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Abstract. Spiking Neuron Networks (SNNs) overcome the computa-
tional power of neural networks made of thresholds or sigmoidal units.
Indeed, SNNs add a new dimension, the temporal axis, to the represen-
tation capacity and the processing abilities of neural networks. In this
paper, we present how SNN can be applied with efficacy for cell micro-
scopic image segmentation. Results obtained confirm the validity of the
approach. The strategy is performed on cytological color images. Quan-
titative measures are used to evaluate the resulting segmentations.
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1 Introduction

Image analysis in the field of cancer screening is a significant tool for cytopathol-
ogy [1],[2]. Two principal reasons can be highlighted. First, the quantitative
analysis of shape and structure of nuclei coming from microscopic color images
brings to the pathologist valuable information for diagnosis assistance. Second,
the quantity of information that the pathologist must deal with is large, in partic-
ular when the number of cancer screening increases. That is why, a segmentation
scheme for microscopic cellular imaging must be efficient for reliable analysis.

Many cellular segmentation methods have been presented so far [3],[4]. They
include watershed [5],[6],[7], region-based [8] and threshold-based methods [9].
Application of active contour has been widely investigated for cell segmentation
[10],[11]. Cells stained with Papanicolaou international staining make it possible
to classify the color pixels among three classes [13]: background, cytoplasm or
nucleus. However, this classification cannot be perfect. Indeed, a fraction on
nuclei pixels have the same color then cytoplasm pixels because of the variability
of the nuclei according to the type of the cells and to the chromatin distribution.
Moreover, for some cytopathologies, the mucus present in the background has
the same color than some cells (cytoplasm and nucleus).
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Another problem for the design of cellular segmentation schemes is on how to
evaluate the segmentation quality. Indeed, almost all the segmentation schemes
have some parameters. Human observation highlights that the values chosen for
these parameters are significant for the quality of the segmentation. However,
for an automatic selection of the optimal parameter values, the quality of seg-
mentation must be also automatically evaluated. In literature, there are several
quality segmentation criteria: Lui and Borsotti [14], classification rates and other
statistical measures [15].

Spiking Neuron Networks (SNNs) are often referred to as the 3rd generation
of neural networks [16]. Highly inspired from natural computing in the brain
and recent advances in neuroscience, they derive their strength and interest
from an accurate modeling of synaptic interactions between neurons, taking into
account the time of spike firing. SNNs overcome the computational power of
neural networks made of thresholds or sigmoidal units [17]. The use of spiking
neurons promises high relevance for biological systems and, furthermore, might
be more flexible for computer vision applications [18].

In this paper, a spiking neural network is used to segment cellular microscopic
images with two approaches : unsupervised and supervised training with Hebbian
based winner-take-all learning. This learning modifies the weights of the pre-
synaptic neurons with the winning output [19]. This observation is in agreement
with the fact that, in biological neural networks, different axonal connections will
have different signal transmission delays [20]. In this article, we seek, through a
series of experiments, the best parameters of the SNN network to have a good
segmentation.

The paper is organized as follows : in the first Section, related works are
presented within the literature of spiking neural network (SNNs). Second Sec-
tion is the central part of the paper and is devoted to the description of the
architecture of a spiking neural network with multiple delay connections, the
encoding mechanism for converting the real valued inputs into time vectors and
the learning rule. Results and discussions of the experiments are reported in the
third Section. Last Section concludes.

2 Spiking Neuron Networks

Spiking neural networks (SNNs) are a class of ANNs that are increasingly receiv-
ing the attention as both a computationally powerful and biologically plausible
mode of computation [21],[22]. SNNs model the precise time of the spikes fired
by a neuron, as opposed to the conventional neural networks which model only
the average firing rate of the neurons. It is proved that the neurons that convey
information by individual spike times are computationally more powerful than
the neurons with sigmoidal activation functions [23].

