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Abstract

In this paper, a method to design regufard.)-LDPC codes over Glg} with both good waterfall
and error floor properties is presented, based on the alggimaperties of their binary image. First, the
algebraic properties of rows of the parity check matiixassociated with a code are characterized and
optimized to improve the waterfall. Then the algebraic grtips of cycles and stopping sets associated
with the underlying Tanner graph are studied and linked édlobal binary minimum distance of the

code. Finally, simulations are presented to illustrategkeellent performance of the designed codes.

Index Terms

channel coding, error correction coding, nonbinary LDP@eas) iterative decoding, binary image.

This work has been partially supported by the Newcom UE Network of ez

March 20, 2007 DRAFT



. INTRODUCTION

Since their rediscovery in [16], low density parity checlO@RC) codes designed over Gir(
have been shown to approach the Shannon limit performange$® and very long code lengths
[15][22]. Some efficient optimization methods of the codefile and the matrix structure have
been derived for both long [22][3] and moderate [13] lengdises. For fields with parameters
q > 2, it has been shown that the error performance can be improvedoderate code lengths
by increasingg [5][4][11]. It has been shown, especially in [5][11], thad @ becomes large
(¢ > 64) the best performances at finite length are obtained fordtdparse” LDPC codes,
that is with the minimum connectivity on the symbol nodgs= 2. Furthermore, it is shown
in [11] thatd, = 2 non binary LDPC codes have optimal average Hamming weighttsom
asq — +oo and N — 400 when used on binary input channels. In this paper, we wilugoc
on the finite length optimization of, = 2 non binary LDPC codes, for which the problem of
choosing appropriately the non zero values in the parityclkchmatrix is simplified. Note also
that the decoding complexity of codes in GJ-{(s a lot larger than for binary codes, but iterative
decoding of non binary LDPC codes using the belief propagdBP) algorithm or its simplified
versions has been addressed efficiently by several autbjjig[§].

The design of non binary LDPC codes can be addressed in araee¢t different objectives:
(1) performance, by trying to improve the waterfall region amdo6 lower the error floor, an¢ii)
decoding complexity versus performance tradeoff, by tntim ensure good overall performance
using only a limited set of parameters for some efficient arttral hardware implementation
purposes. For finite length codes, the optimization probiengenerally solved in a disjoint
manner. First, the positions of the nonzero entries of thidypeheck matrix H associated with
the non binary code are optimized in order to have good gidipgrties and minimize the impact
of cycles, when using the BP algorithm on the associated Tagmagh. This can be efficiently
done using the progressive edge growth (PEG) algorithm [[I3¢n, the nonzero entries can be
selected either randomly from a uniform distribution amaogzero elements of G&)[13] or
carefully to meet some design criteria as done in [4][17].

In this paper, we address the problem of the selection andntitehing of the parity check
matrix nonzero entries assuming that the positions of n@neatries in the parity check matrix

H associated with the non binary code have been previouslynzetd. The proposed method
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is based on the binary image representation of the méafriand of its components. First we
address the problem of rows optimization as previously dongs][17] in order to improve
the waterfall region. Then, we address the problem of lawgethe error floor: based on the
observation that the columns defining the minimum distamcehe binary image off are
located on symbols belonging to the shortest length cyatestlae associated stopping sets, we
propose a method intended to improve the minimum distandbeobinary image of the code.
To this end, we use the algebraic properties of both cycles stopping sets, considered as
topological substructures inherently present in the ugohgr Tanner graph of the code. Finally,
the complexity-performance tradeoff is addressed: we stoovexample that for regulaf2, 4)
and(2, 8) LDPC codes, using only one optimized row of coefficients toegate the parity check
matrix, it is possible to have at least the same performaaderaa code with randomly selected
coefficients and, for some fields, the waterfall and the eftomr region can be both improved.
The paper is organized as follows: in Section Il, we brieflyie® the binary image con-
struction of a non binary parity check matrix and the vectpresentation of the parity check
equations. The optimization of the rows of the parity checkirir is addressed for waterfall
improvement in Section Ill. We also study the thresholdseundkensity evolution for random
and row optimized code ensembles. Section IV provides aystfithe binary representation of
both cycles and stopping sets, and establishes links beté@se topological structures of the
Tanner graph and the binary minimum distance property ofctiie. This study allows us to
propose a method to improve the error floor when using the notivnized code ensemble. In
Section V, some optimization and simulation results arevigexl and finally conclusions and

perspectives are drawn in Section VI.

II. BINARY IMAGES OF A NON BINARY PARITY CHECK MATRIX H

The motivation of using the binary image of the LDPC code seatally that we address and
illustrate the optimization process for the non zero valumethe case of binary input additive
white gaussian noise (BI-AWGN). In this context, our goal igrthto try to maximize the
Hamming minimum distance at the bit level of the LDPC codeteNlmowever that using the
binary image of the code is not mandatory and one could egsitgralize our approach at the
symbol level, as it will be notified in sections IV-B, IV-C an¥-E.

