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Abstract

In this paper, we propose a new implementation of the Extended Min-Sum (EMS) decoder for

non-binary LDPC codes. A particularity of the new algorithmis that it takes into accounts the memory

problem of the non-binary LDPC decoders, together with a significant complexity reduction per decoding

iteration. The key feature of our decoder is to truncate the vector messages of the decoder to a limited

numbernm of values in order to reduce the memory requirements. Using the truncated messages, we

propose an efficient implementation of the EMS decoder whichreduces the order of complexity to

O(nm log
2
nm). This complexity starts to be reasonable enough to compete with binary decoders. The

performance of the low complexity algorithm with proper compensation is quite good with respect to

the important complexity reduction, which is shown both with a simulated density evolution approach

and actual simulations.

Index Terms

Iterative decoding, non-binary LDPC codes, low complexityalgorithm

I. INTRODUCTION

It is now well known that binary low density parity check (LDPC) codes achieve rates close

to the channel capacity for very long codeword lengths [1], and more and more LDPC solutions

have been proposed in standards (DVB, WIMAX, etc). In terms of performance, binary LDPC

codes start to show their weaknesses when the code word length is small or moderate, or when
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higher order modulation is used for transmission. For thesecases, non-binary LDPC (NB-LDPC)

codes designed in high order Galois fields have shown great potential [2], [3], [4], [5].

However, the performance gain provided by LDPC codes over GF(q) comes together with

a significant increase of the decoding complexity. NB-LDPC codes can be decoded efficiently

with message passing algorithms as the belief propagation (BP) decoder, but the size of the

messages varies in the orderq of the field. Therefore, a straightforward implementation of the

BP decoder has complexity inO(q2). A Fourier domain implementation of the BP is possible like

in the binary case, reducing the complexity toO(q log q) [2], [6], but this implementation is only

convenient for messages expressed in the probability domain. This is a problem since several

authors have identified that the use of log-density-ratios (LDR) representation is mandatory to

avoid complicated operations like multiplications and divisions. Any LDR-based implementation

of the BP requires alsoq − 1 values per message in the graph.

In this paper, we propose a new decoding algorithm for NB-LDPC codes. Our algorithm has

both low computing complexity and reduced storage requirements, and therefore becomes a good

solution for hardware implementation.

In one of the algorithms presented in [7] the authors introduced the idea of using only a limited

numbernm of reliabilities in the messages at the input of the check node in order to reduce the

computational burden of the check node update. The complexity at each check node was reduced

to the order ofO(nm q), and the same memory storage complexity as BP was needed. In this

paper, we keep the basic idea of using onlynm ≪ q values for the computation of messages,

but we extend the principle to all the messages in the Tanner graph, that is, both at the check

nodes and the variable nodes input. Moreover, we propose to store onlynm reliabilities instead

of q−1 for each message. The truncation of messages fromq−1 to nm values has to be done in

an efficient way in order to reduce its impact on the performance of the decoder. The truncation

technique that we propose is described in details in SectionIII, together with an efficient offset

correction to compensate the performance loss. Using the truncated messages representation,

and a recursive implementation of the check node update, we propose a new implementation of

the Extended Min-Sum (EMS) decoder whose complexity is dominated byO(nm log nm), with

nm ≪ q. This is an important complexity reduction compared to all existing methods [7], [8],

[9]. Our new algorithm is developed in Section IV and a study of its complexity/performance

trade-off is presented in Section V. Section VI is dedicatedto non-binary adaptation of the

shuffled scheduling for the special class of cycle codes. In Section VII the robustness of the
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algorithm to the effects of a finite precision representation of messages is studied. In Section

VIII-A, the simulation results verify that the proposed lowcomplexity decoder still performs

very close to the BP decoder that we use as benchmark. We conclude the paper in section VIII-

A by a fair comparison between the proposed non-binary decoding algorithm and the binary

corrected Min-Sum (MS) algorithm [10] applied to binary irregular LDPC codes, in terms of

computational complexity and error performance.

II. PRELIMINARIES

An NB-LDPC code is defined by a very sparse random parity checkmatrix H, whose

components belong to a finite field GF(q). The matrixH consists ofM rows andN columns;

the code rate is defined byR ≤ N−M
N

. Decoding algorithms of LDPC codes are iterative message

passing decoders based on a factor (or Tanner) graph representation of the matrixH [11]. In

general, an LDPC code has a factor graph consisting ofN variable nodes andM parity check

nodes with various degrees. To simplify the notations, we will only present the decoder equations

for isolated nodes with given degrees. We denotedv the degree of a symbol node anddc the

degree of a check node. In order to apply the decoder to irregular LDPC codes, simply letdv

(resp.dc) vary with the symbol (resp. check) index. A single parity check equation involvingdc

variable nodes (codeword symbols)cn is of the form:
dc−1
∑

n=0

hncn = 0 in GF(q) (1)

where eachhn is a nonzero value of the parity matrixH.

As for binary decoders, there are two possible representations for messages : probability

weights vectors or LDR vectors. The use of the LDR form for messages has been advised

by many authors who proposed practical LDPC decoders. The LDR values, which represent

real reliability measures on the bits or the symbols are lesssensitive to quantization errors

due to the finite precision coding of the messages [12]. Also,LDR measures operate in the

logarithm domain, which avoids complicated operations (interms of hardware implementation)

like multiplications or divisions. The following notationwill be used for an LDR vector of a

random variablez ∈ GF (q):

L (z) = [L[0] . . . L[q − 1]]T

where

L[i] = log
P (z = αi)

P (z = α0)
(2)
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with P (z = αi) being the probability that the random variablez takes on the valuesαi ∈ GF (q).

