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Design of Cages with a Randomized
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Auguste Venkiah, David Declercq and Charly Poulliat
ETIS - CNRS UMR 8051 - ENSEA - University of Cergy-Pontoise

Abstract

The progressive edge-growth (PEG) construction is a well knowrrithgo for constructing bipartite graphs with
good girth properties. In this letter, we propose some improvements inEfedtgorithm which greatly improve the
girth properties of the resulting graphs: given a graph size, they iserthee girthg achievable by the algorithm, and
when the girth cannot be increased, our modified algorithm minimizes thauof cycles of lengtly. As a main
illustration, we focus on regular column-weight two graphs & 2), although our algorithm can be applied to any
graph connectivity. The class @f, = 2 graphs is often used for non-binary low density parity check codesctrat
be seen as monopartite graphs: for a given target girtithis new instance of the PEG algorithm allows to construct
cages,.e. graphs with the minimal size such that a graph of githexists, which is the best result one might hope

for.

Index Terms

progressive edge-growth (PEG), low density parity check (LDP@gspgirth, Tanner graphs.

I. INTRODUCTION

Sparse bipartite graphs with large girths are extremelyfulse coding theory and most good low density
parity check (LDPC) code constructions focus on avoidingrisbycles in their associated Tanner graph. Graphs of
particular interest in the recent literature are those wijth= 2 edges on the variable nodes, also called “cycle graphs”
[1]. Such graphs are used to design ultra sparse non-bilBYy (DPC codes that achieve very good performance
at small to moderate codeword lengths and high Galois fiedgrsr[2], and in that case it is crucial to focus on
the girth properties of the underlying Tanner graph. A carcdton based on a progressive edge-growth (PEG) of
the graph was proposed in [3], which results in graphs the¢ égher girths compared to pre-existing techniques.
In this letter, we propose some modifications in the PEG #lyorwhich further improve the girth properties of
the resulting graphs: given a graph size, our method imprdkie girthg achievable by the PEG algorithm, and
when the girth cannot be increased, our modified algorittiat we called RandPEG for “randomized progressive
edge-growth”, minimizes the number of cycles of length

For a given graph setting and a given target girth, theret®dghe minimal size for the graph such that a graph

of girth g; exists, which is often given in terms of a lower bound. In thseof cycle codesl( = 2), there exists a
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monopartite representation of the Tanner graph where theces of the monopartite graph represent check nodes,
and edges represent variable nodes. When such a graph isahimmaning that it achieves the lower bound on

the size, it is called a cage.

Il. NOTATIONS AND DEFINITIONS

In this section, we briefly review the PEG algorithm to intuoeé the notations. A bipartite graph is denoted as
(V, E) whereV (resp.E) is the set of the vertices (resp. edgdg)= V. UV, whereV, is the set of check nodes
and V; the set of symbol nodes. LéY = |V;| denote the total number of symbol nodes, which we will reer t
as the size of the graph. When the graph is the Tanner graph bD&C code,N is the codeword length. For a
given graph setting, namely a 3-tuplé,, d., g), we denote bWéd’”’d“) the lower bound onV such that a regular
(dy,d.) graph of girthg exists. This lower bound can be easily computed by using ¢kelts of [3, lemma 3],
and is knownnot to be tight whend,, = 2, for g > 18 [4]. Let ij denote the set of all check nodes reached by a
tree spanned from symbol nodg within depth/, and/\_/éj denote the complementary setif). At a given stage
of the construction, only a subset of the check nodes haweheelha connectivity ofi., and we callcandidates
the check nodes iij whose incident edges have not been all affected. When a ylarticheck node iselected
among the candidates, an edge is added in the graph betweedes; and that check node.

The original PEG algorithm [3] is a procedure for constrogtia bipartite graph in an edge by edge manner,
where the selection of each new edge aims at minimizing thEadmon the girth: at each step the local girth is
maximized. For each node;, the first edge is chosen randomly, and the other edges asewmhio the seNf,j,
wherel is such that/\7§j #0 andejl = (), i.e.among the nodes that are at the largest depth from the syrodel n
sj. This maximizes the length of the cycles created through tiew edge. When multiple choices are possible,
the algorithm selects the candidate that has the smallgseeleinder the current setting.

Even though the original PEG algorithm produces aallyostregular graphs, the construction stfictly regular

graphs can be easily enforced by discarding all candidatesevall the edges have already been assigned.