Let us consider the parity check matrik associated with a regular non binary LDPC code
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with the parameter&l,, d., N) representing the number of nonzero entriegidfor the columns,
for the rows and the code length respectively. All the noozdements off are elements of
the Galois field GR{), with ¢ = 27 andq is the order of the field. Nonzero elements belong to

the setS = {a": k =0...¢ — 2} wherea is the primitive element of the field.

A. Representation of the Galois field using matrices

The Galois field GFR{), described usually using a polynomial (or vector) repnéstgon, can
be also represented using matrices [18, p.106]
Definition 1: If p(z) = ap+ a1z + ...+ 2P is a polynomial of degreg having its coefficients

in GF(2). The companion matrix gf(x) is thep x p matrix

o 1 0 ... 0

0O 0 1 ... 0
A —

o 0 0 ... 1

Gy a; Az ... Gp-1

The characteristic polynomial of this matrix is given by
det(A — zl) = p(x)

where [ is the identity matrix.

If p(x) is a primitive polynomial, it can be shown [18] that the nratr is the primitive
element of the Galois field' F'(27) under a matrix representation and thus the powers afe
the nonzero elements of this field, defining the 8dt= {0, A*: k =0...q — 2}. Additions
and multiplications in the field correspond to additions amdltiplications modulo2 of these

matrices.

B. Vector representation for the parity check equations

Based on the matrix representation of each nonzero entry,iveetigereafter the equivalent
vector representation of the parity check equations aataatiwith the rows ofd.

Let x = [xy...xy_1] be a codeword. For the-th parity equation off, we have

J:hij#0
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Translating (1) into the vector domain, we can write
Z Hix;' =0
§:hij70
where H;; is the transpose of the matrix representation of the Galeid &lement;;, x; is the
vector representation (binary mapping) of the symbol eteme and¢ holds for transpose. The
vector0 is the all zero component vector.
.H

ijm -

.H,

iGdg—1)

Considering thei-th parity check equation off, we defineH; = [H,j, ..
as the equivalent binary parity check matrix, with,, : m = 0...d. — 1} the indexes of the

nonzero elements of the-th row. LetX; = [x;j, . . . X; be the binary representation of the

a1l

symbols of the codeword involved in thei—th parity check equation. When using the binary

representation, théth parity check equation off, can be written as
H;X;" = 0'

We defined,,;,(i) as the minimum distance of the binary code associated Hijth

C. Example

Let p(z) = 2* + x + 1 be the primitive polynomial used to generate the elements Bf2°).

The primitive element for the matrix representation is gy

010
A=10 0 1
1 10
Thus,{A* : k =0,...,6} are the nonzero elements 6f(23) under this matrix representation

and it is readily checked for our example th&lt ;' = au’.

[11. SELECTING ROWS FOR WATERFALL IMPROVEMENT

In this section, we investigate the choice of “good” rowstfue parity check matrix regardless
of the structure of the Tanner graph associated with it.tFi® briefly review the method
proposed in [5], [17] to select the coefficients row by row. $tew that the set of rows provided
by [17] can easily be reduced and we give an analysis of thesiagent sets using the binary
images of the code considered. Then, since the method c§%n instance of density evolution,

can be computationally expensive for high field orders, vagppse a simpler optimization method
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based on the binary image of the code associated with a rowoBaring the results of both

methods, we observe that the coefficient sets we obtain meyngrass the sets given by [17].
We also give some good sets for fields up to &Bj. Finally, we compare the convergence
thresholds for row optimized and random code ensemblesiffereht code parameters and field

orders.

A. Optimization using Monte-Carlo simulations

In [5][17], the authors propose a method to optimize the roWthe parity check matrixy.
They select the coefficients of the matrices carefully usingonte-carlo method: the proposed
method starts with a choice of channel model, after whicly thearch for thel.-tuples that
maximize the marginal entropy of the syndrome after a givemlver of iterations. They obtain
a primitive set ofd.-tuples and then the rows of the matriX are generated randomly from
the d.-tuples multiplied by constants and from their random peations. For example, Table
| summarizes the best.-tuples of coefficients for GE(G) and GF(4) with d. = 4. Using the
mapping used in [17], the corresponding powers of the prmielementa are given in these
tables.

From Table I, we observe that the given sets can be reducedlyooae 4-tuple for GF(6)
(resp. two4-tuples for GF(4)) since the other ones are obtained by multiplying by a @orist
one of thesel-tuples. Thus, re-interpreting the primitive sets giverjli] using the powers of
the primitive element allows us to consider some reducesl feetgoodd.-tuples (indicated by
“e” and “¢” in Table ).

According to Section II-B, using the equivalent binary pamheck matrix associated with
eachd.-tuple, we can compute the minimum distantg, associated with it. In Table I, we
reportedd,,;, and the weight enumerator coefficielt(d,,;,) associated with each-tuple.
For GF(6), we obtain a(N = 16, K = 12,d,;,, = 2) code and for GF4), we obtain a
(N = 24,=18,d,» = 3) code in both cases. As a result, these codes reach or aretcltse

best possiblel,,;, for their length and dimension [2].