With this definitionL[0] = 0, L[i] ∈ R.

The log-likelihood-ratio (LLR) messages at the channel output areq − 1 dimensional vectors

in general denoted byL ch = [Lch[k]k∈{0,...,q−1}]
T and are defined byq − 1 terms of the type (2).

The values of the probability weightsP (z = αi) depend on the transmission channel statistics.

The decoding algorithm that we propose is independent of thechannel, and we just assume

that a demodulator provides the LLR vectorL ch to initialize the decoder. We have applied the

NB-LDPC codes to communicate over two types of channels: BI-AWGN and QAM-AWGN.

For the BI-AWGN case, each symbol of the codewordcn, n ∈ {0, . . . , N−1} can be converted

into a sequence oflog2(q) bits cni
∈ GF (2), i ∈ {0, . . . , log2(q)−1}. The binary representation

of the codeword is then mapped into a BPSK constellation and sent on the AWGN channel:

yni
= BPSK (cni

) + wni

with yni
being the received noisy BPSK symbol, andwni

being a real white Gaussian noise

random variable with varianceN0

2EbR
, where Eb

N0
is the SNR per information bit.

The NB-LDPC iterative decoding algorithms are characterized by three main steps corresponding

to the different nodes depicted in Fig. 1:(i) the variable node update,(ii) the permutation of

the messages due to non zeros values in the matrixH and (iii) the check node update which

is the bottleneck of the decoder complexity, since the BP operation at the check node is a

convolution of the input messages, which makes the computational complexity grow inO(q2)

with a straightforward implementation.

We use the following notations for the messages in the graph (see Fig. 1). Let{Vpiv}i∈{0,...,dv−1}

be the set of messages entering into a variable nodev of degreedv, and{Uvpi
}i∈{0,...,dv−1} be the

output messages for this variable node. The index ‘pv‘ indicates that the message comes from

a permutationnode to avariable node, and ‘vp‘ is for the other direction. We define similarly

the messages{Upic}i∈{0,...,dc−1} (resp.{Vcpi
}i∈{0,...,dc−1}) at the input (resp. output) of a degree

dc check node.

In [7], the EMS algorithm reduces the complexity of the checknode update by considering

only the nm largest values of the messages at the input of the check node.However, the

output messages of the check node are still composed ofq values. As a consequence, the EMS

complexity of a single parity check node varies inO(nm.q) and all messages in the graph are

stored with their full representation ofq real values, which implies a high memory requirements.
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In this paper, we present a new implementation of the EMS algorithm, whose main originality

is to store exactlynm ≪ q values in all vector messagesUvp, Vcp. As a result not only the memory

requirements are reduced but also the computational complexity. In the following section we

present our procedure to truncate the messages fromq to nm values and discuss the impact on

the error correction performance of the decoder.

III. STRUCTURE AND COMPENSATION OF THE TRUNCATED MESSAGES

The vector messagesVcp and Uvp are now limited to onlynm entries which are assumed to

be the largest reliability values of the corresponding random variable. Moreover, the values in a

message are sorted in decreasing order. That way,Vcp[0] is the maximum value andVcp[nm − 1]

is the minimum value inVcp. We need to associate to the vectorsVcp, Uvp of size nm the

additional vectorsβVcp
and βUvp

(of size nm) which store the field elementsαk ∈ GF (q),

associated to the largest LDR values of vectorsVcp and Uvp. For example,Uvp[k] is the LDR

value that corresponds to the symbol valueβUvp[k] ∈ GF (q).

Although interesting in terms of memory and computation reduction, the truncation of mes-

sages obviously looses potentially valuable information which leads to performance degradation

on the error rate curves. This loss of performance could be mitigated by using a proper compen-

sation of the information that has been truncated. Because our main concern is the development

of low complexity decoders, we have chosen to compensate theq − nm truncated values with a

single scalar valueγ, which is the simplest model one can use. The following definition is used

for a compensated message:

Definition

Let A be any message in the graph which represents an LDR vector of size q. A truncated

versionB of A is composed of thenm largest values ofA sorted in decreasing order, plus an

additional (nm + 1)-th valueγA ∈ R, whose goal is to compensate for the information loss due

to the truncation ofq − nm values.

The compensated-truncated messageB has then(nm + 1) components, and the valueγA is

seen as a constant real value that replaces theq − nm missing reliabilities. A full representation

of the truncated messageB would then be:

B = [B[0] . . . B[nm − 1] γA . . . γA]T
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This means in particular thatγA ≤ B[nm − 1].

Let us first analyze a possible solution to compute the value of γA using normalization of

probability messages. We considerPA the probability domain representation of the LDR vector

A

PA[k] = P (z = αk) = PA[0]eA[k] k ∈ {0, . . . , q − 1}

and letPB be the vector of sizenm with the values

PB[k] = P (z = βB[k]) = PA[0]eB[k] k ∈ {0, . . . , nm − 1}

Remember thatA is unsorted whileB is sorted, which explains the difference in these two

definitions.

