
HAL Id: hal-00521059
https://hal.science/hal-00521059

Submitted on 26 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of Cages with a Randomized Progressive
Edge-Growth Algorithm

Auguste Venkiah, David Declercq, Charly Poulliat

To cite this version:
Auguste Venkiah, David Declercq, Charly Poulliat. Design of Cages with a Randomized Progressive
Edge-Growth Algorithm. IEEE Communications Letters, 2008, 12 (4), pp.301-303. �hal-00521059�

https://hal.science/hal-00521059
https://hal.archives-ouvertes.fr

1

Design of Cages with a Randomized

Progressive Edge-Growth Algorithm
Auguste Venkiah, David Declercq and Charly Poulliat

ETIS - CNRS UMR 8051 - ENSEA - University of Cergy-Pontoise

Abstract

The progressive edge-growth (PEG) construction is a well known algorithm for constructing bipartite graphs with

good girth properties. In this letter, we propose some improvements in the PEG algorithm which greatly improve the

girth properties of the resulting graphs: given a graph size, they increase the girthg achievable by the algorithm, and

when the girth cannot be increased, our modified algorithm minimizes the number of cycles of lengthg. As a main

illustration, we focus on regular column-weight two graphs (dv = 2), although our algorithm can be applied to any

graph connectivity. The class ofdv = 2 graphs is often used for non-binary low density parity check codes thatcan

be seen as monopartite graphs: for a given target girthgt, this new instance of the PEG algorithm allows to construct

cages,i.e. graphs with the minimal size such that a graph of girthgt exists, which is the best result one might hope

for.

Index Terms

progressive edge-growth (PEG), low density parity check (LDPC) codes, girth, Tanner graphs.

I. I NTRODUCTION

Sparse bipartite graphs with large girths are extremely useful in coding theory and most good low density

parity check (LDPC) code constructions focus on avoiding short cycles in their associated Tanner graph. Graphs of

particular interest in the recent literature are those withdv = 2 edges on the variable nodes, also called “cycle graphs”

[1]. Such graphs are used to design ultra sparse non-binary (NB) LDPC codes that achieve very good performance

at small to moderate codeword lengths and high Galois field orders [2], and in that case it is crucial to focus on

the girth properties of the underlying Tanner graph. A construction based on a progressive edge-growth (PEG) of

the graph was proposed in [3], which results in graphs that have higher girths compared to pre-existing techniques.

In this letter, we propose some modifications in the PEG algorithm which further improve the girth properties of

the resulting graphs: given a graph size, our method improves the girthg achievable by the PEG algorithm, and

when the girth cannot be increased, our modified algorithm, that we called RandPEG for “randomized progressive

edge-growth”, minimizes the number of cycles of lengthg.

For a given graph setting and a given target girth, there exists a the minimal size for the graph such that a graph

of girth gt exists, which is often given in terms of a lower bound. In the case of cycle codes (dv = 2), there exists a

February 13, 2008 DRAFT

2

monopartite representation of the Tanner graph where the vertices of the monopartite graph represent check nodes,

and edges represent variable nodes. When such a graph is minimal, meaning that it achieves the lower bound on

the size, it is called a cage.

II. NOTATIONS AND DEFINITIONS

In this section, we briefly review the PEG algorithm to introduce the notations. A bipartite graph is denoted as

(V,E) whereV (resp.E) is the set of the vertices (resp. edges).V = Vc ∪ Vs whereVc is the set of check nodes

and Vs the set of symbol nodes. LetN = |Vs| denote the total number of symbol nodes, which we will refer to

as the size of the graph. When the graph is the Tanner graph of anLDPC code,N is the codeword length. For a

given graph setting, namely a 3-tuple(dv, dc, g), we denote byN (dv,dc)
g the lower bound onN such that a regular

(dv, dc) graph of girthg exists. This lower bound can be easily computed by using the results of [3, lemma 3],

and is knownnot to be tight whendv = 2, for g ≥ 18 [4]. Let N l
sj

denote the set of all check nodes reached by a

tree spanned from symbol nodesj within depthl, andN̄ l
sj

denote the complementary set inVc. At a given stage

of the construction, only a subset of the check nodes have reached a connectivity ofdc, and we callcandidates

the check nodes in̄N l
sj

whose incident edges have not been all affected. When a particular check node isselected

among the candidates, an edge is added in the graph between the nodesj and that check node.