B. Optimization using binary images

In this section, we present an optimization method that d@wmnselect good rows using the

equivalent binary parity check matrix. The optimizatioeads that the higheft,,;, is, the more
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distinguishable, hence reliable, the messages passedctienk nodes to data nodes using BP
are. Therefore considering the equivalent binary parigc&matrixH;, we intend to maximize
dmin(1). Thus, the best, -tuples candidates are those with the larggst, and among thosé,-
tuples with maximun,,,;,,, the best are those with the smallest weight enumeratoficieet
W (duin)-
1) Search procedureSince finding goodi.-tuples can be computationally expensive, next
we provide some guidelines to accelerate the search proeeddhe primitive set of rows:
e dymin(i) is the minimum number of columns &f; that are dependent, thus the minimum
distance of al.-tuple is at most the minimum distance associated with aysab-matrices
H;j andHij/ of H;. The minimum distance associated with these two elememger or
equal to 2. Whenever possibliee when we consider a sufficiently high order compared to
the d.-tuple size we try to optimize), we focus on thigtuples having a minimum distance
greater or equal to 3.
« Since the rows off can be some permutations or multiplication by a constant.déiples
of a set, each and every element of this set can be written asrdmred set with the

following structure

1o ..od..of 0<i<...<j...<k

g

de

. Based on the previous remarks, tlietuples can be derived from thel. — 1)-tuples by

adding an element' such as

l...o'...af.. o 0<i<. ... <j.. . <k<l
de—1

« Once we have determined a set of gaheuples, as seen in the following example, it can

be further reduced since somgtuples can be related by a multiplication by a constant.

Note that, for a field of ordeg = 2P and a givenl,., the equivalent binary matrik; defines a
code of lengthV = pd. and dimensionk = p(d,. — 1). Using the tables given in [2], we obtain
an upper bound od,,;, (7).

2) Comparison of both methoddAe consider GF(64) withi. = 4. The equivalent binary
code has the parametels = 24 and K = 18. In this cased,,;, < 4 [2]. Table Il summarizes
the primitive set of rows and their weight spectrum when giglre same binary mapping as in
[17]. The best codes found havk,;, = 3. When comparing our results to those of [17], the
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following observations can be made :
(i) Both procedures find the rows with associated binary minimustadced,,;,, = 3 and
W (dwin) = 20 (best rows). The method based on the binary images is alsotatist all
rows of [17] with d,,i, = 3 and W (d,,i,) = 22 (not given in Table II).
(1) The procedure using binary images records some good cdeslidat detected by [17]
with W (dpin) = 21.
(7i1) As observed in Section llI-A, we can reduce the elementatytsé¢hree primitive rows
(indicated by”, “<” and "x" in Table II).

When we further compare the results provided by both metHod$;F(16), both the method
of [5][17] and the proposed method provide the set of rowswiite smallest? (d.,;,). For
GF(64) andd,. = 5, the same result is obtained. Both methods seem as effeotiwbtain the
best candidates. However, the proposed method allows uptimine the rows for larger field
orders, since its computational complexity is less than ¢fa search based on an instance of
density evolution. In Table Ill, we enumerate the best romstl for some fields up to GF(256)
for d. = 4.

C. Minimum distance properties of rows

In Table 1V, we compare the maximum binary minimum distanckievable after selecting
rows using the binary image with the upper bound given by 1&,different field orders and
different valuesd.. When considering for examplé. = 4, for GF(16), we obtain a(N =
16, K = 12,d,;,, = 2) code and for GF4), we obtain a(N = 24, K = 18,d,, = 3) code.
From Table IV, it appears that the codes obtained using tharpiimage selection reach or are
close to the best possiblg,;, for their length and dimension [2] for a wide range of values
d., especially for low field orders. Moreover, despite the diffiy to reach the upper bound for
high field orders, increasing the order allows to keep theimum distance greater thahfor
an increasing range of values. Note thatd,,;, is not sufficient to select good rows and that

the best are those with the smallest weight enumerator ceeftiil (d,,,)-

D. Thresholds for row optimized code ensembles

After selecting some potentially good rows, an interestssye is to predict and analyze the

influence of that choice on the convergence behavior foeusfit code parameters and different
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field orders. Using density evolution [22], we study the tle¢ical thresholds for both random
and row optimized code ensembles. Note that the latter careled as an expurgated ensemble
of the former. In this study, we focus on the row optimizedeetsembles generated with only
one optimized row for some different field orders.