BecausePA is a probability weight vector, we have:

q−1
∑

k=0

PA[k] = 1
nm−1
∑

k=0

PB[k] < 1 (3)

A clever way to fix a good value on the scalar compensationγA is to assume that the trun-

cated message should represent a probability weight vectorwith a sum equal to one, so that
∑nm−1

k=0 PB[k]+ (q−nm)PγA
= 1 is satisfied. The probability weight associated with LDR value

γA is PγA
= PA[0]eγA . The normalization of vectorPB is then

(q − nm)PγA
= 1 − PA[0]

nm−1
∑

k=0

eB[k]

PγA

PA[0]
=

1
PA[0]

−
∑nm−1

k=0 eB[k]

q − nm

log
PγA

PA[0]
= log

(

q−1
∑

k=0

eA[k] −

nm−1
∑

k=0

eB[k]

)

− log(q − nm)

and finally

γA = log





q−1
∑

k=0,A[k]/∈B

eA[k]



− log(q − nm) (4)

As a first remark, we note that the computation of the additional term requires theq − nm

ignored values of vectorA, and the computation of a non linear function. The non linearfunction

can be expressed in terms of themax ∗(x1, x2) operator, used in many papers (e.g. [9]), and in

order to simplify (4), we approximate this operator by:

max ∗(x1, x2) = log (ex1 + ex2) ≈ max(x1, x2) (5)
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Equation (4) becomes:

γA = max
k=0,A[k]/∈B

∗{A[k]} − log(q − nm)

≈ max
k=0,A[k]/∈B

{A[k]} − log(q − nm)

≈ B[nm] − log(q − nm) (6)

whereB[nm] is the largest value among the(q − nm) ignored values of vectorA.

By using the approximation (6) we obtain a simple computational formula for the supplemen-

tary termγA, since we just need to truncate the LDR vectorA with its (nm + 1) largest values

instead of itsnm largest values. On the other hand, this approximation introduces a degradation

of the error performance of the decoder. The approximation (5) is well known to over-estimate

the values of the LDR messages [13], and needs compensation.

In principle, the compensation of the over-estimation should be different for each message

since the accuracy of approximation (5) depends on the values it is applied to. An adaptive

compensation would be obviously too complicated with regards to our goal of proposing a low

complexity algorithm. We have then chosen to compensateglobally the over-estimation of the

additional termγA with a single scalar offset, constant for all messages in thegraph and also

constant for all decoding iterations:

γA = B[nm] − log(q − nm) − offset = B[nm] − Offset (7)

There are several ways of optimizing the value of a global offset correction in message passing

decoders. We have chosen to follow the technique proposed in[7], which consists of minimizing

the decoding threshold of the LDPC code, computed with simulated density evolution. Because

of the lack of space, we do not discuss in this paper the optimization of the global offset, and

we recall that estimated density evolution is just used as a criterion to choose the correction

factor and not to compute accurate thresholds.

IV. DESCRIPTION OF THE ALGORITHM

A. Decoding steps with messages of sizenm ≤ q

We now present the steps of the EMS decoder that uses compensated-truncated messages of

sizenm. We assume that the LLR vectors of the received symbols are known at the variable nodes,

either stored in an external memory or computed on the fly fromthe channel measurements.

Using the notations of Fig. 1, the basic steps of the algorithm are:
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1) Initialization: thenm largest values of the LLR vectors are copied in the graph on the

{Uvpi
}i∈{0,...,dv−1} messages.

2) Variable-node update: the output vector messages{Uvpi
}i∈{0,...,dv−1} (of sizenm) associated

to a variable nodev passed to a check nodec are computed given all the information

propagated from all adjacent check nodes and the channel, except this check node itself.

3) Permutation step: this step permutes the messages according to the nonzero values ofH

(see (1)). In our algorithm, it just modifies the indices vectors and not the message values:

βUpic [k] = hi.βUvpi
[k] k ∈ {0, . . . , nm − 1} (8)

where the multiplication is performed in GF(q).

4) Check-node update: for each check node, the values{Vcpi
[k]}i∈{0,...,dc−1},k∈{0,...,nm−1} sent

from check a node to a permutation node are defined as the probabilities (expressed in

LDR format) that the parity-check equation is satisfied if the variable nodev is assumed

to be equal toβVpiv [k].

5) Inverse permutation step: this is the permutation step from check nodes to symbol nodes,

so it is identical to step 3), but in the reverse order.

For steps 2) and 4), a recursive implementation combined with a forward/backward strategy is

a well known efficient implementation of node update when theassociated degree is larger than

four. This implementation technique has been widely presented in the literature for binary LDPC

codes, and also for non-binary LDPC codes in [9]. It is based on a decomposition of the node

neighborhood using dummy variables and adding corresponding edges that carry intermediate

messages, that are namedI in this paper. This decomposition allows to express the check or

variable node equations using severalelementary steps. One elementary step is defined by a

node update that assumes only two input messages and one output message. The decomposition

of a degreedc = 5 check node and the associated forward/backward schedulingis depicted

on figure 2. In this figure, the intermediate messagesI are assumed to be stored also with

nm values, like the other messages. Using this strategy, thedc incoming messages are used

to compute2 ∗ (dc − 3) intermediate messages by a forward/backward recursion, then thedc

outgoing messages are computed using either a combination of one input and one intermediate

message, or two intermediate messages. Note that the intermediate messages are stored only

until the outputs have been updated.
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Remark

In order to ensure the numerical stability of the EMS algorithm, a post-processing step is

necessary. We simply substrate to all values the smallest one. Without this step, the values of the

LDR messages would converge to the highest achievable numerical value in a few iterations.