A network architecture consists in a feedforward network of spiking neurons
with multiple delayed synaptic terminals (Fig.1(a)). Neurons in the network gen-
erate action potentials, or spikes, when the internal neuron state variable, called
”membrane potential”, crosses a threshold ϑ. The relationship between input
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spikes and the internal state variable is described by the spike response model
(SRM), as introduced by Gerstner [24]. Depending on the choice of suitable
spike-response functions, one can adapt this model to reflect the dynamics of
a large variety of different spiking neurons. Formally, a neuron j, having a set

Fig. 1. (a) Spiking neural network architecture; (b) Multiple synapses transmitting
multiple spikes.

Γj of immediate predecessors (”pre-synaptic neurons”), receives a set of spikes
with firing times ti, i ∈ Γj . Any neuron generates at most one spike during the
simulation interval, and fires when the internal state variable reaches a thresh-
old ϑ. The dynamics of the internal state variable xj(t) are determined by the
impinging spikes, whose impact is described by the spike-response function ε(t)
modeling a simple α-function weighted by the synaptic efficacy wij :

xj(t) =
∑

i∈Γj

m
∑

k=1

wk
ijε(t − ti − dk) (1)

In the network as introduced in [25], an individual connection consists in a fixed
number of m synaptic terminals, where each terminal serves as a sub-connection
that is associated with a different delay and weight (Fig.1(b)). The delay dk of
a synaptic terminal k is defined by the difference between the firing time of the
pre-synaptic neuron, and the time the post-synaptic potential starts rising.

3 Network architecture, Learning and Encoding

However, before building a SNN, we have to explore three important issues:
network architecture, information encoding and learning method. Then, we will
use a SNN to segment cellular images.

3.1 Network architecture

The network architecture consists in a fully connected feedforward network of
spiking neurons with connections implemented as multiple delayed synaptic ter-
minals. We consider two different topologies for unsupervised and supervised
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learning. For unsupervised learning, the SNN performs its learning directly on
the pixels of the image to classify. For unsupervised learning, a reference data
set of pixels from different images is used for learning.

In both topologies depicted in Figure 2(a) and Figure 2(b), the network con-
sists in an input layer, a hidden layer, and an output layer. The first layer is
composed of RGB values of pixels. Each node in the hidden layer has a localized
activation Φn = Φ(‖X − Cn‖, σn) where Φn(.) is a radial basis function (RBF)
localized around Cn with the degree of localization parameterized by σn. Choos-
ing Φ(Z, σ) = exp − (Z2/2σ2) gives the Gaussian RBF. This layer transforms
the RGB values of pixels in first layer to temporal values. Third layer consist in
class outputs (cell background, cytoplasm and nuclei).

(a)

(b)

Fig. 2. (a) Network topology for unsupervised training; (b) Network topology for su-
pervised training.

Instead of a single synapse, with its specific delay and weight, this synapse
model consists in many sub-synapses, each one with its own weight and delay dk,
as shown in Figure 1.b. The total contribution of all presynaptic neurons is given
by equation (1). The neuron model implemented is the SRM0 [24]. The delays
dk are fixed for all sub-synapses k, varying from zero in 1ms fixed intervals.
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3.2 Information encoding

Bohte et al. [26], presented a method for encoding the input data to enhance the
precision. Each neuron of entry is modeled by a local receiving field (RF). For
a variable with range of [Max..Min], a set of m Gaussian receptive RF neurons
are used. The center Ci and the width σi of each RF neuron i are determined
by the following equations:

Ci = Imin +

(

2i − 3

2

)(

Imax − Imin

m − 2

)

(2)

σi =
1

γ

Imax − Imin

m − 2
(3)

where m is number of receptive fields in each population and a value of 1.5
is used for the variable γ. For each n-dimensional input pattern, the encoding
scheme results in a matrix n × m of values between 0 and 1. These values are
then converted to delay times. While converting the activation values of RFs into
firing times, a threshold has been imposed on the activation value. A receptive
field that gives an activation value less than this threshold will be marked as
not-firing and the corresponding input neuron will not contribute to the post-
synaptic potential.