Figure 1 depicts a threshold comparison between random ptndived row code ensembles
for (2,3), (2,4) and (2,6)-LDPC codes as a function of the field order. The threshold® ha
been computed with a Monte Carlo estimation of the densitjutiem. As the variance of
the estimation of the threshold highly depends on the paemheised in the Monte Carlo
approach, we have chosen to keep reasonable values forrtbigydevolution parameters (random
interleaving of sizeV = 10000, a maximum of200 iterations), together with a simple variance
reduction technique. The variance reduction used is simplgsteriori averaging of the threshold
values for independent initializations of the density ewioin. As observed in Figure 1, the row
optimized code ensemble exhibits a better threshold beh#van the random one for each field
order, suggesting that the waterfall region of the errofggarance curve can be improved by
selecting carefully the rows of the parity check matrix. Hwoer, the threshold improvement

tends to vanish as the field order increases.

IV. LOWERING ERROR FLOOR

In Section Ill, we have applied local optimizations éhto help the iterative decoding. In this
section, we address the problem of the global optimizatibri/ousing some local properties
of the graph associated with the code in order to design a godd for maximum likelihood

decoding.

A. Notations and motivations

Let H, denote the equivalent binary matrix é¢f in GF(2). H, is obtained by replacing
all elements inH by their p x p binary matrix representation as described in Section It. Le
N, = N.p be the binary codeword length. Since the binary minimumadist is defined by the
minimum number of independent columns i, it is also strongly related to the topology of
the Tanner graph associated with notedGy.

In this section, we show that, as in the binary case, it idylikeat the cycles and the stopping

sets of Gy remain the key elements to lower the error floor on the franmeremate (FER)
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performance of the code. Indeed, as developed in the fallgvthe cycles and the stopping sets
of Gy describe specific topological structures, that may prolodeweight codewords of/. Our
definition of a structure in the graph is a set of nodes whicimfoa closed topological clique,
and therefore defines a sub-code of the global code. Firstavadyze the equivalent binary
representations of both the cycles and the stopping sefs; pin order to link their algebraic
properties to the “local” binary minimum distance of the LORode. Then, we propose an
iterative method to improve the error floor using row optied2.DPC code ensembles. Finally,
we derive some bounds for the binary minimum distanc&od., N') non binary LDPC codes.
We also give the binary minimum distances for several codeairmed using our optimization

method.

For our analysis, we assume the knowledge of the structurtheofgraphGy (randomly
designed or optimized using instances of the PEG algorith8) ¢r other good construction
algorithms [23]).

B. Cycle "cancellation”

For a(2,d., N) regular code, the binary representation of a cycl&gfis always a square
matrix. In order to lower the error floor, we would like to agtatycles that provide low weight
codewords. Therefore, if we consider a cycle of lengthhis cycle is not involved in the
equivalent binary minimum distance if the rank of the egl@mabinary matrix associated with
the cycle is full (.e. the cycle does not provide any codeword). et [,;, be the girth of
Gy . By successively ensuring full rank condition for each bynaratrix representation of the
cycles of Gy with lengthsg < | < ., We can expect to lower the error floor by eliminating

low weight codewords of the equivalent binary code.

1) Matrix representation of a cycleLet C; be the block matrix representation of a cycle
of length extracted fromGy with d = 1/2. Using row and column permutation§,; can be

related to the representaticry of an elementary cycle given by the followinlg< d block square
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matrix:

By By 0 ... .. 0
0 Bs By
Cy=
0
0 Bi_3 DBi_s
By 0 ... ... 0 B,
whereB,,,n =0,...,l — 1 are the matrix representations of the non-zeros enirjesf H (see

Section II-B) involved in the cycle,.

2) Full rank condition (FRC):The determinant of; is given by
det (Cy) = (—1)™+™ det (Cy)

wherer; (resp.m;) is the number of row permutations (resp. column permuta)iavhich are
used to transform any cycle into the form of mat€iy. Hence,C, is singular if and only ifC,
is singular.

Furthermore, the matrix’; is itself equivalent to the matrix

B, B, 0 ... ... 0
0 By B
C) =
0
0 B3 B3
0 0o ... ... 0 D

where D =[], Bair1 + [[; B2i- The equivalence is obtained using Gaussian eliminatiorceS
C/, is an upper triangular block matrix, the determinant(ifis equal to the product of the
determinants of the block matrices of the diagonal. SineentlatricesB,k =0,...,l — 1 are

invertible, the full rank condition reduces tet(D) # 0. Using finite field addition properties,
this is finally equivalent to

d—1 d—1
(FRC) 1H BQi+1 7"é H By; (2)
i=0 i=0

Remark: A short derivation shows that the FRC condition for the edeivebinary matrix of

a given cycle has its equivalent statement at the symbol ievthe field as:
d—1 d—1
(FRCS) . H 941 7é H 9; (3)
=0 =0
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whereq; are the non-zero symbols involved in the cycle.

In the following, a cycle is called “cancelled” when the FRCfuffilled for that cycle.

C. Topological stopping set mitigation

We have seen that the cycles in the Tanner graph of the codbazena mitigated influence
if the FRC condition is fulfilled, ensuring that no low weighdtdewords can be created by a
particular cycle. The global performance is however noy atdpendent on the cycle structure,
but also on the stopping sets (inherently present in thectstrel of G;) [7][23] that are not
reduced to a single cycle.