The LDR values equation (9) are real numbers in domain[0, +∞).

Uvpi
[k] = Uvpi

[k] − Uvpi
[nm − 1] i ∈ {0, . . . , dv − 1} k ∈ {0, . . . , nm − 1}

Vcpi
[k] = Vcpi

[k] − Vcpi
[nm − 1] i ∈ {0, . . . , dc − 1} k ∈ {0, . . . , nm − 1}

(9)

Since the EMS algorithm only involves linear operations, the termsUvpi
[k], Vcpi

[k] have the

same LDR structure as defined in (2).

B. Variable node elementary step

Let assume that an elementary step describing the variable node update hasV and I as input

messages andU as output message. The vectorsV, I andU of sizenm are sorted in decreasing

order. We note also byβV, βI andβU their associated index vectors. Using the BP equations in

the log-domain for the variable node update [9], the goal of an elementary step is to compute

the output vector containing thenm largest values among the2nm candidates (10) (stored in an

internal vector messageT). The processing of the elementary step in the case of a variable node

update is described by:

T [k] = V [k] + Y T [nm + k] = γV + I[k] k ∈ {0, . . . , nm − 1} (10)

with

Y =







I[l] if βI [l] = βV [k] k, l ∈ {0, . . . , nm − 1}

γI if βI [l] /∈ βV

The compensation valueγ is used when the required symbol index is not present in an input

message.

Whenever theV input corresponds to the LLR channel vector of the received symbol, the

equation (10) becomes:

T [k] = V [k] + Y T [nm + k] = Lch[βI [k]] + I[k] k ∈ {0, . . . , nm − 1}

since we do not assume that LLR vectors are truncated/compensated messages.
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C. Low complexity implementation of a check node elementarystep

This section describes in details the algorithm that we propose for an elementary component

of the check node. This step is the bottleneck of the algorithm complexity and we discuss its

implementation in details in the rest of the paper. The checknode elementary step hasU andI as

input messages andV as output message. All these vectors are of sizenm are sorted in decreasing

order. Similar to the variable node update, we note also byβU, βI andβV their associated index

vectors. Following the EMS algorithm presented in [7], we define S(βV [i]) as the set of all the

possible symbol combinations which satisfy the parity equation βV [i]⊕ βU [j]⊕ βI [p] = 0. With

these notations, the output message values are obtained with:

V [i] = max
S(βV [i])

(U [j] + I[p]) i ∈ {0, . . . , nm − 1} (11)

Just as in the variable node update, when a required index is not present in the truncated vector

U or I , its compensated valueγ is used in equation (11). Without a particular strategy, the

computation complexity of an elementary step is dominated by O(n2
m).

We propose a low computational strategy to skim the two sorted vectorsU andI , that provide

a minimum number of operations to process thenm sorted values of the output vectorV. The

main component of our algorithm is a sorter of sizenm, which is used to fill the output message.

For the clarity of presentation, we use a virtual matrixM built from the vectorsU and I (cf.

Fig.3), each element ofM being of the formM [i, p] = U [j]+ I[p]. This matrix contains then2
m

candidates to update the output vectorV. The goal of our algorithm is to explore in a efficient

way M in order to compute iteratively itsnm largest values, using the fact thatM is build from

sorted messages. For instance, we remark that thenm largest values ofM are located in the

upper part of the anti diagonal of the matrix. The basic operations of the elementary step are:

1) Initialization: the values of the first column ofM are introduced in the sorter.

2) Output: the largest value is computed.

3) Test: does the associated GF(q) index of the output value already exist in the output vector.

• Yes: no action

• No: the value is moved in the vectorV

4) Evolution: The right neighbor - with regard to the M matrix- of the filled value is

introduced in the sorter.

5) Go to (2)
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In order to ensure that all values of the output vectorV correspond to different symbols

αV ∈ GF (q), we can not stop the algorithm after onlynm steps, because it is possible that

among the computed values afternm steps, two or more values correspond to the same index

αV . Let us definenc as the number of necessary steps so that all thenm values of the output

vector are computed. The parameternc is used to indicate the computational complexity of our

new EMS implementation. We note thatnc ∈ [nm, n2
m

2
]. Of course, the value ofnc depends on

the LDR vectorsU andI , and a strictly valid implementation of the elementary stepshould take

into account the possibility of the worst case. However, we have found thatnc is most of the time

quite small. As a matter of fact, the distribution ofnc has an exponential shape and decreases

very rapidly, e.g.prob(nc ≤ nm +4) = 0.9816, for a regular GF(256)-LDPC code,nm = 32 and

a signal to noise ratio in the waterfall region of the code. Based on this observation, it seems

natural to consider that the bad situations with largenc are sufficiently rare so that they do not

really impact on the decoder performance. We have verified this claim by simulations of density

evolution and found that usingncmax = 2nm does not change the value of the decoding threshold

for various LDPC code parameters. Note that withncmax = 2nm, sometimes the output vector

V could be filled with less thannm values and in those cases, we fill the rest of the vector

with a constant value equal to the additional termγV . The worst case for the complexity of an

elementary step is thenO(ncmax log2 nm) = O(2nm log2 nm), which corresponds to the number

of max operations needed to insertncmax elements into a sorted list of sizenm. In the next

section, we study in details the complexity of our new implementation of the EMS algorithm.

