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ABSTRACT

The extension of lattice based operators to manifolds is still

a challenging theme in mathematical morphology. In this pa-

per, we propose to explicitly construct complete lattices and

replace each element of a manifold by its rank suitable for

classical morphological processing. Manifold learning is con-

sidered as the basis for the construction of a complete lattice.

The whole processing of multivariate functions is expressed

on graphs to have a formalism that can be applied on images,

region adjacency graphs, and image databases. Several exam-

ples in microscopy do illustrate the benefits of the proposed

approach.

Index Terms— Multivariate, Mathematical Morphology,

Graphs.

1. INTRODUCTION

Mathematical Morphology (MM) is a nonlinear approach to

image processing that relies on a fundamental structure, the

complete lattice L [1]. A complete lattice is a nonempty set

equiped with an ordering relation, such that every non-empty

subset K of L has a lower bound ∧L and an upper bound

∨K. With the complete lattice theory, it is possible to define

morphological operators for any type of data once a proper

ordering is established [2]. Then morphological operators are

represented as mappings between complete lattices in com-

bination with matching patterns called structuring elements.

If Mathematical Morphology is well defined for binary and

gray scale images, there exist no general accepted extension

that permits to perform basic operations on multivariate data

since there is no natural ordering on vectors. Several orders

have been reported in literature but they are reduced to consid-

ering one specific type of images (color [3] or tensor images

[4]). As a consequence, if mathematical morphology has been

very popular for the segmentation of gray scale microscopy

images, this is not the case with multivariate images. In this

paper, we propose an approach to tackle this aspect. To this

aim, a graph-based formalism for the morphological process-

ing of multivariate images is presented.
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2. RANK TRANSFORM

A multivariate function is considered as a mapping f : Ω →
R

p where p is the dimensionality of the vectors. One way to

define an ordering relation between vectors is to use a trans-

form [5] h : R
p → R

q, with q ≪ p followed by a condi-

tional ordering on each dimension of R
q. Then, ∀(xi, xj) ∈

R
p × R

p, xi ≤ xj ⇔ h(xi) ≤ h(xj). From this, it is

easy to show the following equivalence (complete lattice on

R
p)⇔(bijective application h : R

p → R
q)⇔(rank transform

on R
p) [6]. This implies that, to induce a complete lattice,

the vectors’ values are not important but only their position

in the lattice: this corresponds to a rank transform defined by

the mapping h : R
p → N. Ordering comparisons involved in

morphological operations are performed directly on ranks and

one obtains a common framework valid for data of arbitrary

dimensions.

3. MATHEMATICAL MORPHOLOGY ON GRAPHS

A graph is a couple G = (V,E) where V is a finite set

of vertices and E is a set of edges included in a subset of

V × V . Two vertices are adjacent if the edge (u, v) ∈ E.

u ∼ v denotes the set of vertices u connected to the ver-

tex v via the edges (u, v) ∈ E. A graph is weighted if it is

associated with a weight function k : E → R
+ satisfying

k(u, v) > 0 if (u, v) ∈ E, and k(u, v) = 0 if (u, v) /∈ E.

We now introduce several definitions. The neighborhood set

of vertices N (G, v) of a vertex v is defined as: N (G, v) =
{u ∈ V : (u, v) ∈ E} ∪ {v}. The set of edges A(G, v)
connecting any vertices in N (G, v) is defined as: A(G, v) =
{(u, w) ∈ E : u ∈ N (G, v), w ∈ N (G, v)}. A structur-

ing element S(G, v) at a given vertex v is a sub-graph of

G defined as: S(G, v) = (N (G, v),A(G, v)). With these

definitions, the erosion ǫ of a function f on a graph G at a

vertex v is defined by: ǫ(G, f, v) = {f(u) : h(f(u)) =
∧h(f(w)), w ∈ N (G, v)}. If we compare this definition

with the usual definition of an erosion, the structuring ele-

ment is directly expressed by the graph topology and the lat-

tice is defined by the use of the rank transform h. For the

case of images, this definition is equivalent to the classical al-

gebraic case. Indeed, for images, one considers grid graphs



(one vertex per pixel) and vertices are then connected accord-

ing to the chosen structuring element. However, our formu-

lation is more general since it can be applied on graphs of

the arbitrary topologies. Similar definitions can be found in

[7]. With this definition, the graph topology never changes,

but only vectors associated to vertices. We can reformulate

the erosion as a contracting erosion that modifies the graph

topology. To that aim, we define the erosion at a vertex v in

terms of vertex preservation: ǫV(G, f, v) = {u : h(f(u)) =
∧h(f(w)), w ∈ N (G, v)}. Then, one can define the vertex

erosion ǫV(G, f) and the edge erosion ǫE(G, f) of a graph

as: ǫV(G, f) = V ∩ {ǫV(G, f, v),∀v ∈ V } and ǫE(G, f) =
{(u, v) ∈ E, u ∈ ǫV(G, f), v ∈ ǫV(G, f)}. Finally a con-

tracting erosion ǫC(G, f) is an operation that produces a new

graph (ǫV(G, f), ǫE(G, f)) that is a sub-graph of G. Similar

definitions apply for dilation.

