and the complexity of the post-processit@o(nppos:)-

The memory space requirement of the decoder is composed @firtlependent memory
components, the memory corresponding to the channel messag and the edge memory
corresponding to the extrinsic messadésV with their associated index vectors Storing
each LDR value onVbits bits in finite precision would therefore require a total nuemlof
N, * N * d, * (Nbits + log, q) bits for the edge memory. Thus, the memory storage depends
linearly onn,,, which was the initial constraint that we put on the messages

Sincen,, is the key parameter of our algorithm that tunes the complexnd the memory
of the decoder, we now need to study for which values:gfthe performance loss is small
or negligible. In order to give a first answer to this questisre have made an asymptotic
threshold analysis of the impact of, on the threshold value. For a rate= 0.5 LDPC code
with parametersd, = 2,d. = 4), Fig.4 plots the estimated threshold (#;,/Ny).s of our
algorithm for different values of.,,, and two different field orders GB4) and GK256). In this
paper, we do not claim that the EMS algorithm verifies the ssas/ symmetry conditions that
ensures the convergence of density evolution. Therefboee yvalidity of the threshold values is
not proved. However, the estimated thresholds are a goochitwal of the decoder behavior when
the codeword length is large and the nonzeros values in thexnage chosen uniformly.

The BP thresholds are equal o= 0.584B for the GH64) code andé = 0.5dB for the
GF(256) code [7]. As expected, the thresholds become better, amcreases, and can approach
the threshold of BP with much less complexity. We can use kibs pn Fig.4 as first indication for
choosing the field order of the LDPC code that correspondsgwen complexity/performance
trade-off. Note, however, that this asymptotic study habddalanced with the girth properties

of finite length codes, since it has been identified in [3], f4&t ultra-sparse LDPC codes in
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high order fields and with high girth have excellent perfontea

VI. SPECIAL CASE FURTHER MEMORY REDUCTION FOR CYCLE CODES

It has been shown that for high order fields> 64, the best GF;)-LDPC codes decoded
with BP should beultra sparse(cycle codesd, = 2) [2], [3]. In the EMS implementation,
an improved trade-off memory space/performance can besaethifor the decoding of cycle
codes, by considering a modified scheduling of the decodiegssdescribed in Section IV. We
have adapted the shuffled scheduling proposed in [14] to dhebmary case, with the objective
of greater storage memory reduction. Note that the adaptaif the shuffled scheduling for
NB-LDPC codes has been proposed independently in [15], Hmutatithors did not study the
memory reduction that this scheduling implies.

Using a shuffled scheduling allows to store only the messabés the edge memory, and
the intermediate messagesnd the messagas can be storedocally in a processing unit. It
is therefore possible to consider more thap values for thel andV without increasing the
storage capacity of the decoder. Let us denotexfyy (respectivelyn,,, ) the number of LDR
values that form the truncated versions of messadesspectivelyV) inside the processing unit.
By construction, the different sizes verify,,, < n,, < 1y, .

The shuffled scheduling is defined as follows. For each andy@heck node, lefvy, ..., vg, }
be the set of variable nodes connected to this check nodeshiiled processing unit takes
all incoming messaged,,, that are on the edges of the check node, computes locally the
messages on the same edges with the EMS algorithm, and tldetespthel,, messages that
are on the edges ofvy,...,vs } Which are not connected to the current check node. In the
case ofd, = 2 LDPC codes, this last step is performed only with the knogéedf the channel

LLRs {L,, }x=1..4.- We can consider that the shuffled processing unit works with types

of messages: the externdl vectors which determine the dimension of the edge memory and
the internalV and| vectors which determine the computational complexity afatker. Using
different values for(n,,, ., nm,, nm, ) has then an impact on the trade-off between the overall
complexity of the decoder and its performance. We now ds¢hs advantage of the shuffled
scheduling with a comparison with the classical floodingesithing.