I1l. THE RANDOMIZED-PEG ALGORITHM

There are basically two differences between the originaGRHgorithm and the RandPEG algorithm that we
propose in this paper: firstly, the way we build and use thesipg tree is different, and secondly, we introduce an
objective function for the edge selection. The RandPEGridlgn is based on a randomization approach: given a
target girthg,, we consider, at each stage of the construction, the maximumber of possibilities when adding an
edge in a graph, and we use the objective function to disodteiamong the numerous edge candidates. Similarly
to Monte Carlo approaches, the algorithm runs many timessames the best graph.

In this section, we describe our contributions in detailar @oal is to actually reach a given target girthof the
bipartite graph, whell the edges of the graph have been assigned. Therefore, ifret goint of the construction

there is no possibility to add an edge without creating atdhaycle, then we consider that the algoritHails. In
1 by short cycle, we mean cycles shorter than the target girth
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the sequel, we only consider the construction@f, d.) regular graphs, in order to compare to the known bounds
for regular graphs. We point out that this limitation comezionly our study, not the RandPEG algorithm itself,

which can be used for the design of regular or irregular gsaph

A. Truncated spanning tree

Instead of spanning to the maximal possible depth, we sparirée only up to a maximal depth,,.. This
technique, which defines theongreedyversion of the algorithm [3], is suggested for the constactof long
codes where it would be computationally expensive to buikl whole tree. Here, we argue that this is not only a
computational or speed-up enhancement of the algorithirthiati this techniqushouldbe used when one wants to
construct a graph that matches the lower bowﬁ"’d”. We justify our argument with the following three points.

1) Diameter argumentFirst, we give a justification on how deep the constructi@e tshould be spanned, based
on a graph argument: for a given value of the target gjithf the graph has minimum siz& = Néf”’d” then the
diameter of the graph equads= g;/2 [5]. Therefore in that case, the treeustbe spanned up to a maximal depth
lmaz = gt, SO that the diameter is ensured to eqdia g:/2. Indeed, if at some point the algorithm selects a node
in /\751 with [ > ¢, then the condition that diameter of the graph equgJ? cannot hold, and the construction
will fail.

Spanning the tree at a given defth- ¢, gives a set of candidates for which we ensure that no cycldleama
than the target girtly, can be created if such a candidate is selected.

2) The randomization approachiVe recall that our goal is to reach a given target gythwhenall the edges
of the graph have been assigned. By spanning the tree lepy/ddee number of candidates at each step of the
algorithm becomes much larger, and each edge is selectedgameery large number of candidates. Thus, the
algorithm is based on a certain amount of randomness in thstreation: if at some point the construction fails,
then all the edges are discarded and the procedure regtamsstratch. This justifies the name of “Randomized
PEG”, and ensures that a wide variety of solutions are egglor

3) Reduced probability of construction failur&/hen spanning the tree to its maximal depth, the first cyclas th
are created by the algorithm are locally optimal in the sehséthey are of the largest possible size. However, as
the procedure progresses, the construction problem bextmoeconstrained and eventually fails if the target girth
is relatively high compared to the graph parameters. Owrssite tests show that by spanning the tree at a lower
depth, we create smaller cycles at the beginning of the pioeeand thus the choice of the edgenist locally

optimal, but nevertheless the probability that the al¢ponitactually terminates if much higher.

B. The objective function

We consider in this section the general case wheére N!Sd’”dC), i.e. when the graph sizéV is large enough

such that &d,, d.) graph of girthg may exist. The set of candidates can be potentially verelaegpecially at the
beginning of the graph construction, and it becomes pasgdohd necessary) to discriminate among the multiple

candidates.

February 13, 2008 DRAFT



We describe here the objective function that we used, whittinnizes the number of created cycles. We would
like to point out that other objective functions could bedisemplementarily: the minimization of other topological
structures such as the number of created stopping setpijrigapetsetc. or the minimization of an ACE metric [6],
as done in [7] for the construction of irregular graphs.

When the construction tree is spanned up to a maximal dgpth, the objective function restricts the set of
candidatesV{+, as follows:

1- If there are candidates at depth.., then discard all the candidates that are not exactly at épthd,,, ...
By doing so, we only create cycles of siegactly/,,.., and ensure that the diameter argument is fulfilled

2- For each candidate;, computenbCycles;, the number of cycles that would be created:jfis selected.
Discard all candidates that would create more tham ;(nbCycles;).

3- Computed,™", the lowest degree of all remaining candidates. Discarccafididates with current degree
d. >d., ™"

At this point, the algorithm randomly samples among the lieing candidates.