4. COMPLETE LATTICE LEARNING

In the previous definitions of Mathematical Morphology on

Graphs, the complete lattice is assumed to be known and

expressed by the rank transform h. However, the construc-

tion of such a rank transform is a difficult problem. To

perform this, we consider manifold learning methods that

enable to perform dimensionality reduction. This is equiv-

alent to a rank transform when the dimension of the pro-

jected is space is equal to one. Graph-based methods have

recently emerged as powerful tools for nonlinear dimen-

sionality reduction. Among the existing methods, we con-

sider Laplacian Eigenmaps [8]. Let {x1, x2, · · · , xn} ∈ R
p

be a set of n initial vectors. Manifold learning aims at

searching for a new representation {y1, y2, · · · , yn} with

yi ∈ R
n. From a neighborhood graph G built from the

initial data set, an adjacency matrix W is considered and

weighted by a Gaussian kernel Wij = e
(

− ||xi−xj ||
2

σ2

)

. To

have a parameterless Gaussian kernel, σ is estimated by

σ = maxv∈V,u∼v ‖f(v) − f(u)‖. Then, one seeks to mini-

mize 1

2

∑

ij

Wij‖yi − yj‖2 = Tr(YT ∆Y) with ∆ = D − W

that represents the un-normalized Laplacian (D is the degree

matrix). The solution of the previous minimization problem

can be found by solving ∆y = λDy. The eigenvectors of this

equation corresponding to the smallest non zero eigenvalues

form the manifold representation. To perform a complete

lattice learning with manifold learning, a vertex is associ-

ated to each input vector data and a neighborhood graph is

constructed. Then, we consider only the first non-zero eigen-

vector of the obtained Manifold representation and re-arrange

the initial vectors increasingly according to their value in the

first non-zero eigenvector: this defines the rank transform.

Manifold learning, although being attractive, is a time con-

suming step for the complete lattice construction when the

amount of data is large: complexity is O(n3). To overcome

this, several strategies can be considered that rely on the same

idea: to reduce the size of the data on which the complete

lattice construction is performed. We propose two strategies

in the sequel.

4.1. Data Quantization

A first strategy can consist in reducing the input data size by

Vector Quantization (VQ). Given an initial data set of size n,

VQ: R
p → R

p is applied to construct a codebook C : N →
R

p and an encoder I : R
p → N. An index h : Ω → N can be

deduced from D and I by applying h(x) = I(f(x)) to each

vector f(x) = x of the original data set. The initial data set

can be reconstructed with loss from the index and the code-

book by C(h(x)): the obtained data set is an approximation

of the initial data set with only 2k elements. The codebook

being of reduced size, one can apply manifold learning on the

complete graph associated to the codebook. This enables to

construct the complete lattice (the ordering of the codebook)

and to define the rank transform (obtained with the function

h).

4.2. Local lattice learning

A second strategy can consist in performing locally the com-

plete lattice creation. The rank transform h is defined on sub-

graphs of the initial graph: the structuring elements S(G, v).
This comes to define the rank transform only on a reduced set

of vertices: N (G, v).The manifold learning is therefore ap-

plied on the data set {f(u), u ∈ N (G, v)}. With this strategy,

the complete lattice is not available for the whole manifold

but only one sub-manifold defined, for a local processing, by

S(G, v).

5. RESULTS

In this Section, we illustrate the two above-mentioned strate-

gies for complete lattice learning.

5.1. Vector Quantization with Manifold Learning

We illustrate the use of vector quantization with manifold

learning for morphological processing. Figure 1 illustrates

this principle on a color image (f : Z
2 → R

3) represented by

a (k2 − 1)-adjacency graph that means using a k × k square

structuring element. The image is quantized into 512 colors

and the obtained codebook is re-ordered by Manifold Learn-

ing to construct the complete lattice of the 512 colors. A rank

image is created by assigning to each pixel its rank on the

complete lattice of the codebook. Then, morphological oper-

ations are performed on the rank image and the final color im-

ages are obtained by reconstruction with the codebook defin-

ing the lattice. As it can be seen in Figure 1, the induced

morphological operations enable an accurate processing of

the image. To show that our formalism is easily applicable

to any multivariate image, Figure 2 presents a morphological



processing of a multispectral image (f : Z
2 → R

20) with a

1024 codebook. The segmentation of the image is performed

with a watershed on the morphological gradient of an Alter-

nate Sequential Filter of the rank image.

5.2. Local Manifold Learning

We illustrate the use of local manifold learning for morpho-

logical processing. First, we consider the morphological pro-

cessing of Region Adjacency Graphs (RAG). From a cyto-

logical microscopic image (Figure 3(a)), a partition is con-

structed (Figure 3(b)) by labeling connected components ob-

tained from a k-means clustering with k = 4. To the ob-

tained partition, a RAG can be associated where each vertex

represents a region and edges model adjacency relations be-

tween regions. To perform morphological operations on such

a graph, one needs to define the feature vectors associated to

vertices and the distance used to compare these features. We

have used here a Mahalanobis distance and f : V → R
3×3

that represents the variance-covariance matrix associated to

each region. Several morphological contracting operations

are then applied successively: one erosion and two dilations

(Figures 3(c)-3(e)). Since these operations are contracting

ones, the number of vertices is reduced at each operation. Fig-

ure 3(f) presents the original image with boundaries of Figure

3(e) superimposed. Such processing on a RAG is a simple

alternative to region merging.