V. COMPLEXITY AND MEMORY EVALUATION OF THE ALGORITHM

The computational complexity per bit of a single parity nodeand a single variable node are

indicated in table I in terms of their connexion degreedc (resp.dv). This complexity applies

both for regular and irregular non binary LDPC codes, the local value of the connexion degree

following the connectivity profile of the code. This complexity assumes the use of truncated

messages of sizenm, and the implementation of the check node update presented in this

paper. Note that we indicated the worst case complexity for the check node withnc = ncmax

and that the average complexity is often less than that. The complexity associated with the

update of vectorsU at the variable node output is obtained with a recursive implementation

of the variable node, which is used only for connexion degrees dv ≥ 3. As a result, the

complexity of our decoding algorithm is dominated byO(nm log2(nm)) for both parity and
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variable nodes computation. Interestingly, the complexity CompCN of a check node andCompV N

of a variable node are somewhat balanced, which is a nice property that should help an efficient

hardware implementation based on a generic processor model. Moreover, one can remark that

the complexity of the decoder does not depend onq, the order of the field in which the code is

considered. Let us again stress the fact that the complexityof our decoder varies in the order

of O(nm log2(nm)) and with nm ≪ q, which is a great computational reduction compared to

existing solutions [7], [8], [9].

Finally, for a complete characterization of the computational complexity of our non-binary

LDPC decoding algorithm, we also reported in table I the associated complexity of the permu-

tation step (CompPerm) and the complexity of the post-processing (CompPost).

The memory space requirement of the decoder is composed of two independent memory

components, the memory corresponding to the channel messages L ch and the edge memory

corresponding to the extrinsic messagesU, V with their associated index vectorsβ. Storing

each LDR value onNbits bits in finite precision would therefore require a total number of

nm ∗ N ∗ dv ∗ (Nbits + log2 q) bits for the edge memory. Thus, the memory storage depends

linearly onnm, which was the initial constraint that we put on the messages.

Sincenm is the key parameter of our algorithm that tunes the complexity and the memory

of the decoder, we now need to study for which values ofnm the performance loss is small

or negligible. In order to give a first answer to this question, we have made an asymptotic

threshold analysis of the impact ofnm on the threshold value. For a rateR = 0.5 LDPC code

with parameters(dv = 2, dc = 4), Fig.4 plots the estimated threshold in(Eb/N0)dB of our

algorithm for different values ofnm and two different field orders GF(64) and GF(256). In this

paper, we do not claim that the EMS algorithm verifies the necessary symmetry conditions that

ensures the convergence of density evolution. Therefore, the validity of the threshold values is

not proved. However, the estimated thresholds are a good indicator of the decoder behavior when

the codeword length is large and the nonzeros values in the matrix are chosen uniformly.

The BP thresholds are equal toδ = 0.58dB for the GF(64) code andδ = 0.5dB for the

GF(256) code [7]. As expected, the thresholds become better asnm increases, and can approach

the threshold of BP with much less complexity. We can use the plots on Fig.4 as first indication for

choosing the field order of the LDPC code that corresponds to agiven complexity/performance

trade-off. Note, however, that this asymptotic study has tobe balanced with the girth properties

of finite length codes, since it has been identified in [3], [4]that ultra-sparse LDPC codes in
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high order fields and with high girth have excellent performance.

VI. SPECIAL CASE: FURTHER MEMORY REDUCTION FOR CYCLE CODES

It has been shown that for high order fieldsq ≥ 64, the best GF(q)-LDPC codes decoded

with BP should beultra sparse(cycle codes,dv = 2) [2], [3]. In the EMS implementation,

an improved trade-off memory space/performance can be achieved for the decoding of cycle

codes, by considering a modified scheduling of the decoding steps described in Section IV. We

have adapted the shuffled scheduling proposed in [14] to the non-binary case, with the objective

of greater storage memory reduction. Note that the adaptation of the shuffled scheduling for

NB-LDPC codes has been proposed independently in [15], but the authors did not study the

memory reduction that this scheduling implies.

Using a shuffled scheduling allows to store only the messagesU in the edge memory, and

the intermediate messagesI and the messagesV can be storedlocally in a processing unit. It

is therefore possible to consider more thannm values for theI and V without increasing the

storage capacity of the decoder. Let us denote bynmI
(respectivelynmV

) the number of LDR

values that form the truncated versions of messagesI (respectivelyV) inside the processing unit.

By construction, the different sizes verifynmU
≤ nmI

≤ nmV
.

The shuffled scheduling is defined as follows. For each and every check node, let{v1, . . . , vdc}

be the set of variable nodes connected to this check node. Theshuffled processing unit takes

all incoming messagesUvp that are on the edges of the check node, computes locally theVpv

messages on the same edges with the EMS algorithm, and then updates theUvp messages that

are on the edges of{v1, . . . , vdc} which are not connected to the current check node. In the

case ofdv = 2 LDPC codes, this last step is performed only with the knowledge of the channel

LLRs {L vk
}k=1,...,dc. We can consider that the shuffled processing unit works withtwo types

of messages: the externalU vectors which determine the dimension of the edge memory and

the internalV and I vectors which determine the computational complexity of decoder. Using

different values for(nmU
, nmI

, nmV
) has then an impact on the trade-off between the overall

complexity of the decoder and its performance. We now discuss this advantage of the shuffled

scheduling with a comparison with the classical flooding scheduling.