For a (2,d., N)-regular code, a stopping set (defined throggh that is not reduced to a
single cycle is composed of at leastmbricated cycles and describes a topological structure of
the Tanner graph that we aim to characterize algebraiddédite that the denomination “stopping
set” may be abusive in our case. Actually, we are not intecest the property that a stopping
set is a fixed point of the BP decoder for the Erasure channetather in the fact that it defines
a specific topological structure of dimension immediatelsgér than a cycle. To this aim, we
adopt the topological definition of a stopping set, as predas [7].

Let d, be the number of symbols involved in a given stopping set, Wearefer to “symbol
weight” of a stopping set in the rest of the paper. FdRai., N)-regular graph, the minimum
symbol weight of a stopping set i& .., = [3¢g/4], whereg is the girth of the graplg;. For
all stopping sets with symbol weights > d; ..in, the equivalent binary matrix is no longer a
square matrix: its binary representation is at mostia— 1)p x dsp rectangular matrixt;.
The minimum distance of the code defined Hy, depends on the choice of the coefficients
involved in the stopping set. Furthermore, each codewaosd@ated withH,, is a codeword of
the global code defined b¥f,. Thus, by nature, the code performance is drastically éichiby
the smallest stopping sets and their associated binaryrmami distance.

Unfortunately, unlike for cycles, there is no way to “caridbk influence of such stopping sets
by proper symbol assignments: since each stopping set hasimum distance associated with
it, the only way to ensure a good minimum distance for the wlwolde is to try to maximize the
minimum distance over all stopping sets (practically over most exhaustive set of stopping
sets we can enumerate). It is also important to note thatytble cancellation for the smallest

cycles is an important pre-requirement to avoid “catastidpstopping sets. The reason is that
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the stopping sets contain cycles, and therefore ensuriclg cancellation inherently avoids that
some columns of the equivalent binary parity matrix in a piog set add to zero. Note that
for a graphGy with minimum variable node degreé = 2, it is quite simple to identify the
set of stopping sets with minimum weighy ,.,i,: this can be achieved in conjunction with the
PEG construction by adding a procedure which tests if a gadupdes containg imbricated
cycles.

Remark: As for cycles, this strategy can be applied at the symbollle/¢he performance

criterion to track and improve is the minimum symbol distnc

D. Global optimization

In this section, we develop an iterative and row-wise oation procedure which capitalizes
on the properties described in Sections 1V-B and IV-C to lotixe error floor of the non binary
LDPC codes.

The proposed optimization is based on a successive fulfilroéthe FRC for all cycles of
length /, as!/ increases while maximizing the “local” minimum distances@sated with the
stopping sets. Cycle cancellation is done with priority toidMow weight codewords induced
by non cancelled cycles. For optimization purposes, thevieage of the cycle (resp. stopping
set) distributions is assumed for sorhgresp.d,) from g (resp.d;min) UP to a given length
Imax (resp. a given weight; ..x). The initial Tanner graply;; is first optimized using the PEG
algorithm [13]. We have modified the PEG algorithm in ordeh&we both good girth property
and stopping set distribution (the number of stopping setis minimum weight is minimized).
Let R andS be the set of optimized rows chosen from Section Ill and theos¢he smallest
stopping sets (more generally, a union of stopping set eblesnwith different low weights),
respectively. The following general procedure is applied:

e Initialization: The rows inH are chosen at random from the rowsRnand their random

permutations.

e Initial cycle cancellation: This step intends to cancel successively all cycles witlgtlen

[, g <1 <ly, included in the stopping sets & in order to have well conditioned stopping
sets. We defin€ as the set of the row indexes &f to be optimized. The optimization is

performed iteratively using the following procedure for g:

1) Initialize Z with all the row indexes of.
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2) Select at random a row index € 7.

3) ComputeH%m), a set ofn random permutations derived frof.

4) Select the permutation in{"™ that maximizes the number of cancelled cycles of length
[, conditioned that all shorter cycles are cancelled.

5) Z — 7 — {m}. If all length [ cycles are cancelled,= [ + 1, go to step 1. Otherwise,
if 7 is empty and there subsist some non-cancelled cycles, gtepols else go to
step 2.

e Cycle cancellation and stopping set mitigation: In this step the successive cancellations
are performed for some> [,, following the same procedure as the above procedure except
for step 4. The permutation selection is performed basett@maximization of the number
of cancelled cycles and the maximization of the minimumadtise over all the stopping
sets belonging t& with which the current rown is connected. This maximization is still
performed conditioned that all shorter cycles are candelle

e End of optimization: the optimization procedure is stopped when cycle canaafias not
possible anymore.

Note that, due to computational complexity, we have to iedtne initial setS. It is checked a
posteriori that we have a good minimum distance for somepstgpsets with higher weights not
contained in the sef. Since it is impossible to cancel the cycles for all lendthse expect that
large non cancelled cycles have less impact on the minimstartie as well as less dramatic
influence on the stopping sets in which they are involvedhassize of the associated submatrix

increases with the size of the cycles.