Let us consider a codgl, = 2,d. = 4) code in GK256) of size N, = 848 (see section VIII-A
for more details), and let us use truncated messages ofgize 18 in a flooding implementation

of the EMS decoder. We consider the two following cases fohaffied scheduling, and the
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corresponding frame error rate simulations are plotted garé Fig.5:

« (@) The same computational complexity for the two schedules.
In this case, the size of the vectdfsandl is set ton,,, = n,,, = 18. The size of the vectors
U is set ton,,, = 9. This choice corresponds to a memory space reduction ohﬂguﬁg‘f,
with a small error performance degradation compared to twfhg implementation (Fig.5,
B and C curves).
« (b) The same edge memory space for the two schedules.
In this case, the size of the vectdssis kept atn,,, = 18, but the size of vector¥ and|
is increased toy,,,, = n,,, = 36. The shuffled scheduling provides an improvement of the
error performance (Fig.5, A and B curves), without incragsine memory requirement of
the decoder. Of course, this also induces an increase oflgloetam complexity .
As a conclusion, implementing the shuffled scheduling far bmary LDPC codes has the same
advantage of reducing the average number of decoding idagtas for the binary shuffled
scheduling (see [15] for more details), but also provideditaahal degrees of freedom for the

storage/complexity/performance trade-off of an EMS decod

VIl. QUANTIZATION OF THE EMS ALGORITHM

Toward practical hardware implementation, quantizat®an indispensable issue that needs to
be resolved. The goal of this section is to find the best ttibetween the hardware complexity,
messages storage space and the error performance of the gbt8han. We investigate only
the impact of uniform quantization schemes. The choice efuhiform quantization scheme is
motivated by the fact that the hardware implementation ef EMS algorithm does not require
nonlinear operations and the uniform quantifier has the atdege that it is simple and fast.

Let (b;,bs) represent a fixed-point number with bits for the integer part (dynamic range)
andb; bits for the fractional part. So by fixed-point represemtatia real numbex is mapped
to a binary sequence = [xo . .xbﬁbf_l]. A direct consequence of the post-processing defined
by equation (9), is that we can use an unsigned fixed-poineseptation (12) to quantify the
LDR messages of the EMS algorithm.

bri—bf—l

r— Y x2ht (12)
j=0

This representation corresponds to a limit range of the L@Ries of [0, 2! — 277] with

a precision of2~%. Various schemesb;, b;) are examined, in order to find the best trade-off
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between the number of quantization bits{ b,) and the error performance degradation of the
decoder. The most representative results are summarizéid.i®, which presents the simulation
results of the EMS algorithm for an LDPC code over(GH of rate R = 1/2, for two sets of
parametersn,,, , nm,, ) = (8,16) and (1., , iy, ) = (16, 32).

We remark that a fixed point quantization scheme wijth- 5 bits provides error performance
close to the floating implementation of the EMS algorithm,leviall the quantizations having
b; = 4 bits caused an error floor region. It turns out that the appariof this phenomenon is
due to the insufficient dynamic range of the LDR messages [16]

With the goal of speed and low storage in mind, we advice a tigation of all messages
with 5 bits, with (b, = 5,b; = 0). This representation of messages provides a balanced trade
off between low storage and good performance. We have coediube same finite precision
study for various rates and code lengths and have obsereedith= 5,b; = 0) is good in all
cases. The EMS algorithm requires then only a few quantizabits, close to the fixed-point

representation of the extrinsic messages in binary LDP@diss [18].

VIIl. EXPERIMENTAL RESULTS OF THEEMS DECODER
A. Performance loss compared to the non-binary BP algorithm

In this section, we present the simulation results of our lmwmplexity EMS algorithm,
compared with the BP algorithm considered as reference. &Ve made the comparison with
regular GKq)-LDPC codes over high order fields, of rate = 1/2 (d, = 2,d. = 4), applied
on a BPSK-AWGN channel. The BP has been implemented in flpgtaint precision, and a
quantization of(b = 5,q = 0) is used for the EMS algorithm, as pointed out in the preceding
section. In figure Fig.7, we have reported the frame errax (RER) of a short code with length
N, = 848 equivalent bits, corresponding to a length= N,/ log,(¢) non-binary LDPC code.
The maximum number of iteration has been fixed to 1000, and@pstg criterion based on the
syndrome check is used. Note that the average number of ehgctdrations is rather low for
all the simulation points below £R = 10~3 (as an example, the average number of iterations
for the (2,4) GF(64) code atFER = 6 * 10~* is equal to3).