Let us consider a code(dv = 2, dc = 4) code in GF(256) of sizeNb = 848 (see section VIII-A

for more details), and let us use truncated messages of sizenm = 18 in a flooding implementation

of the EMS decoder. We consider the two following cases for a shuffled scheduling, and the
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corresponding frame error rate simulations are plotted on figure Fig.5:

• (a) The same computational complexity for the two schedules.

In this case, the size of the vectorsV andI is set tonmV
= nmI

= 18. The size of the vectors

U is set tonmU
= 9. This choice corresponds to a memory space reduction of roughly

nmU

nmV
,

with a small error performance degradation compared to the flooding implementation (Fig.5,

B and C curves).

• (b) The same edge memory space for the two schedules.

In this case, the size of the vectorsU is kept atnmU
= 18, but the size of vectorsV and I

is increased tonmV
= nmI

= 36. The shuffled scheduling provides an improvement of the

error performance (Fig.5, A and B curves), without increasing the memory requirement of

the decoder. Of course, this also induces an increase of the algorithm complexity .

As a conclusion, implementing the shuffled scheduling for non binary LDPC codes has the same

advantage of reducing the average number of decoding iterations, as for the binary shuffled

scheduling (see [15] for more details), but also provides additional degrees of freedom for the

storage/complexity/performance trade-off of an EMS decoder.

VII. QUANTIZATION OF THE EMS ALGORITHM

Toward practical hardware implementation, quantization is an indispensable issue that needs to

be resolved. The goal of this section is to find the best trade-off between the hardware complexity,

messages storage space and the error performance of the EMS algorithm. We investigate only

the impact of uniform quantization schemes. The choice of the uniform quantization scheme is

motivated by the fact that the hardware implementation of the EMS algorithm does not require

nonlinear operations and the uniform quantifier has the advantage that it is simple and fast.

Let (bi, bf ) represent a fixed-point number withbi bits for the integer part (dynamic range)

and bf bits for the fractional part. So by fixed-point representation, a real numberx is mapped

to a binary sequencex =
[

x0 . . . xbi+bf−1

]

. A direct consequence of the post-processing defined

by equation (9), is that we can use an unsigned fixed-point representation (12) to quantify the

LDR messages of the EMS algorithm.

x →

bi+bf−1
∑

j=0

xj2
bi−1−j (12)

This representation corresponds to a limit range of the LDR values of
[

0, 2bi+1 − 2−bf
]

with

a precision of2−bf . Various schemes(bi, bf ) are examined, in order to find the best trade-off
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between the number of quantization bits (bi + bf ) and the error performance degradation of the

decoder. The most representative results are summarized inFig.6, which presents the simulation

results of the EMS algorithm for an LDPC code over GF(64) of rateR = 1/2, for two sets of

parameters(nmU
, nmV

) = (8, 16) and (nmU
, nmV

) = (16, 32).

We remark that a fixed point quantization scheme withbi = 5 bits provides error performance

close to the floating implementation of the EMS algorithm, while all the quantizations having

bi = 4 bits caused an error floor region. It turns out that the apparition of this phenomenon is

due to the insufficient dynamic range of the LDR messages [16].

With the goal of speed and low storage in mind, we advice a quantization of all messages

with 5 bits, with (bi = 5, bf = 0). This representation of messages provides a balanced trade-

off between low storage and good performance. We have conducted the same finite precision

study for various rates and code lengths and have observed that (bi = 5, bf = 0) is good in all

cases. The EMS algorithm requires then only a few quantization bits, close to the fixed-point

representation of the extrinsic messages in binary LDPC decoders [18].

VIII. E XPERIMENTAL RESULTS OF THEEMS DECODER

A. Performance loss compared to the non-binary BP algorithm

In this section, we present the simulation results of our lowcomplexity EMS algorithm,

compared with the BP algorithm considered as reference. We have made the comparison with

regular GF(q)-LDPC codes over high order fields, of rateR = 1/2 (dv = 2, dc = 4), applied

on a BPSK-AWGN channel. The BP has been implemented in floating point precision, and a

quantization of(b = 5, q = 0) is used for the EMS algorithm, as pointed out in the preceding

section. In figure Fig.7, we have reported the frame error rate (FER) of a short code with length

Nb = 848 equivalent bits, corresponding to a lengthN = Nb/ log2(q) non-binary LDPC code.

The maximum number of iteration has been fixed to 1000, and a stopping criterion based on the

syndrome check is used. Note that the average number of decoding iterations is rather low for

all the simulation points belowFER = 10−3 (as an example, the average number of iterations

for the (2, 4) GF(64) code atFER = 6 ∗ 10−4 is equal to3).

We denote by EMSGF(q)
nmU

,nmV
the EMS decoder over the field GF(q) with parametersnmU

, nmV

and nmI
= nmV

. Let us first discuss the performance of the EMS decoder with respect to the

BP decoder. For the code over GF(64), the EMSGF(64)
8,16 is the less complex algorithm presented. It

performs within0.25dB of the BP decoder in the waterfall region. The EMSGF(64)
16,32 algorithm has
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0.06dB performance loss in the waterfall region and performs even better than the BP decoder

in the error floor region. The fact that the EMS can beat the BP decoder in the error floor

is not surprising and is now well known in the literature. This behavior comes from the fact

that for small code lengths, an EMS algorithm corrected by anoffset could be less sensitive to

pseudo-codewords than the BP.