E. Achievable binary minimum distance

In this section, we study bounds on the achievable binaryirmim distance of non binary
(2,d., N) regular LDPC codes. We first derive some bounds on the adiieewginimum distance
when we consider random and PEG based Tanner graphs. Theom@aie the bounds we
obtained with the minimum distances of the matrices that axeetoptimized using the previous
optimization method.

We suppose that the cycle cancellation has been efficieotig d.e. the cycles are cancelled
for sufficiently long lengths), resulting in that no low whigcodewords are produced by cycles.

In this context, low weight codewords are supposed to bengbyestopping sets.
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1) Bounding the binary minimum distanc€or a given girthg of Gy, the minimum weight

of a stopping set is lower bounded by

ds,min = (39/4—' (4)

This minimum value is achieved if thg imbricated cycles have exactly length Then,
the matrix H,; associated with the stopping sets with weight.;, has dimensions at most
(Mss = (dsmin — 1).p, Ngs = ds min-p). Using the maximum achievable minimum distance given
by [2] for a code with the preceding parameténd,,, N,), we can obtain an upper bound on
the maximum achievable binary minimum distance for thatimah stopping set with weight
dsmin- This upper bound becomes an upper bound for the global cesteciated withH, if at
least one stopping set 6fy has the minimal size given in (4). We refer this upper bounthé
worst case upper bound

2) Minimum distance versus codeword lengtdext, we aim to link the minimum distance
with the length/V, of the code defined by, still under the assumption that at least one stopping
set of Gy has the minimum sizé; ;.

For a(d,, d.)-regular Tanner graph witly variable nodes and/ check nodes, an upper bound
on the girth of the graph as a function &f has been derived in [13, Lemma 3]. Applying this
result for the(2,d., N) case, we can derive an upper bounddQpi,:

Lemma 1:Let Gy be a(2,d.)-regular Tanner graph. The minimum stopping set weight,
is upper bounded by

dsmin < min (dy, ds) (5)

where

3|t1| + 3 otherwise

{ 31t ] +2if T, = 0

; 3lta) +21if Z, =0
2 =
3|t2| + 3 otherwise
in which
log (M —1)(1—2)+1)
b log (d. — 1
o (N~ 1)1~ gt) +1)
2T log (d. — 1)

(6)

(7)
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andZ; is equal to0 if and only if

d.((d. — 1)) —1)
d. —2

(de— DM > M —1 -

andZ, is equal to0 if and only if

2.(d. — 1)((d. — 1)zl — 1)
— 1)lt2] _1_
(d.—1)" >N -1 R

Note that for a code of lengthV, according to this lemmal; .,;, varies inO(log (N)). Using

the upper bound in [2], we are now able to compute numeriallyipper bound on the binary
minimum distance versud, = p.N for a regular code.

However, since the upper bound in [2] for a code with parars€t¥,,, N,) does not provide
an analytical expression af,;, as a function ofd, ,.;,, we apply the Elias upper bound for a
code with parameter&\/ss = (dsmin — 1).p, Nss = ds min-p) [21]:

dmin S 2A(1 - A)ds,mirrp (8)
with A solution of
1/dgmin = 1+ Alogy(A) + (1 — A)logy(1 — A), 0< A< 1/2

Reporting (5)-(7) into (8), we can conclude th&t,, scales a®)(log (N)) = O(log (Ny)). This
can be related to a previous result from [9], where it is shoat the minimum distance of
the binary(2, d.)-regular LDPC codes can increaaemostlogarithmically with the codeword
length IV: this emphasizes the need for efficient methods to desigascadth good minimum
distance properties.

Recall that the expression given by (8) is actually a worse eggper bound, since we assume
that there are stopping sets in the Tanner gr@ghwith the minimum size given by (4). As
seen for example in Figure 2 fay, = 256, a specific construction based on a modified version
of the PEG algorithm can avoid the stopping sets with the mimn sized; ,,i,. In such cases,
the worst case upper bound (8) no longer applies and can befdhe exceeded.

3) Binary minimum distance comparisoWhen considering regular PEG designed codes,
in order to derive a bound, we use the best optimigzd,.) graphsGy obtained with a PEG
construction, and we compute the effective achievable mim stopping set weight. Then, as
above, we can derive a bound on the minimum distance achéevamoer a PEG construction

using the minimum weight stopping sets and the upper bouhd [2

DRAFT March 20, 2007
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In Figure 2, we report the binary minimum distance we have maed for some codes
optimized using our method (“Opt. codes” curve) and we preseme bounds fof2,4) LDPC
codes overG F'(256): “Bound-random” is the bound derived from Lemma 1 and uppeambo
[2], and “UB- Opt codes” is an upper bound derived from the aife d, ., of optimized
codes in [19] and the upper bound [2]. We observe that = O(log()N,)). Note that in our
PEG constructions, the effective minimal stopping set Weigas eitherd; i, Of dsmin + 1,
explaining why the PEG bound can be higher than the randomhgupper bound based on
minimal stopping set with weight strictly equal & ,,,;,. Similar results were obtained for other
field orders [20].