The original PEG algorithm [3] is a procedure for constructing a bipartite graph in an edge by edge manner,

where the selection of each new edge aims at minimizing the impact on the girth: at each step the local girth is

maximized. For each nodesj , the first edge is chosen randomly, and the other edges are chosen in the setN̄ l
sj

,

wherel is such thatN̄ l
sj

6= ∅ andN̄ l+1
sj

= ∅, i.e. among the nodes that are at the largest depth from the symbol node

sj . This maximizes the length of the cycles created through this new edge. When multiple choices are possible,

the algorithm selects the candidate that has the smallest degree under the current setting.

Even though the original PEG algorithm produces onlyalmostregular graphs, the construction ofstrictly regular

graphs can be easily enforced by discarding all candidates where all the edges have already been assigned.

III. T HE RANDOMIZED-PEG ALGORITHM

There are basically two differences between the original PEG algorithm and the RandPEG algorithm that we

propose in this paper: firstly, the way we build and use the spanning tree is different, and secondly, we introduce an

objective function for the edge selection. The RandPEG algorithm is based on a randomization approach: given a

target girthgt, we consider, at each stage of the construction, the maximumnumber of possibilities when adding an

edge in a graph, and we use the objective function to discriminate among the numerous edge candidates. Similarly

to Monte Carlo approaches, the algorithm runs many times andstores the best graph.

In this section, we describe our contributions in details. Our goal is to actually reach a given target girthgt of the

bipartite graph, whenall the edges of the graph have been assigned. Therefore, if at some point of the construction

there is no possibility to add an edge without creating a short1 cycle, then we consider that the algorithmfails. In

1 by short cycle, we mean cycles shorter than the target girth

February 13, 2008 DRAFT

3

the sequel, we only consider the construction of(dv, dc) regular graphs, in order to compare to the known bounds

for regular graphs. We point out that this limitation concerns only our study, not the RandPEG algorithm itself,

which can be used for the design of regular or irregular graphs.

A. Truncated spanning tree

Instead of spanning to the maximal possible depth, we span the tree only up to a maximal depthlmax. This

technique, which defines thenongreedyversion of the algorithm [3], is suggested for the construction of long

codes where it would be computationally expensive to build the whole tree. Here, we argue that this is not only a

computational or speed-up enhancement of the algorithm, but that this techniqueshouldbe used when one wants to

construct a graph that matches the lower boundN
(dv,dc)
g . We justify our argument with the following three points.

1) Diameter argument:First, we give a justification on how deep the construction tree should be spanned, based

on a graph argument: for a given value of the target girthgt, if the graph has minimum sizeN = N
(dv,dc)
gt then the

diameter of the graph equalsd = gt/2 [5]. Therefore in that case, the treemustbe spanned up to a maximal depth

lmax = gt, so that the diameter is ensured to equald = gt/2. Indeed, if at some point the algorithm selects a node

in N̄ l
sj

with l > gt, then the condition that diameter of the graph equalsgt/2 cannot hold, and the construction

will fail.

Spanning the tree at a given depthl = gt gives a set of candidates for which we ensure that no cycle smaller

than the target girthgt can be created if such a candidate is selected.

2) The randomization approach:We recall that our goal is to reach a given target girthgt, whenall the edges

of the graph have been assigned. By spanning the tree less deeply, the number of candidates at each step of the

algorithm becomes much larger, and each edge is selected among a very large number of candidates. Thus, the

algorithm is based on a certain amount of randomness in the construction: if at some point the construction fails,

then all the edges are discarded and the procedure restarts from scratch. This justifies the name of “Randomized

PEG”, and ensures that a wide variety of solutions are explored.

3) Reduced probability of construction failure:When spanning the tree to its maximal depth, the first cycles that

are created by the algorithm are locally optimal in the sensethat they are of the largest possible size. However, as

the procedure progresses, the construction problem becomes too constrained and eventually fails if the target girth

is relatively high compared to the graph parameters. Our extensive tests show that by spanning the tree at a lower

depth, we create smaller cycles at the beginning of the procedure and thus the choice of the edge isnot locally

optimal, but nevertheless the probability that the algorithm actually terminates if much higher.