Note that with this example, the only advantage of using a GF(256) code in terms of perfor-

mance/complexity trade off is that it provides an error floorregion lower than the GF(64) code.

Finally, it is interesting to compare the error performanceof EMSGF(64)
16,32 and EMSGF(256)

16,32 because

they offer the same decoding complexity. In the waterfall region of the codes EMSGF(64)
16,32 performs

better that EMSGF(256)
16,32 with a gain of0.19dB. The good performance of the GF(64) code in the

waterfall region is determined by the value ofnmV
= 32 parameter, which is sufficiently close

to the field order to provide a good threshold. At low FER, the performance gap between the

two codes becomes smaller, which seems to indicate that theGF (256) LDPC code will perform

better that theGF (64) LDPC code at very low FER (FER<10−7), without increasing the decoder

complexity. Note that this observation balances the conclusions of Section V, and stresses another

advantage of considering very high order field non-binary LDPC codes. Moreover, the EMS is

quite robust since the complexity reduction fromq = 256 to nmV
= 32 is a lot higher than from

q = 64 to nmV
= 32, and the performance loss stays acceptable. Note that the other approaches

proposed in the literature [8], [9] were not illustrated on high order fields and that - to our

knowledge - the EMS decoder is the first decoder that proposesa good performance complexity

trade-off for field ordersq ≥ 64.

In order to quantify the influence of the offset parameter (γ) on the decoder’s performances,

we have also reported in Fig.7 the simulations results of theEMS decoder in the particular

case when the offset is zero (EMS without offset). We remark that the error performances of

the EMSGF(256)
16,32 algorithm are greatly improved by using a proper offset, andits influence is

less significant in the case EMSGF(64)
8,16 . Generally, the influence of the offset parameter on the

error performances of theEMS decoder depends on the loss of information induced by the

truncation procedure (q − nm). If the differenceq − nm is non-negligible the use of a proper

offset is recommended.

For lack of space reasons, we present only the results for thecode/decoder parameters of figure

Fig.7, but we have conducted extensive simulations for various other code/decoder parameters

and the same kind of behavior has been observed. As seen on theresults presented in this
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section, the error performance of a hardware implementableversion of the EMS is quite close

to the performance of floating BP algorithm. Its good performance and its reduced complexity

and memory space requirement make the EMS algorithm a good candidate for the hardware

implementation of non binary LDPC decoders.

In order to improve the performance of the decoder without sacrificing much the complexity,

it would be interesting to study more precisely if the performance degradation compared to BP

comes from the truncation of the messages or from the use of amax operator at the check node

update. A correction strategy more elaborate than a single offset correction (dynamical offset

along the iterations, nonlinear correction, etc) could be more effective on either approximations.

B. Comparison with binary decoders

The main idea of this section is to compare in terms of computational complexity and error

performance the proposed EMS algorithm to its binary equivalent, the corrected Min-Sum (MS)

algorithm [10]. The complexity of the corrected MS algorithm for a single check node of degree

dc is equal to:3(dc − 2)/dc min operations per bit,(2dc − 1)/dc XOR operations per bit to

compute the sign of the output and2 real additions that correspond to the correction operation.

Also, for a bit node of degreedv the complexity is equal to(2dv − 1)/dv real additions per

bit. For a fair computational complexity comparison of algorithms, we have decided to compare

only the operations that are common to both algorithms. We thus compare the number ofmax

operations of the EMS algorithm (see table I) with themin operations of the MS algorithm and

the number of real additions necessary to two algorithms (per iteration). The specific operations

of the algorithms are not taken into account in the complexity comparison (the additions over

GF(q) for EMS algorithm and the sign computation for the MS).

The comparison has been made for short and moderate code lengths over BI-AWGN and

QAM-AWGN channels. The choice of the code length is motivated by the fact that the non-

binary LDPC codes can achieve performance very close to the Shannon limit for these lengths.

The binary codes that we used are from [17], irregular codes of sizeNb = 504 (short length) and

Nb = 1008 bits (moderate length) and of coderateR = 0.5. The corresponding non-binary codes

are of equivalent lengthN = 84 symbols over GF(64) (short length) andN = 126 symbols over

GF(256) (moderate length). The non-binary codes are regular(dv = 2, dc = 4) and of coderate

R = 0.5.

In Fig.8, we have reported the frame error rate (FER) of binary and non-binary short length
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codes. We denote by EMSGF(q)
nm

the EMS decoder over the field GF(q) with parametersnm =

nmU
= nmI

= nmV
. Let us first discuss the performance of the EMS algorithm with respect

to the corrected MS algorithm. The EMSGF(64)
18 algorithm performs better than the corrected MS

with a gain of0.375dB in the waterfall region. Furthermore for a smaller value ofnm (nm = 12

approximately 20% ofq) the EMS algorithm still outperforms the MS. Concerning thecomplexity

of these two version of the EMS, the EMSGF(64)
18 is 9 times more complex than the MS, and the

EMSGF(64)
12 is 5 times more complex than the MS. We have also plotted the errorperformance of

the EMSGF(64)
6 algorithm, which has a complexity equivalent to the binary decoder. The loss of

performance in the waterfall region is explained by the small value of nm = 6 (approximately

10% of q), which is not sufficiently close to the field order to providea good threshold.