We denote by EMZ@, the EMS decoder over the field G with parametersi,,,, i,
andn,,, = n,,,. Let us first discuss the performance of the EMS decoder vesipect to the
BP decoder. For the code over GB), the EMS[* is the less complex algorithm presented. It

performs within0.25d B of the BP decoder in the waterfall region. The E‘MS‘) algorithm has
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0.06dB performance loss in the waterfall region and performs ewetteb than the BP decoder
in the error floor region. The fact that the EMS can beat the BPoder in the error floor
is not surprising and is now well known in the literature. §toehavior comes from the fact
that for small code lengths, an EMS algorithm corrected by#set could be less sensitive to
pseudo-codewords than the BP.

Note that with this example, the only advantage of using &G# code in terms of perfor-
mance/complexity trade off is that it provides an error floegion lower than the GB4) code.
Finally, it is interesting to compare the error performant€EMS; " and EMS; &> because
they offer the same decoding complexity. In the waterfajioe of the codes EMZ 5" performs
better that EM§ (5 > with a gain of0.19dB. The good performance of the GR) code in the
waterfall region is determined by the value of,, = 32 parameter, which is sufficiently close
to the field order to provide a good threshold. At low FER, tlegf@rmance gap between the
two codes becomes smaller, which seems to indicate tha¥ f@56) LDPC code will perform
better that the&7 '(64) LDPC code at very low FER (FER€~7), without increasing the decoder
complexity. Note that this observation balances the camnehs of Section V, and stresses another
advantage of considering very high order field non-binaryPlbcodes. Moreover, the EMS is
quite robust since the complexity reduction frgm= 256 to n,,,, = 32 is a lot higher than from
q = 64 to n,,, = 32, and the performance loss stays acceptable. Note that lilee approaches
proposed in the literature [8], [9] were not illustrated oighh order fields and that - to our
knowledge - the EMS decoder is the first decoder that propaggsd performance complexity
trade-off for field orders; > 64.

In order to quantify the influence of the offset parametgrgn the decoder’s performances,
we have also reported in Fig.7 the simulations results of EMS decoder in the particular
case when the offset is zero (EMS without offset). We remagt the error performances of
the EMS; 3> algorithm are greatly improved by using a proper offset, ésdinfluence is
less significant in the case ENIS®. Generally, the influence of the offset parameter on the
error performances of thé& M S decoder depends on the loss of information induced by the
truncation procedureq(— n,,). If the differenceq — n,, is non-negligible the use of a proper
offset is recommended.

For lack of space reasons, we present only the results fardatie/decoder parameters of figure
Fig.7, but we have conducted extensive simulations forousriother code/decoder parameters

and the same kind of behavior has been observed. As seen omdbks presented in this
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section, the error performance of a hardware implementabision of the EMS is quite close
to the performance of floating BP algorithm. Its good perfante and its reduced complexity
and memory space requirement make the EMS algorithm a goodidate for the hardware
implementation of non binary LDPC decoders.

In order to improve the performance of the decoder withogtiSeing much the complexity,
it would be interesting to study more precisely if the pemfi@ance degradation compared to BP
comes from the truncation of the messages or from the usenafiaoperator at the check node
update. A correction strategy more elaborate than a sinfigetocorrection (dynamical offset

along the iterations, nonlinear correction, etc) could l@areffective on either approximations.

