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Abstract. When the amount of color data is reduced in a lossy com-
pression scheme, the question of the use of a color distance is crucial,
since no total order exists in IRn, n > 1. Yet, all existing color distance
formulae have severe application limitation, even if they are widely used,
and not necesseraly within the initial context they have been developed
for. In this paper, a manifold learning approach is applied to reduce the
dimension of data in a Vector Quantization approach to obtain data ex-
pressed in IR. Three different techniques are applied before construct
the codebook. Comparaisons with the standard LBG-based VQ method
are performed to judge the performance of the proposed approach using
PSNR, MS-SSIM and VSNR measures.

1 Introduction

Compression is a commonly used process to reduce the amount of initial data
to be stored or transmited by a channel to a receiver. To reach this reduction
goal, two compression families exist : 1) lossless compression approach (usually
entropy-based schemes) and 2) lossy compression techniques. In those latters,
compression operates as a nonlinear and noninvertible operation and is applied
on individual pixel (scalar quantization) or group of pixels (Vector Quantization
– VQ). VQ corresponds to the coding structure developed by Shannon in his
theoretical development of source coding [1]. Conceptually, it is an extension of
scalar quantization to a multidimensional space.

In VQ, the input image is parsed into a sequence of groups of pixels, referred
to as input vectors. This sequence is termed the test set, and the training set

corresponds to a set of training images. VQ maps a vector x of dimension k to
another vector y of dimension k belonging to a finite set C (codebook) containing
n output vectors, called code vectors or codewords.

When one tries to reduce the amount of data in a multidimensional space, the
question of the used distance to measure existing difference between two candi-
date vectors is crucial. Actually no total order exists in spaces whose dimension
is greater than 1. For example, within the color domain, many distance formulae
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have been introduce to counterbalance this main drawback. Furthermore, those
formulae tend to measure the color perception as done by the Human Visual
System. For now, all distances fails to measure the distance between two vec-
tors, specially for chromatic data, represented by a 3D vector (C1, C2, C3). In
addition, when one tries to apply VQ techniques on 3D data (i.e., colorimetric
data), one has to measure the distance betweeen multidimensional color vectors
to construct the final codebook. In that case, no satisfactory distance formu-
lae are available to be apply on those data. Instead of developping a dedicated
distance formula, an investigation about reduction dimensionnality methods is
performed. The aim of such an approach is to be able applying Euclidean dis-
tance on scalar obtained after performind a dimensionnality reduction process.

In this paper, a manifold learning process is applied prior a VQ compression
scheme in order to reduce the data dimensionality to generate the codebook.
Comparison with standard VQ scheme is performed to measure the effeciency
of the proposed approach.

2 Dimensionality Reduction

Given a set of visual features describing an image, a Manifold Learning method
is used to project the data onto a new low-dimensional space. Thus, nonlinear
new discriminant features of the input data are yielded. The obtained low di-
mensional sub-manifold is used as a new representation that is transmitted to
classifiers. When data objects, that are the subject of analysis using machine
learning techniques, are described by a large number of features (i.e. the data
is high dimensional) it is often beneficial to reduce the dimension of the data.
Dimensionality reduction can be beneficial not only for reasons of computational
efficiency but also because it can improve the accuracy of the analysis. Indeed,
traditional algorithms used in machine learning and pattern recognition appli-
cations are often susceptible to the well-known problem of the curse of dimen-
sionality, that refers to the degradation in the performance of a given learning
algorithm as the number of features increases. To deal with this issue, dimen-
sionality reduction techniques are often applied as a data pre-processing step or
as part of the data analysis to simplify the data model. This typically involves
the identification of a suitable low-dimensional representation of the original
high-dimensional data set. By working with this reduced representation, tasks
such as classification or clustering can often yield more accurate and readily in-
terpretable results, while computational costs may also be significantly reduced.
Dimensionality reduction methods can be divided into two sets wether the trans-
formation is linear or nonlinear. We detail here the principles of three well-known
linear and nonlinear dimensionality reduction methods: Principal Components
Analysis (PCA)[2], Laplacian Eigenmaps (LE)[3] and Manifold Parzen Window
(MPW) [4]. Let X = {x1,x2, · · · ,xn} ∈ R

p be n sample vectors. Dimensionality
reduction consists in finding a new low-dimensional representation in R

p with
q " p.
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2.1 Principal Components Analysis

