Auguste Venkiah

David Declercq

Charly Poulliat

Design of Cages with a Randomized Progressive Edge-Growth Algorithm

Keywords: progressive edge-growth (PEG), low density parity check (LDPC) codes, girth, Tanner graphs

The progressive edge-growth (PEG) construction is a well known algorithm for constructing bipartite graphs with good girth properties. In this letter, we propose some improvements in the PEG algorithm which greatly improve the girth properties of the resulting graphs: given a graph size, they increase the girth g achievable by the algorithm, and when the girth cannot be increased, our modified algorithm minimizes the number of cycles of length g. As a main illustration, we focus on regular column-weight two graphs (dv = 2), although our algorithm can be applied to any graph connectivity. The class of dv = 2 graphs is often used for non-binary low density parity check codes that can be seen as monopartite graphs: for a given target girth gt, this new instance of the PEG algorithm allows to construct cages, i.e. graphs with the minimal size such that a graph of girth gt exists, which is the best result one might hope for.

I. INTRODUCTION

Sparse bipartite graphs with large girths are extremely useful in coding theory and most good low density parity check (LDPC) code constructions focus on avoiding short cycles in their associated Tanner graph. Graphs of particular interest in the recent literature are those with d v = 2 edges on the variable nodes, also called "cycle graphs" [START_REF] Song | Large girth cycle codes for partial response channels[END_REF]. Such graphs are used to design ultra sparse non-binary (NB) LDPC codes that achieve very good performance at small to moderate codeword lengths and high Galois field orders [START_REF] Poulliat | Design of regular (2, dc) LDPC codes over GF(q) using their binary image[END_REF], and in that case it is crucial to focus on the girth properties of the underlying Tanner graph. A construction based on a progressive edge-growth (PEG) of the graph was proposed in [START_REF] Hu | Regular and irregular progressive edge-growth tanner graphs[END_REF], which results in graphs that have higher girths compared to pre-existing techniques.

In this letter, we propose some modifications in the PEG algorithm which further improve the girth properties of the resulting graphs: given a graph size, our method improves the girth g achievable by the PEG algorithm, and when the girth cannot be increased, our modified algorithm, that we called RandPEG for "randomized progressive edge-growth", minimizes the number of cycles of length g.

For a given graph setting and a given target girth, there exists a the minimal size for the graph such that a graph of girth g t exists, which is often given in terms of a lower bound. In the case of cycle codes (d v = 2), there exists a

II. NOTATIONS AND DEFINITIONS

In this section, we briefly review the PEG algorithm to introduce the notations. A bipartite graph is denoted as and is known not to be tight when d v = 2, for g ≥ 18 [START_REF] Biggs | Constructions for cubic graphs with large girths[END_REF]. Let N l sj denote the set of all check nodes reached by a tree spanned from symbol node s j within depth l, and N l sj denote the complementary set in V c . At a given stage of the construction, only a subset of the check nodes have reached a connectivity of d c , and we call candidates the check nodes in N l sj whose incident edges have not been all affected. When a particular check node is selected among the candidates, an edge is added in the graph between the node s j and that check node.

(V, E) where V (resp. E)
The original PEG algorithm [START_REF] Hu | Regular and irregular progressive edge-growth tanner graphs[END_REF] is a procedure for constructing a bipartite graph in an edge by edge manner, where the selection of each new edge aims at minimizing the impact on the girth: at each step the local girth is maximized. For each node s j , the first edge is chosen randomly, and the other edges are chosen in the set N l sj , where l is such that N l sj = ∅ and N l+1 sj = ∅, i.e. among the nodes that are at the largest depth from the symbol node s j . This maximizes the length of the cycles created through this new edge. When multiple choices are possible, the algorithm selects the candidate that has the smallest degree under the current setting.

Even though the original PEG algorithm produces only almost regular graphs, the construction of strictly regular graphs can be easily enforced by discarding all candidates where all the edges have already been assigned.