3.3 Learning method

The approach presented here implements the Hebbian reinforcement learning
method through a winner-take-all algorithm [27],[28]. For unsupervised learning,
a Winner-Takes-All learning rule modifies the weights between the input neurons
and the neuron first to fire in the output layer using a time-variant of Hebbian
learning. The synaptic weighs should be randomly initialized. When an input
pattern is presented to the network, neurons are expected to fire. The first neuron
to fire is called the winner of the competitive process. Only the weights of the
winner neuron are updated using a Hebbian learning rule L(∆t). This learning
function controls the learning process by updating the weight. It increases the
weights of the connections that received spikes immediately before the fire of j
and decrease remaining weights. For a weight with delay dk from neuron i to
neuron j we use [29]:

∆wk
ij = ηL(∆tij) (4)

And

L(∆t) = (1 + b)e
(∆t−c)2

2(k−1) − b (5)

with
k = 1 − ν2

2ln b
1+b

where: L(.) is the learning function; η is the learning rate; ν determines the
width of the learning window; ∆t is the difference between the arriving of the
spike and the fire of neuron j; b determines the negative update given to a
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neuron; c fixes the peak of the learning function; wk
ij is the increase of the kth

connection between neurons i and j. The weights are limited to the range 0 to
wmax, the maximum value that a weight can take.

4 Experimental Results and Discussion

4.1 Microscopic cells database

For the considered class of microscopic images, a microscopy expert has to choose
judicious images that well describe the whole segmentation problem (a ground
truth). This ground truth database can be used for the learning step and also
as a reference segmentation to evaluate the relevance of an automatic segmen-
tation. In the sequel, We will consider a publicly available database 1 [12] of 8
microscopic images of bronchial tumors (752 x 574 pixels). The pixels of these
images have to be classified into one of the three following classes background,
cell cytoplasm and cell nucleus. Figure 3(a)-(b) shows a microscopic color image
and its ground truth. Pixel dataset has been split to produce training, validation
and test sets.

(a) (b)

Fig. 3. (a) Original image; (b) Ground truth.

4.2 Segmentation results

Several experiments are carried out by changing the number of synapses, the
number of receptive fields and the size of training corpus to select the best
network parameters. Table 1 show these parameters.

Images in Figure 4 show segmentation results with our segmentation scheme
in comparison with the expert segmentation. it is worth to note that the mucus
present in all images is correctly identified as background.

1 http://users.info.unicaen.fr/˜lezoray/database.php
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Table 1. Best parameter of the SNN.

Receptive
field

Subsynapse Threshold Training
set

η τ υ b c

8 12 9 10% 0.0025 3 5 -0.007 -2.3

Fig. 4. Cell microscopic images (First row); expert segmentation (Second row); seg-
mentation produced by unsupervised training (Third row) and segmentation produced
by supervised training (Fourth row).

4.3 Evaluation Methods

To evaluate our approach, we use several classification rates. These classifications
rates are expressed as follows:

R0 = Number of pixels well classified
Number of pixels of the image

R1 = Number of nuclei pixels well classified
Number of nuclei pixels of the image

R2 = Number of background pixels well classified
Number of background pixels of the image

R3 = RN+RB

2

(6)
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Results in Table 2 show that SNN with supervised training has the best
classification accuracies as compared to SNN with unsupervised training.

Table 2. Classification rates (best rates bold faced).

SNN with unsupervised
training

SNN with supervised train-
ing

R0 89.07% 94.27%

R1 69.57% 80.37%

R2 94.55% 99.06%

R3 82.06% 89.71%

Table 3 presents a comparison of the the classification accuracies obtained
by Meurie et al. [12] for different classifiers as well as with our SNN supervised
training. Our approach clearly outperforms all these state-of-the-art methods.

Table 3. Segmentation rates and comparison with Meurie et al. approaches [12],
with best rates bold faced.

Classifier R1

SVM 74.2%

Bayes 74.6%

K-means 74.4%

MLP 73%

Fisher 1 72.3%

KNN 70%

Supervised SNN 80.37%

5 Conclusion

An automated approach for the segmentation of cells has been presented. Seg-
mentation is based on spiking neural networks with unsupervised training and
supervised training. At first, the network is build, a subset of the images pixels
is taken to be learned by the network and finally the SNN processes the rest of
the images to have as a result a number of classes quantizing the cell image.
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