4) Estimating the equivalent minimum distandeor a given matrixH of a (2, d.)-regular
LDPC code, it is possible to compute the stopping set enssbfor somed; > d; 1. USing
this ensembleS, we can compute the binary minimum distance of the matkfix associated
with each stopping set i§. The binary minimum distance @, is less or equal to the minimum
over all the computed minimum distances. This method agpeabe a good tradeoff between
accuracy and complexity when compared to the impulse mettfudh has been proposed to
estimate the minimum distance of LDPC codes [10]. This nethdows us to have quickly a
good estimate of the minimum distance, especially if theeceiducture was previously optimized
using a cycle cancellation (no codewords provided by shartes). When the cycle cancellation
has not been used previously, the impulse method may bereelqto find the low weight
codewords that the non cancelled cycles may have introduced
Remark : This approach can be easily extended to the estimation ofyh&ol minimum

distance.

V. OPTIMIZATION AND SIMULATION RESULTS
A. Optimization strategies

The different construction methods to be compared are theniog:
(1) Random method (R): Given a binary matrix, the nonzero entries are randomlycsede
from the nonzero elements in the fields @ (
(1) Davey-Mackay method (DM): Given a binary matrix and a set of godg-tuples (previ-
ously optimized based on Section lll), the rows léfare generated randomly from these

d.-tuples, from thesd -tuples multiplied by constants and from their random peations.
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(77) Binary image method (B): Given a binary matrix and a uniqué.-tuples (previously
optimized based on Section l1ll), the optimization is parfed using the successive cycle
cancellation and stopping set influence mitigation descriim Section IV. Each row off
Is generated randomly from the selectégtuple and its random permutations. By highly
constraining the matrix construction using only one priveitrow, we intend to obtain a

good performance-complexity tradeoff as well.

B. Results

All the comparisons are done using the same matrix structiuse the graphGy is optimized
in order to have good girth and stopping set distributionpprties. Then, the values’ are
chosen using one of the previously described methods. Fareht frame lengths and field
orders, we compare the FER assuming a memoryless binaryadplitive white Gaussian noise
(BI-AWGN) transmission channel and an iterative BP decoder @&#€(;) at the receiver [1].
The maximum number of iterations is fixed to 1000 to ensurg@gra@onvergence. Much less
iterations are performed on average with the help of syndroaiculation as stopping criterion.
Figure 3 depicts the FER for @, = 2,d. = 4)-LDPC code, different field orders and almost
the same bit length. As predicted by the theoretical threlshdhe waterfall gain for B and
DM methods over R method vanishes when field order incredseserror floor is reduced in
the order of one decade for GH{ when we compare the methods B and R/DM, showing the
effect of providing attention to the cycle and stopping smifigurations. For GR66), the three
methods have almost the same performance up to=FER™®. Figure 4 depicts the FER for
a (2,4)-LDPC code over GHAE) and a(2,8)-LDPC code over GF{d). For the (2,4) code, we
observe that the selection of some good rows is very reldearthe small field orders. For high
rate codes, the waterfall gain decreases with the rate foresm dgield order, but the optimization

can improve drastically the error floor.

More generally, simulation results underline that the rqutimization (DM method) is not
sufficient to ensure good performance in the error floor megldence, the matching of the
matrix coefficients through cycle cancellation and stogpset mitigation (B method) appears

as mandatory to address this problem.
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C. Comparison with existing codes

In this section, we compare our performance results withesstate of the art optimized
binary codes with small codeword lengths for the BI-AWGN chelnin Figure 5, we compare
the performance of our codes with that of [14] and with optiedi irregular LDPC code whose
irregularity is taken from [22] (the PEG algorithm is usedhtaild the parity check matrix in
order to avoid short cycles) fakR = 1/2 and K = 1024 information bits. We observe that the
error floor region is high for the irregular LDPC codes and tla have a gain of aboux6 dB
compared to the code of [14] in the waterfall region.

Since the optimized codes from [14] are designed for ratber ¢doding rates, we further
compare our results with that of [8], whose codes are dedidmehigh rates codes. With our
codes, the waterfall region is improved of abow25 dB, and slightly more forR = 4/5 as
shown in Figure 6. This gain has to be balanced by the highmodieg complexity of nonbinary
codes. Note that the codes presented in [8] have to our kdgelthe best available performance

for binary codes presented in the literature.

VI. CONCLUSION

In this paper, we have addressed the problem of the desigerobimary (2,d., N) regular
LDPC codes. Using the binary image of the code, we charaetkrihe algebraic properties
of rows, cycles and stopping sets with respect to a local obajl minimum distance. Then,
we proposed a method for both waterfall and error floor impnognts based on these algebraic
properties. The results show that the optimization of lé@pblogical structures (rows, cycles and

stopping sets) is important to design codes with both gootnfedl and error floor properties.
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Row COEFFICIENTS FORGF(16) AND GF(64) AND d. = 4 FROM [17].