For short code lengths, the EMSGF(64)
18 and EMSGF(64)

12 have better error performance than the

MS decoder on a very good binary LDPC code (for this rate and length) and in the same time

the complexity of our non binary decoder remains reasonablyclose to the complexity of the

binary decoder.

Over QAM-AWGN channels, the non-binary LDPC codes with a field order greater or equal to

the size of constellation has the advantage that the encoder/decoder works directly with symbols.

All mapping choices of the codeword symbols to the constellation points are equivalent and lead

to the same performance. This means that there is no loss of performance due to the demapping

process at the receiver. This is a clear advantage comparingto the binary codes. In Fig.9, we

have plotted the simulation results of the EMS algorithm andthe binary MS algorithm for the

moderate length codes, over a 256-QAM-AWGN channel. We haveused a Bit-Interleaved Coded

Modulation scheme to transmit the binary code over the 256-QAM-AWGN channel and a field

order equal toq = 256 for the non-binary LDPC codes. Note that the non-binary LDPCcodes

have been optimized with the technique described in [4].

Over the QAM256-AWGN channel the EMSGF(256)
36 algorithm performs0.5dB better than the

corrected MS algorithm which is a quite important improvement. Concerning the complexity

comparison, the EMS algorithm has approximately25 times the complexity of the binary al-

gorithm. The EMSGF(256)
6 and EMSGF(256)

12 algorithms have a performance loss in the waterfall

region due to the small value ofnm. The EMSGF(256)
6 has roughly the same complexity than

the MS decoder. As in the BI-AWGN channel case, the EMS decoder on non-binary LDPC

codes performs better than the MS algorithm on binary LDPC codes, with a reasonable increase

in complexity. Our efficient decoder shows that non-binary LDPC codes could be a reliable
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alternative for coding schemes with short to moderate codeword lengths.

Note that the EMS decoder has a quite fast convergence since the average number of decoding

iterations when a syndrome stopping criterion is used is typically half the one of the binary case.

For example, with(q = 64, nm = 18) at FER = 1e − 5, the average number of iterations for

the EMS algorithm is equal to3.3 and for its binary equivalent (Min-Sum) the average number

of iterations is6.8. This remark remains valid in the case of an 256-QAM-AWGN transmission,

where for the EMSGF(256)
36 algorithm (Fig.9) the average number of iterations is equalto 5 at

FER = 1e−5 and for the Min-Sum algoritm the average number of iterations is approximatively

9.5.

IX. CONCLUSION

We have presented in this paper a general low complexity decoding algorithm for non binary

LDPC codes, using log-density-ratio as messages. The main originality of the proposed algorithm

is to truncate the vector messages to a fixed number of valuesnm ≪ q, in order to solve the

complexity problem and to reduce the memory requirements ofthe non binary LDPC decoders.

We have also shown that by using a correction method for the messages, our EMS decoding

algorithm can approach the performance of the BP decoder andeven in some cases beat the BP

decoder. The complexity of the proposed algorithm is dominated byO(nm log2(nm)). For values

of nm providing near-BP error performance, this complexity is smaller than the complexity of

the BP-FFT decoder, and by far lower than the solutions proposed in the literature. Note that the

single parameternm tunes both the computational complexity and memory space requirements.

It also defines efficiently the trade-off performance/complexity. We have also proposed a non-

binary adaptation of the shuffled scheduling in order to induce a new degree of freedom in the

algorithm, which allows a reduction of the memory space requirements for the cycle codes.

We have compared the error performance of our algorithm withnon-binary BP and binary

corrected MS algorithms, in order to demonstrate that the proposed low complexity, low memory

EMS decoding algorithm becomes a good candidate for a hardware implementation. Since its

complexity and its memory space requirements has been greatly reduced and the performance

degradation is small or negligible, the EMS algorithm applied on non-binary LDPC codes build

in very high order fields could be an alternative to existing solutions.

Although the EMS algorithm could be applied to irregular LDPC codes as described in this

paper, an interesting issue would be to study if the numbernm of values kept in messages
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needs to be optimized with respect to the degree of the variable nodes. This issue is of particular

importance since good irregular LDPC codes are usually moredense than regular ones, increasing

thereby the memory requirements for message storage.

The authors are grateful to the reviewers for insightful comments and suggestions, which have

improved this paper.
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Per bit per iteration No. max No. real add No. add over GF(q)

CompCN (3(dc − 2)ncmax log
2

nm)/(dc log
2

q) 3(dc − 2)(ncmax + nm)/(dc log
2

q) 3(dc − 2)(ncmax + nm)/(dc log
2

q)

CompV N (3dv − 4)nm log
2
(2nm)/(dv log

2
q) (3dv − 4)2nm/(dv log

2
q) 0

CompP ost 0 nm/(log
2

q) 0

CompP ermp 0 0 nm/(log
2

q)

TABLE I

COMPUTATIONAL COMPLEXITY OF THE MESSAGE UPDATES WITH THEEMS ALGORITHM AND MESSAGES OF SIZEnm

nm

nm
U

h v 0 0 h v 1 1 h v 22

vd

Lch Lch

U

Check Node

Vcp U

Variable Node v v v 

 v p  1    Vp v 0  1 0
U v p 2  2

0 1 2

   
  

Lch 0  1  2

0

1

2 p  c

 p c

Permutation Node

nm
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