III. THE RANDOMIZED-PEG ALGORITHM

There are basically two differences between the original PEG algorithm and the RandPEG algorithm that we propose in this paper: firstly, the way we build and use the spanning tree is different, and secondly, we introduce an objective function for the edge selection. The RandPEG algorithm is based on a randomization approach: given a target girth g t , we consider, at each stage of the construction, the maximum number of possibilities when adding an edge in a graph, and we use the objective function to discriminate among the numerous edge candidates. Similarly to Monte Carlo approaches, the algorithm runs many times and stores the best graph.

In this section, we describe our contributions in details. Our goal is to actually reach a given target girth g t of the bipartite graph, when all the edges of the graph have been assigned. Therefore, if at some point of the construction there is no possibility to add an edge without creating a short 1 cycle, then we consider that the algorithm fails. In 1 by short cycle, we mean cycles shorter than the target girth February 13, 2008 DRAFT the sequel, we only consider the construction of (d v , d c) regular graphs, in order to compare to the known bounds for regular graphs. We point out that this limitation concerns only our study, not the RandPEG algorithm itself, which can be used for the design of regular or irregular graphs.

A. Truncated spanning tree

Instead of spanning to the maximal possible depth, we span the tree only up to a maximal depth l max . This technique, which defines the nongreedy version of the algorithm [START_REF] Hu | Regular and irregular progressive edge-growth tanner graphs[END_REF], is suggested for the construction of long codes where it would be computationally expensive to build the whole tree. Here, we argue that this is not only a computational or speed-up enhancement of the algorithm, but that this technique should be used when one wants to construct a graph that matches the lower bound N (dv,dc) g

. We justify our argument with the following three points.

1) Diameter argument: First, we give a justification on how deep the construction tree should be spanned, based on a graph argument: for a given value of the target girth g t , if the graph has minimum size N = N (dv,dc) gt then the diameter of the graph equals d = g t /2 [START_REF] Tanner | A class of group-structured LDPC codes[END_REF]. Therefore in that case, the tree must be spanned up to a maximal depth l max = g t , so that the diameter is ensured to equal d = g t /2. Indeed, if at some point the algorithm selects a node in N l sj with l > g t , then the condition that diameter of the graph equals g t /2 cannot hold, and the construction will fail.

Spanning the tree at a given depth l = g t gives a set of candidates for which we ensure that no cycle smaller than the target girth g t can be created if such a candidate is selected.

2) The randomization approach: We recall that our goal is to reach a given target girth g t , when all the edges of the graph have been assigned. By spanning the tree less deeply, the number of candidates at each step of the algorithm becomes much larger, and each edge is selected among a very large number of candidates. Thus, the algorithm is based on a certain amount of randomness in the construction: if at some point the construction fails, then all the edges are discarded and the procedure restarts from scratch. This justifies the name of "Randomized PEG", and ensures that a wide variety of solutions are explored.

3) Reduced probability of construction failure: When spanning the tree to its maximal depth, the first cycles that are created by the algorithm are locally optimal in the sense that they are of the largest possible size. However, as the procedure progresses, the construction problem becomes too constrained and eventually fails if the target girth is relatively high compared to the graph parameters. Our extensive tests show that by spanning the tree at a lower depth, we create smaller cycles at the beginning of the procedure and thus the choice of the edge is not locally optimal, but nevertheless the probability that the algorithm actually terminates if much higher.

B. The objective function

We consider in this section the general case where N ≥ N (dv,dc) g , i.e. when the graph size N is large enough such that a (d v , d c) graph of girth g may exist. The set of candidates can be potentially very large, especially at the beginning of the graph construction, and it becomes possible (and necessary) to discriminate among the multiple candidates.

February 13, 2008 DRAFT

We describe here the objective function that we used, which minimizes the number of created cycles. We would like to point out that other objective functions could be used complementarily: the minimization of other topological structures such as the number of created stopping sets, trapping sets etc. or the minimization of an ACE metric [START_REF] Tian | Selective avoidance of cycles in irregular LDPC code construction[END_REF],

as done in [START_REF] Xiao | Improved progressive-edge-growth (peg) construction of irregular LDPC codes[END_REF] for the construction of irregular graphs.

When the construction tree is spanned up to a maximal depth l max , the objective function restricts the set of candidates N lmax sj , as follows:

1-If there are candidates at depth l max , then discard all the candidates that are not exactly at the depth l max .