GF | Row coefficients | dmin | W(dmin)
11 7 3 0 2 le

16 | 11 7 4 0 2 le
11 8 4 0 2 le
12 8 4 0 2 le
48 35 26 0| 3 20 e
28 54 13 0| 3 20e
55 28 13 O 3 22¢

64 | 27 48 35 O 3 22¢
21 36 0 3 22¢
22 37 0 3 20 e
50 15 41 O 3 20 e
42 50 15 O 3 22¢

TABLE |

ROW COEFFICIENTS FORGF(64)AND d. = 4 USING BINARY IMAGES.

Row coefficients | dmin | W (dmin)
37 22 9 O 3 20
54 28 13 0| 3 20 e
50 41 15 O 3 20e
48 35 26 O 3 20
44 18 7 O 3 210
37 19 0| 3 21 %
54 28 10 O 3 21 %
56 37 11 O 3 210
53 44 18 O 3 21 %
37 26 19 0| 3 210
45 35 26 0| 3 21 %
52 45 26 O 3 210

TABLE I

21
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GF Row coefficients | dmin | W (dmin)
16 11 7 3 0 2 1
15 10 5 0 3 38
20 15 5 0| 3 38
24 15 5 0 3 38
32 24 15 6 O 3 38
21 14 7 0| 3 38
23 15 7 0 3 38
22 14 7 0 3 38
37 22 9 0| 3 20
64 | 44 18 7 0 3 21
37 19 9 0 3 21
93 37 18 O 3 5
94 38 19 0| 3 5
106 75 19 O 3 5
128 | 108 74 18 0| 3 6
93 38 19 0| 3 6
95 38 19 0 3 6
107 75 19 0| 3 6
183 172 8 0| 4 156
183 173 8 0| 4 159
182 172 8 0| 4 160
88 80 8 0| 4 161
256 | 89 81 9 0 4 161
167 127 40 O 4 161
182 173 8 0O 4 162
169 127 40 O 4 162
169 128 40 O 4 162

ROW COEFFICIENTS FOR DIFFERENT FIELD ORDERS ANB, = 4.

TABLE 1l
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3 4 |s|e|[7]8|o]10]1]12
16 | 3(3) 22
32 | 3@ 33 | 2(2)
GF | 64 | 4(4)| 3(4)] 3(3) 2 (2)
128 | 4 (4) 3(4) 3(3)
256 a4 | 3(4)
TABLE IV

23

MINIMUM DISTANCE ACHIEVABLE FOR ROWS USING THE BINARY IMAGE. THE UPPER BOUND FROM?2] IS REPORTED IN

BRACKETS (.).

157F — =

Threshold in dB

(2,6)-LDPC

—#— Row optimized
—&— Random

|
GF(16) GF(32)

|
GF(64)

|
GF(128)

GF(256)

Fig. 1. Theoretical thresholds comparison between random and optimazecode ensembles f¢2, 3), (2,4) and(2, 6)-LDPC

codes as a function of the field order. The thresholds are computeagthidensity evolution using Monte-Carlo simulations

with N = 10000 symbols per codeword.
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Fig. 2.
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Bounds on the achievable minimum distance f§2,al) non binary LDPC codes ove®F'(256).
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Fig. 3. FER versusl,/No: GF = {64,256}, N, = {852,848} bits, R = 1/2.
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WOoX
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\ . Nb=576, GF(64), R=3/4
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0.5 1 15 2 25 3 35 4 4.5

10

Fig. 4. FER versus,/No: (i) GF(16), N, = 1504 and R = 1/2, (i3) GF(64), Nb =576 and R = 3/4.
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10 T T T
—©— optimized LDPC - GF(256) ]
—A— quasi-cyclic LDPC - GF(2) from [14] |
. —— irregular LDPC — GF(2) from [22] 1

10 e

Frame Error Rate

\ ! ! ! ! ! !
0.8 1 1.2 1.4 1.8 2 2.2 2.4

10‘8 ! !

16
E,/N, (in dB)

Fig. 5. FER versus, /Ny : comparison with Quasi-cyclic codes from [14] and irregular codemff22] for R = 1/2 and

K = 1024 information bits. Non binary codes are designed over2G6Y).
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Performance Comparison, K=1024 information bits

Frame Error Rate
o
T

10 & b
10°F =
L e T Re23 ]

t[ —e— Codes from [8]

[-| —e— Optimized GF(256) codes
10-5 | | | | | | | |

0 0.5 1 1.5 2 2.5 3 3.5 4 45

E/N, (in dB)

Fig. 6. FER versuss,/Ny : comparison with [8]. Non binary codes are designed over26§j( K = 1024 information bits

DRAFT March 20, 2007