The main linear technique for dimensionality reduction, principal components
analysis (PCA), performs a linear mapping of the data to a lower dimensional
space in such a way, that the variance of the data in the low-dimensional repre-
sentation is maximized. Traditionally, principal component analysis is performed
on the symmetric covariance matrix Ccov or on the symmetric correlation matrix
Ccor. We will denote C one of these two matrices in the sequel. From such a sym-
metric matrix, we can calculate an orthogonal basis by finding its eigenvalues
and eigenvectors. Therefore, PCA simply consists in computing the eigenvec-
tors and eigenvalues of the matrix C: C = UΛUT where Λ = diag(λ1, · · · , λn)
is the diagonal matrix of the ordered eigenvalues λ1 ≤ · · · ≤ λn, and U is a
p × p orthogonal matrix containing the eigenvectors. Dimensionality reduction
is then obtained by the following operator hPCA : xi → (y1(i), · · · , yq(i)) where
yk(i) is the ith coordinate of eigenvector yk. In the rest of this paper, we will
denote hCov

PCA and hCor
PCA, dimensionality reduction performed with PCA of the

covariance or the correlation matrix.

2.2 Laplacian Eigenmaps

Given a neighborhood graph G associated to the vectors of X , one consid-
ers its adjacency matrix W where weights Wij are given by a Gaussian ker-

nel Wij = k(xi,xj) = e
(

− ||xi−xj ||
2

σ2

)

. Let D denote the diagonal matrix with

elements Dii =
∑

j Wij and ∆ denote the un-normalized Laplacian defined by
∆ = D−W . Laplacian Eigenmaps dimensionality reduction consists in searching
for a new representation {y1,y2, · · · ,yn} with yi ∈ R

n, obtained by minimizing
1
2

∑

ij

∥

∥yi − yj

∥

∥

2
Wij = Tr(YT ∆Y) with Y = [y1,y2, · · · ,yn]. This cost func-

tion encourages nearby sample vectors to be mapped to nearby outputs. This is
achieved by finding the eigenvectors y1,y2, · · · ,yn of matrix ∆. Dimensionality
reduction is obtained by considering the q lowest eigenvectors (the first eigen-
vector being discarded) with q " p and is defined by the following operator
hLE : xi → (y2(i), · · · , yq(i)) where yk(i) is the ith coordinate of eigenvector yk.

2.3 Manifold Parzen Window

Considering X , one can associate an unknown probability density function pX(.).
Let a training set contain l samples of that random variable, collected in a l×n
matrix X whose row xi is the i-th sample. Then, the goal is to estimate the
density pX(.). Let us consider a small region R centered on the point x at which
we wish to determine the probability density. In order to count the number K of
points falling within this region, a commonly used way is the use of the following
function

k(u) =

{

1 |ui| ≤ 1/2, i = 1, . . . , D
0 otherwise

(1)
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that represents a unit cube centered on the origin. The function k(u) is known
as a Parzen window. From this, the quantity k(x−xn)/h will be one if the data
point xn lies inside the cube, and zero otherwise. Thus the total number of data
points lying inside this cube is given by

K =

N
∑

n=1

k

(

x − xn

h

)

(2)

Thus, the estimate density at data point x is given by

p(x) =
1

N

N
∑

n=1

1

hp
k

(

x − xn

h

)

(3)

where V = hp is the volume of the cube of side h in p dimensions.
Nevertheless, this kernel density estimator suffers from one of the same prob-

lems encountered using the histogram method, namely the presence of artificial
discontinuities at the cube boundaries.

To prevent this, one uses a smoother kernel function based on a Gaussian
kernel defined as follows:

p(x) =
1

N

N
∑

n=1

1√
2πh2

exp

(

−‖x− xn‖2

2h2

)

(4)

where h represents the standard deviation of the Gaussian components, i.e.

can be interpreted as the covariance matrix C. In that case, h2 represents the
determinant |C|.