Finally, we consider the morphological processing of

image manifolds that represent high dimensional real-world

data. A database of cytological cellular images is used. This

database contains color images of cells of different sizes that

belong to 18 different classes. To each cell is associated a

region map that delineates its nuclear boundary. For visu-

alization purposes, we only consider the class of dystrophic

mesothelials (38 cells in this category). One problem with

such a database is that the images of cells have different

sizes. Therefore, we consider the 64-colors quantized color

histogram of each cell (only inside the nucleus) and we have

f : V → R
64 that associates a color histogram to each vertex.

To model this image manifold, a k-nearest neighbor graph

is constructed (k = 7). The Earth Mover Distance (EMD)

[9] is used to compare histogram feature vectors. For this

image manifold, Morphological processing is applied: two

erosions and two contracting erosions (Figure 4). The two

erosions simplify the image manifold while maintaining its

size. Therefore, a same feature vector can be associated to

different vertices and simplification acts as a suppression of

outliers. When the two erosions are contracting morpho-

logical operations, the manifold size is decreased and few

representative images have been retained. To better under-

stand the behavior of such contracting erosions, the surviving

images of Figure 4(c) are shown with red borders on a graph-

ical representation of the graph associated to Figure 4 (this

projection is obtained with Laplacian Eigenmaps). One can

Original 512 colors Quantized

f : Z
2
→ R

3 C ◦ h : Z
2
→ R

3

Rank Image Complete Lattice of the codebook

h = I ◦ f : Z
2
→ N from top left to right down

with I : R
3
→ N C : N → R

3

Erosion (5 × 5) Opening (5 × 5)

Erosion by reconstruction (5 × 5) Gradient (5 × 5)

Fig. 1. Processing examples with a rank image obtained from

Manifold Learning with Vector Quantization.



Channel 1 Channel 10 Rank Image

ASF (7 iterations MM gradient Watershed

with a square) (3 × 3 square)

Fig. 2. MM Processing example of a 20-channels multi-

spectral barley grain image.

(a) Original Image (b) Labeled partition (c) ǫC

(d) δC(ǫC) (e) δC(δC(ǫC)) (f) boundaries of (e)

Fig. 3. Morphological operations on the region adjacency

graph of a cytological image segmentation.

see that the surviving images correspond to the most represen-

tative elements of the manifold. The processing is interesting

for extracting relevant items of image data bases.

6. CONCLUSION

In this paper we presented a method that enables the use of

morphological operations on multivariate functions defined

on graphs. Morphological operators relying on a complete

lattice, the latter is dynamically constructed by manifold

learning with Laplacian Eigenmaps. To have a computation-

ally efficient solution, the manifold learning is performed

either locally or after data compression. Several examples

have illustrated the interest of such a family of operators

for the morphological multivariate processing of images and

databases in microscopy.

(a) Original cells (b) Two erosions

(c) Two contracting erosions (f) Graph of (a) with cells of (c) in red

Fig. 4. Morphological processing of cellular cytology image

data set.
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[2] E. Aptoula and S. Lefèvre, “A comparative study on

multivariate mathematical morphology,” Pattern Recog-

nition, vol. 40, no. 11, pp. 2914–2929, 2007.

[3] J. Angulo, “Unified morphological color processing

framework in a lum/sat/hue representation,” in Proceed-

ings of the 7th International Symposium on Mathematical

Morphology, 2005, pp. 387–396.

[4] B. Burgeth, A. Bruhn, N. Papenberg, M. Welk, and J. We-

ickert, “Mathematical morphology for matrix fields in-

duced by the loewner ordering in higher dimensions,”

Signal Processing, vol. 87, no. 2, pp. 277–290, 2007.

[5] J. Goutsias, H.J.A.M. Heijmans, and K. Sivakumar,

“Morphological operators for image sequences,” Com-

puter Vision and Image Understanding, vol. 62, no. 3,

pp. 326–346, 1995.

[6] O. Lezoray, C. Charrier, and A. Elmoataz, “Rank trans-

formation and manifold learning for multivariate mathe-

matical morphology,” in Proceedings of EUSIPCO, 2009.

[7] H. Heijmans, P. Nacken, A. Toet, and L. Vincent, “Graph

morphology,” Journal of Visual Communication and Im-

age Representation, vol. 3, no. 1, pp. 24–38, 1992.

[8] M. Belkin and P. Niyogi, “Laplacian eigenmaps for di-

mensionality reduction and data representation,” Neural

Computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[9] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth

mover’s distance as a metric for image retrieval,” Inter-

national Journal of Computer Vision, vol. 40, no. 2, pp.

99–121, 2000.