B. Comparison with binary decoders

The main idea of this section is to compare in terms of contmrtal complexity and error
performance the proposed EMS algorithm to its binary edenathe corrected Min-Sum (MS)
algorithm [10]. The complexity of the corrected MS algonitior a single check node of degree
d. is equal to:3(d. — 2)/d. min operations per bit(2d. — 1)/d. XOR operations per bit to
compute the sign of the output a@deal additions that correspond to the correction operation
Also, for a bit node of degred, the complexity is equal t¢2d, — 1)/d, real additions per
bit. For a fair computational complexity comparison of aigans, we have decided to compare
only the operations that are common to both algorithms. Wes tompare the number afax
operations of the EMS algorithm (see table ) with thén operations of the MS algorithm and
the number of real additions necessary to two algorithms ifpeation). The specific operations
of the algorithms are not taken into account in the compyegdmparison (the additions over
GFq) for EMS algorithm and the sign computation for the MS).

The comparison has been made for short and moderate codédeoger BI-AWGN and
QAM-AWGN channels. The choice of the code length is motidaby the fact that the non-
binary LDPC codes can achieve performance very close to tiaar®n limit for these lengths.
The binary codes that we used are from [17], irregular codesze N, = 504 (short length) and
N, = 1008 bits (moderate length) and of coderdte= 0.5. The corresponding non-binary codes
are of equivalent lengttv = 84 symbols over GF4) (short length) andV = 126 symbols over
GK(256) (moderate length). The non-binary codes are regllar= 2,d. = 4) and of coderate
R=0.5.

In Fig.8, we have reported the frame error rate (FER) of yireard non-binary short length
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codes. We denote by ENfS® the EMS decoder over the field G with parametersy,, =
Ny = Mm; = N, . L€t us first discuss the performance of the EMS algorithmhwéspect
to the corrected MS algorithm. The EI\?E%G“) algorithm performs better than the corrected MS
with a gain of0.375d B in the waterfall region. Furthermore for a smaller valuengf (n,, = 12
approximately 20% of) the EMS algorithm still outperforms the MS. Concerning tloenplexity

of these two version of the EMS, the Ef$” is 9 times more complex than the MS, and the
EMSF®¥ s 5 times more complex than the MS. We have also plotted the pedormance of
the EMS® algorithm, which has a complexity equivalent to the binaegatler. The loss of
performance in the waterfall region is explained by the $malue of n,, = 6 (approximately
10% of ¢), which is not sufficiently close to the field order to providegood threshold.

For short code lengths, the ENS® and EMS;®® have better error performance than the
MS decoder on a very good binary LDPC code (for this rate andtl® and in the same time
the complexity of our non binary decoder remains reasonalige to the complexity of the
binary decoder.

Over QAM-AWGN channels, the non-binary LDPC codes with af@lder greater or equal to
the size of constellation has the advantage that the enldededer works directly with symbols.
All mapping choices of the codeword symbols to the condieltgpoints are equivalent and lead
to the same performance. This means that there is no lossfolp@ance due to the demapping
process at the receiver. This is a clear advantage comp#uitige binary codes. In Fig.9, we
have plotted the simulation results of the EMS algorithm #rel binary MS algorithm for the
moderate length codes, over a 256-QAM-AWGN channel. We baed a Bit-Interleaved Coded
Modulation scheme to transmit the binary code over the 2BBACAWGN channel and a field
order equal tay = 256 for the non-binary LDPC codes. Note that the non-binary LDi®des
have been optimized with the technique described in [4].

Over the QAM256-AWGN channel the ENjS** algorithm performs).5dB better than the
corrected MS algorithm which is a quite important improvemeConcerning the complexity
comparison, the EMS algorithm has approximatelytimes the complexity of the binary al-
gorithm. The EM$§®® and EM$) ®*® algorithms have a performance loss in the waterfall
region due to the small value of,. The EMS"?® has roughly the same complexity than
the MS decoder. As in the BI-AWGN channel case, the EMS deacodenon-binary LDPC
codes performs better than the MS algorithm on binary LDP@espwith a reasonable increase

in complexity. Our efficient decoder shows that non-binaHAC codes could be a reliable
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alternative for coding schemes with short to moderate codéwengths.