B. The objective function

We consider in this section the general case whereN ≥ N
(dv,dc)
g , i.e. when the graph sizeN is large enough

such that a(dv, dc) graph of girthg may exist. The set of candidates can be potentially very large, especially at the

beginning of the graph construction, and it becomes possible (and necessary) to discriminate among the multiple

candidates.

February 13, 2008 DRAFT

4

We describe here the objective function that we used, which minimizes the number of created cycles. We would

like to point out that other objective functions could be used complementarily: the minimization of other topological

structures such as the number of created stopping sets, trapping setsetc.or the minimization of an ACE metric [6],

as done in [7] for the construction of irregular graphs.

When the construction tree is spanned up to a maximal depthlmax, the objective function restricts the set of

candidatesN̄ lmax
sj

, as follows:

1- If there are candidates at depthlmax, then discard all the candidates that are not exactly at the depth lmax.

By doing so, we only create cycles of sizeexactlylmax, and ensure that the diameter argument is fulfilled

2- For each candidatecj , computenbCyclesj , the number of cycles that would be created ifcj is selected.

Discard all candidates that would create more thanminj(nbCyclesj).

3- Computedc
min, the lowest degree of all remaining candidates. Discard allcandidates with current degree

dc > dc
min

At this point, the algorithm randomly samples among the remaining candidates.

C. Refinement for spanning the tree

For a given target girthgt, the diameter argument does not hold anymore for lengths N such thatN (dv,dc)
gt < N <

N
(dv,dc)
gt+2 . In that case, the diameter may be larger thang/2, and we propose an alternative strategy by introducing

a gap variable: we span the tree up to a maximal depthlmax = gt + gap. At the beginning of the construction,

cycles of size larger thangt + gap are created. Each time that it is no longer possible to add anyedge, we decrease

the value ofgap, and therefore allow to create smaller cycles. At some point, we span the tree only up to a depth

l = gt, and only at this point the algorithm starts creating cyclesof size gt. This technique, coupled with the

objective function described in the previous section, allows to minimize the multiplicity of the girth,i.e. the number

of cycles lengthgt. It is not necessary for the simulations presented in the next section, but leads to a better LDPC

code design whendv ≥ 3.

IV. PERFORMANCE OF THERANDPEGALGORITHM

A. Design of ultra-sparse graphs

In table I we report, for different values ofdc andg, the smallest value ofN such that the RandPEG algorithm

could construct a regular(2, dc) graph of girthg. When this value achieves the lower boundN
(2,dc)
g , we indicate

so by super-scripting with a star (∗), and the corresponding graph defines a(dc,
g

2)-cage. Otherwise the value of the

lower boundN
(2,dc)
g is super-scripted with parenthesis. Some values are super-scripted with a dag, which means

that the RandPEG was initialized with a tree for these constructions. For comparison, the value ofN such that the

standard PEG algorithm could construct the corresponding graph is reported in square brackets.

For all values ofdc that we tested up to 50, the RandPEG successfully constructscages for target girthsg = 6, 8.

Moreover, for lower values ofdc = 3, 4 the algorithm successfully constructs graphs of girth up to16 that achieve

the lower bound. The corresponding graphs are available on [8].

February 13, 2008 DRAFT

5

g\dc 3 4 5 6 7 8 9 10 · · · 50

6 6∗ [6] 10∗ [10] 15∗ [15] 21∗ [21] 28∗ [28] 36∗ [36] 45∗ [45] 55∗ [55] . . .∗ 1275∗ [1275]

8 9∗ [9] 16∗ [20] 25∗ [35] 36∗ [48] 49∗ [70] 64∗ [116] 81∗ [162] 100∗ [230] . . .∗ 2500∗ [???]

10 15∗ [18] 38(34) [42] 90(65) [110] 189(111) [225] 385(175) [441] 728(260) [812]

12 21∗ [27] 52∗ [104] 105∗† [380] 186∗† [966]

14 36∗ [36] 260 [292]

16 45∗ [72] 160∗† [850]

18 114(69) [150]

20 201(93) [285]

22 447(141) [558]

TABLE I

FOR VARIOUS VALUES OF GIRTHg AND VARIOUS VALUES OF CHECKNODE DEGREEdc , WE REPORT THE SMALLEST GRAPH SIZEN SUCH

THAT THE RANDPEGALGORITHM COULD CONSTRUCT A REGULAR(2, dc) GRAPH OF GIRTHg.