In order to obtain a more compact representation of the inverse Gaussian,
one stores only the eigenvectors associated with the first few largest eigenval-
ues of Ci, as described below. The eigen-decomposition of a covariance matrixC
can be expressed as: C = V DV T , where the columns of V are the orthonormal
eigenvectors and D is a diagonal matrix with the eigenvalues λ1, . . . , λn, that
we will suppose sorted in decreasing order, without loss of generality. The first
q eigenvectors with largest eigenvalues correspond to the principal directions of
the local neighborhood, i.e. the high variance local directions of the supposed un-
derlying q-dimensional manifold (but the true underlying dimension is unknown
and may actually vary across space). Dimensionality reduction is obtained by
considering the q lowest eigenvectors (the first eigenvector being discarded) with
q " p and is defined by the following operator hPW : xi → (y2(i), · · · , yq(i))
where yk(i) is the ith coordinate of eigenvector yk.

3 Performance Measure Protocol

To analyze the performance of the proposed approach, a comparison with the
standard VQ compression scheme (based on the use of the LBG algorithm [5])
is computed.
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The comparison operates using computable metrics. Three computable met-
rics are selected: 1) the PSNR due to its commonly use in the image processing
community, 2) the Image Quality Assessment (IQA) algorithm Visual Signal-
to-Noise Ratio (VSNR) introduced by Chandler and Hemami [6] and 3) the
IQA algorithm Multiscale Structural Similarity Index (MS-SSIM). The VSNR
has been developed to uantify the visual fidelity of natural images based on
near-threshold and suprathreshold properties of human vision. In [7] Sheikh et

al. have shown that MS-SSIM is highly competitive with all other existing IQA
algorithms.

3.1 Experimental Setup

To judge how the proposed method outperforms the standard VQ algorithm, 25
initial images in the LIVE image database are used [8]. From those images, two
datasets are generated: 1) 12 images are used as a training set and the 2) the 13
remaining images serve as test set.

From the training set, 12 codebooks (Ci)i∈[1,...,12] of size from 32 to 560 are
generated without performing the dimension reduction approach and 12 code-
books are computed after performing each one of the three manifold learning
algorithm described in section 2. The size of the used vectors to construct both
the training set and the test set is 8× 8. Those codebook sizes yields us to have
image quality from very bad to excellent.

4 Results

Table 1 presents the obtained results using the three computed metrics to mea-
sure the quality of VQ-based reconstructed images and the manifold learning
VQ-based compressed images. In this latter only the first eigenvector is used to
construct the codebook at different sizes using monodimensionnal data dm pro-
jected on that new axis. One can observe that the obtained results are slightly
better that those obtained using the initial spatial vectors to construct the code-
book. The differences are not really significant to claim that the proposed method
definitely outperforms the standard VQ-based compressed images. Nevertheless,
the construction of the codebooks applying the proposed approach has been re-
alized only using monodimensional data dm instead of 8 × 8 × 3 color data. By
the way, a simple Euclidean distance is used instead of a complex color distance.
From all tested manifold learning methods, the Laplacian Eigenmaps gives better
results than the two others, in terms of IQA measures.

Table 2 presents the quality measure results taking into account more and
more dimensions during the construction of the codebooks. One notes that for a
number of dimension greater than 3, no significant improvement of the quality
is observed. This tends to prove that no more 3D data are needed to construct
codebook of quality when the distance between data is measure using the Eu-
clidean formula. By the way, we do not need to use any specific colorimetric
distance to generate a codebook of quality.
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Table 1. Computable metrics applied on VQ-based and each one of the manifold
learning VQ-based compressed images (in that case, only data provided by the first
eigenvector are used)

Codebook size 32 80 128 176 224 272 320 368 416 464 512 560

Standard VQ

PSNR 20.3 21.2 21.0 22.1 22.3 22.8 23.9 24.1 25.3 26.7 27.2 28.2
MS-SSIM 0.919 0.948 0.956 0.963 0.965 0.969 0.970 0.971 0.972 0.973 0.974 0.976

VSNR 1.051 0.952 0.871 0.672 0.596 0.518 0.445 0.431 0.392 0.331 0.298 0.221

hCov

PCA and VQ

PSNR 23.4 25.1 26.2 26.8 26.8 27.9 28.1 28.3 28.4 28.6 28.8 29.1
MS-SSIM 0.917 0.946 0.952 0.960 0.962 0.964 0.968 0.970 0.972 0.972 0.973 0.974