Note that the EMS decoder has a quite fast convergence sia@erage number of decoding
iterations when a syndrome stopping criterion is used igally half the one of the binary case.
For example, with(q = 64,n,, = 18) at FER = le — 5, the average number of iterations for
the EMS algorithm is equal t8.3 and for its binary equivalent (Min-Sum) the average number
of iterations is6.8. This remark remains valid in the case of an 256-QAM-AWGM&m@ission,
where for the EM§®® algorithm (Fig.9) the average number of iterations is eqoab at
FFER = 1e—5 and for the Min-Sum algoritm the average number of iteraiismrapproximatively
9.5.

IX. CONCLUSION

We have presented in this paper a general low complexitydiegalgorithm for non binary
LDPC codes, using log-density-ratio as messages. The mginality of the proposed algorithm
is to truncate the vector messages to a fixed number of valjex ¢, in order to solve the
complexity problem and to reduce the memory requirementb®mon binary LDPC decoders.
We have also shown that by using a correction method for thesages, our EMS decoding
algorithm can approach the performance of the BP decoderwama in some cases beat the BP
decoder. The complexity of the proposed algorithm is doteitdy O(n,,, log,(n.,,)). For values
of n,, providing near-BP error performance, this complexity isafier than the complexity of
the BP-FFT decoder, and by far lower than the solutions megan the literature. Note that the
single parameten,, tunes both the computational complexity and memory spagainements.

It also defines efficiently the trade-off performance/coaxpl. We have also proposed a non-
binary adaptation of the shuffled scheduling in order to oceda new degree of freedom in the
algorithm, which allows a reduction of the memory space irequoents for the cycle codes.

We have compared the error performance of our algorithm wih-binary BP and binary
corrected MS algorithms, in order to demonstrate that tiopgsed low complexity, low memory
EMS decoding algorithm becomes a good candidate for a haedimgplementation. Since its
complexity and its memory space requirements has beenlgreauced and the performance
degradation is small or negligible, the EMS algorithm apglon non-binary LDPC codes build
in very high order fields could be an alternative to existingugons.

Although the EMS algorithm could be applied to irregular LORodes as described in this

paper, an interesting issue would be to study if the numbgrof values kept in messages
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needs to be optimized with respect to the degree of the \ariadmes. This issue is of particular
importance since good irregular LDPC codes are usually ense than regular ones, increasing
thereby the memory requirements for message storage.

The authors are grateful to the reviewers for insightful coents and suggestions, which have

improved this paper.
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No. add over GF(q)

Per bit per iteration No. max No. real add
Compcn (B(de = 2)nepaq 1082 nm)/(deloga @) | 3(de = 2)(nemax + mm)/(deloga q) | 3(de = 2)(Nepman + nm)/(de logs )
Compy N (3dy — 4)nm logs (2nm )/ (dv logs q) (3dy — 4)2nm /(dy logs @) 0
Comppost 0 nm/(logs q) 0

Comppermp 0 0 nm /(loga q)
TABLE |

COMPUTATIONAL COMPLEXITY OF THE MESSAGE UPDATES WITH THEEMS ALGORITHM AND MESSAGES OF SIZEn,

Permutation Nod

Check Node

Fig. 1. Factor graph structure of a parity check node of degre= 3 for a non-binary LDPC code
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Fig. 5. EMS decoding algorithm, Shufflegs. Flooding implementation, for an GF(256)-LDPC code (R=0\3~848 bits)
over BI-AWGN channel
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Fig. 6. EMS decoding algorithms, different fixed-point iraplentations,for an GF(64)-LDPC code (R=0)g,=852 bits) over
BI-AWGN channel
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Fig. 7. Comparison between BP and EMS decoding algorittmsyi LDPC code (R=0.5)N,=848 bits) over BI-AWGN
channel
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Fig. 8. Comparison between EMS decoder and binary MS dectmtean LDPC code (R=0.5V,=504 bits) over BI-AWGN
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Fig. 9. Comparison between EMS decoding algorithm and pih$® algorithm, for an LDPC code (R=0.3y,=1008 bits)
over 256-QAM-AWGN channel
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