B. Application to the design of NB-LDPC codes

We now illustrate the interest of our algorithm for the design of non-binary LDPC codes. We designed two codes

of rate one-half, with(2, 4) graphs of sizeN = 160. For this graph setting the regular PEG algorithm constructed

a graph of girth 12, whereas the RandPEG constructs a cage of girth 16. For both graphs, we optimized the non-

binary coefficients inGF (64) according to the method described in [2], and simulated the resulting codes on a

binary input additive white gaussian noise channel (BIAWGNC). The simulation results on Fig.1 show that for

ultra-sparse non-binary LDPC codes, a graph with better girth properties performs better in the error floor region,

by inducing better spectrum and minimum distance properties [2].

C. Girth multiplicity

One important property that does not appear in TableI is the multiplicity of the girth,i.e the number of cycles

with length equal to the girth. The multiplicity of the girthcan be extremely important if the graph is used for

designing (binary or non-binary) LDPC codes. We designed regular (3, 6) binary LDPC codes of sizeN = 504

and N = 1008. All the codes were of girth 8, but forN = 504, the PEG code had a girth multiplicity of 808,

whereas the RandPEG code had a multiplicity of only 452. ForN = 1008, the PEG code had a girth multiplicity

of 167, whereas the RandPEG code had a multiplicity of only 31. Simulation results show that the RandPEG codes

perform better that the PEG codes.

February 13, 2008 DRAFT

6

0 0.5 1 1.5 2 2.5 3 3.5 4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

NB−LDPC codes of size N=160 symobols in GF(64)

E
b
 / N

0

F
ra

m
e

E
rr

or
 R

at
e

PEG
RandPEG

SP 59

Fig. 1. Performance comparison for the design of non-binary LDPC codes: two codes whose underlying Tanner graphs were constructed with

respectively the PEG and RandPEG algorithm are simulated over a BIAWGNC. The sphere packing bound of 1959 (SP59) [9] gives alower

bound on the block error probability for this codeword length.

REFERENCES

[1] H. Song, J. Liu, and B.V.K.V. Kumar, “Large girth cycle codes for partial response channels,”IEEE Trans. Magn., vol. 40, no. 4, pp.

3084–3086, July 2004.

[2] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, dc) LDPC codes over GF(q) using their binary image,”accepted for

publication in IEEE Trans. Commun., 2007.

[3] X.-Y. Hu, E. Eleftheriou, and D. M.Arnold, “Regular and irregular progressive edge-growth tanner graphs,”IEEE Trans. Inform. Theory,

vol. 51, no. 1, pp. 386–398, Jan. 2005.

[4] N. Biggs, “Constructions for cubic graphs with large girths,” The electronic journal of Combinatorics, vol. 5, no. 1, 1988.

[5] R. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured LDPC codes,”Proc. of ISTA, 2001.

[6] T. Tian, C. Jones, J. Villasenor, and R. Wesel, “Selective avoidance of cycles in irregular LDPC code construction,”IEEE Trans. Commun.,

vol. 52, no. 2, pp. 1242–1247, Aug. 2004.

[7] H. Xiao and A. H. Banihashemi, “Improved progressive-edge-growth (peg) construction of irregular LDPC codes,”IEEE Commun. Lett.,

vol. 8, no. 12, pp. 715–717, Dec. 2004.

[8] “David declercq’s homepage,”http://perso-etis.ensea.fr/~declercq.

[9] C. Shannon, “Probability of error for optimal codes in a gaussian channel,”Bell System Technical Journal, vol. 38, pp. 611–656, May

1959.

February 13, 2008 DRAFT

http://perso-etis.ensea.fr/~declercq

	Introduction
	Notations and definitions
	The Randomized-PEG Algorithm
	Truncated spanning tree
	Diameter argument
	The randomization approach
	Reduced probability of construction failure

	The objective function
	Refinement for spanning the tree

	Performance of the RandPEG algorithm
	Design of ultra-sparse graphs
	Application to the design of NB-LDPC codes
	Girth multiplicity

	References