C. Refinement for spanning the tree

For a given target girtly;, the diameter argument does not hold anymore for lengthscN EhatNéfl’”’d“) <N <
Ng(fj;’zd“). In that case, the diameter may be larger th@n, and we propose an alternative strategy by introducing
a gap variable: we span the tree up to a maximal depth. = ¢g: + gap. At the beginning of the construction,
cycles of size larger thag, + gap are created. Each time that it is no longer possible to addedgg, we decrease
the value ofgap, and therefore allow to create smaller cycles. At some pavetspan the tree only up to a depth
l = g+, and only at this point the algorithm starts creating cyadéssize g;. This technique, coupled with the
objective function described in the previous section,vedldo minimize the multiplicity of the girthi,e. the number
of cycles lengthy,. It is not necessary for the simulations presented in thé sestion, but leads to a better LDPC

code design whed,, > 3.

IV. PERFORMANCE OF THERANDPEGALGORITHM
A. Design of ultra-sparse graphs

In tablel we report, for different values aof. and g, the smallest value oV such that the RandPEG algorithm

2,d.)

could construct a regula2, d.) graph of girthg. When this value achieves the lower boul , we indicate

so by super-scripting with a staf)( and the corresponding graph define§la )-cage. Otherwise the value of the
lower bounng(Q"d”) is super-scripted with parenthesis. Some values are sgpgrted with a dag, which means
that the RandPEG was initialized with a tree for these canttns. For comparison, the value &f such that the
standard PEG algorithm could construct the correspondiagigis reported in square brackets.

For all values ofd.. that we tested up to 50, the RandPEG successfully constages for target girthg = 6, 8.
Moreover, for lower values of. = 3, 4 the algorithm successfully constructs graphs of girth ug@ahat achieve

the lower bound. The corresponding graphs are available8pn [
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g\dc 3 4 5 6 7 8 9 10 50
6 6% [6] 10%* [10] 15* [15] 21* [21] 28* [28] 36 [36] 45* [45) 55* [55] 1275* [1275]
8 9% [9] 16™[20] 25* [35] 36* [48] 49* [70] 64* [116] 81* [162] 100* [230] 2500%* [277]
10 15% [18] 38(34) 42 00(65) (110] | 189(111) pp25] | 385(175) [aa1) | 728(260) 812
12 21% [27] 52% [104] 105*T [380] 186* T [966]

14 36* [36] 260 [292]
16 45% [72] 160* T [850]
18 114(69) [150]
20 201(93) 285]
22 447(141) (558
TABLE |

FOR VARIOUS VALUES OF GIRTHg AND VARIOUS VALUES OF CHECKNODE DEGRERI., WE REPORT THE SMALLEST GRAPH SIZEV SUCH

THAT THE RANDPEGALGORITHM COULD CONSTRUCT A REGULAR(27 dc) GRAPH OF GIRTHg.

B. Application to the design of NB-LDPC codes

We now illustrate the interest of our algorithm for the desa@f non-binary LDPC codes. We designed two codes
of rate one-half, with(2,4) graphs of sizeV = 160. For this graph setting the regular PEG algorithm consgaict
a graph of girth 12, whereas the RandPEG constructs a cagetlofl. For both graphs, we optimized the non-
binary coefficients inGF(64) according to the method described in [2], and simulated &selting codes on a
binary input additive white gaussian noise channel (BIAWGNThe simulation results on Fid. show that for
ultra-sparse non-binary LDPC codes, a graph with betteh giroperties performs better in the error floor region,

by inducing better spectrum and minimum distance propef2é

C. Girth multiplicity

One important property that does not appear in Tdkbkethe multiplicity of the girth,i.e the number of cycles
with length equal to the girth. The multiplicity of the girttan be extremely important if the graph is used for
designing (binary or non-binary) LDPC codes. We designeplile (3,6) binary LDPC codes of siz&V = 504
and N = 1008. All the codes were of girth 8, but foN = 504, the PEG code had a girth multiplicity of 808,
whereas the RandPEG code had a multiplicity of only 452. Kot 1008, the PEG code had a girth multiplicity
of 167, whereas the RandPEG code had a multiplicity of onlyS3thulation results show that the RandPEG codes
perform better that the PEG codes.
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NB-LDPC codes of size N=160 symobols in GF(64)
10 T T T T T

T
—6— PEG ]
—A— RandPEG | |

Frame Error Rate

Fig. 1. Performance comparison for the design of non-binarfPCxodes: two codes whose underlying Tanner graphs werérgotesl with
respectively the PEG and RandPEG algorithm are simulated @B AWGNC. The sphere packing bound of 1959 (SP59) [9] givéeweer
bound on the block error probability for this codeword lemgt
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