VSNR 1.021 0.943 0.856 0.664 0.600 0.489 0.421 0.401 0.391 0.330 0.289 0.213

hCor

PCA and VQ

PSNR 23.2 25.4 26.3 26.8 26.7 27.5 23.9 26.1 26.5 27.0 27.1 27.9
MS-SSIM 0.912 0.943 0.954 0.961 0.960 0.957 0.965 0.968 0.970 0.972 0.973 0.974

VSNR 1.045 0.946 0.869 0.678 0.610 0.489 0.433 0.412 0.392 0.331 0.291 0.220

hLE and VQ

PSNR 23.9 26.1 26.5 27.0 27.1 27.9 28.1 28.2 28.5 28.6 28.8 29.3

MS-SSIM 0.921 0.951 0.957 0.963 0.967 0.969 0.971 0.973 0.973 0.974 0.974 0.978

VSNR 1.032 0.946 0.869 0.678 0.610 0.509 0.401 0.398 0.391 0.328 0.264 0.208

hPW and VQ

PSNR 23.6 25.2 25.8 27.7 27.2 27.5 27.8 28.1 28.2 28.3 28.3 28.5
MS-SSIM 0.916 0.942 0.951 0.958 0.964 0.970 0.969 0.969 0.971 0.972 0.972 0.973

VSNR 1.043 0.923 0.857 0.654 0.602 0.487 0.436 0.421 0.409 0.350 0.287 0.212

Table 2. Evolution of each computable metrics applied Laplacian Eigenmaps VQ-
based compressed images when the number of eigenvectors increases

Codebook size 32 80 128 176 224 272 320 368 416 464 512 560

λ1

PSNR 23.9 26.1 26.5 27.0 27.1 27.9 28.1 28.2 28.5 28.6 28.8 29.3
MS-SSIM 0.921 0.951 0.957 0.963 0.967 0.969 0.971 0.973 0.973 0.974 0.974 0.978

VSNR 1.032 0.946 0.869 0.678 0.610 0.509 0.401 0.398 0.391 0.328 0.264 0.208

λ2

PSNR 24.22 26.32 26.67 27.5 27.6 28.3 28.6 28.8 29.2 29.6 29.5 29.7
MS-SSIM 0.923 0.953 0.960 0.965 0.968 0.972 0.973 0.974 0.973 0.976 0.974 0.980

VSNR 1.036 0.949 0.874 0.682 0.618 0.512 0.421 0.408 0.398 0.333 0.275 0.214

λ3

PSNR 24.33 26.41 26.70 27.8 28.0 28.4 28.9 29.2 29.5 29.8 29.7 30.2
MS-SSIM 0.924 0.954 0.962 0.965 0.968 0.972 0.974 0.974 0.974 0.977 0.975 0.981

VSNR 1.037 0.951 0.876 0.684 0.619 0.515 0.424 0.414 0.402 0.335 0.277 0.217

λ4

PSNR 24.35 26.44 26.71 27.9 28.1 28.45 29.1 29.4 29.7 29.8 29.9 30.3
MS-SSIM 0.924 0.955 0.963 0.966 0.969 0.973 0.974 0.975 0.974 0.978 0.977 0.982

VSNR 1.037 0.952 0.876 0.686 0.621 0.516 0.427 0.416 0.404 0.338 0.281 0.219

Fig. 1 shows an example of reconstruted image when a dimension reduction
process is applied prior the VQ (a) or not (b).
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(a) (b)

Fig. 1. Example of hLE + VQ reconstructed image (a) and standard VQ reconstruted
image (b) using a codebook size equal to 100

5 Conclusion

In this paper a dimensionnality reduction is applied before performing a VQ-
based compression technique. Using such an approach, problems concerning the
selection of a good colororimetric distance to construct the codebook is evac-
uated, since obtained data from manifold learning method are not color data.
In that case, an Euclidean distance can be used. In a first part, three manifold
learning methods have been compared to the standard VQ compression scheme
in terms of PSNR, MS-SSIM and VSNR values. Laplacian Eigenmaps applied
before the construction of the codebook give best results. In a second part, it
has been shown that no more than 3 eigenvectors need to be use to improve the
quality of the results. By the way, one can reach best quality using 3D data than
initial spatial color vectors.
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