By doing so, we only create cycles of size exactly l max , and ensure that the diameter argument is fulfilled 2-For each candidate c j , compute nbCycles j , the number of cycles that would be created if c j is selected.

Discard all candidates that would create more than min j (nbCycles j).

3-Compute d c min , the lowest degree of all remaining candidates. Discard all candidates with current degree

d c > d c min
At this point, the algorithm randomly samples among the remaining candidates.

C. Refinement for spanning the tree

For a given target girth g t , the diameter argument does not hold anymore for lengths N such that N (dv,dc) gt

< N < N (dv,dc)
gt+2 . In that case, the diameter may be larger than g/2, and we propose an alternative strategy by introducing a gap variable: we span the tree up to a maximal depth l max = g t + gap. At the beginning of the construction, cycles of size larger than g t + gap are created. Each time that it is no longer possible to add any edge, we decrease the value of gap, and therefore allow to create smaller cycles. At some point, we span the tree only up to a depth l = g t , and only at this point the algorithm starts creating cycles of size g t . This technique, coupled with the objective function described in the previous section, allows to minimize the multiplicity of the girth, i.e. the number of cycles length g t . It is not necessary for the simulations presented in the next section, but leads to a better LDPC code design when d v ≥ 3.

IV. PERFORMANCE OF THE RANDPEG ALGORITHM

A. Design of ultra-sparse graphs

In table I we report, for different values of d c and g, the smallest value of N such that the RandPEG algorithm could construct a regular (2, d c) graph of girth g. When this value achieves the lower bound N (2,dc) g , we indicate so by super-scripting with a star (*), and the corresponding graph defines a (d c , g

2)-cage. Otherwise the value of the lower bound N (2,dc) g is super-scripted with parenthesis. Some values are super-scripted with a dag, which means that the RandPEG was initialized with a tree for these constructions. For comparison, the value of N such that the standard PEG algorithm could construct the corresponding graph is reported in square brackets.

For all values of d c that we tested up to 50, the RandPEG successfully constructs cages for target girths g = 6, 8.

Moreover, for lower values of d c = 3, 4 the algorithm successfully constructs graphs of girth up to 16 that achieve the lower bound. The corresponding graphs are available on [START_REF]David declercq's homepage[END_REF].

B. Application to the design of NB-LDPC codes

We now illustrate the interest of our algorithm for the design of non-binary LDPC codes. We designed two codes of rate one-half, with (2, 4) graphs of size N = 160. For this graph setting the regular PEG algorithm constructed a graph of girth 12, whereas the RandPEG constructs a cage of girth 16. For both graphs, we optimized the nonbinary coefficients in GF (64) according to the method described in [START_REF] Poulliat | Design of regular (2, dc) LDPC codes over GF(q) using their binary image[END_REF], and simulated the resulting codes on a binary input additive white gaussian noise channel (BIAWGNC). The simulation results on Fig. 1 show that for ultra-sparse non-binary LDPC codes, a graph with better girth properties performs better in the error floor region, by inducing better spectrum and minimum distance properties [START_REF] Poulliat | Design of regular (2, dc) LDPC codes over GF(q) using their binary image[END_REF].

C. Girth multiplicity

One important property that does not appear in Table I is the multiplicity of the girth, i.e the number of cycles with length equal to the girth. The multiplicity of the girth can be extremely important if the graph is used for designing (binary or non-binary) LDPC codes. We designed regular [START_REF] Hu | Regular and irregular progressive edge-growth tanner graphs[END_REF][START_REF] Tian | Selective avoidance of cycles in irregular LDPC code construction[END_REF] respectively the PEG and RandPEG algorithm are simulated over a BIAWGNC. The sphere packing bound of 1959 (SP59) [START_REF] Shannon | Probability of error for optimal codes in a gaussian channel[END_REF] gives a lower bound on the block error probability for this codeword length.

 is the set of the vertices (resp. edges). V = V c ∪ V s where V c is the set of check nodes and V s the set of symbol nodes. Let N = |V s | denote the total number of symbol nodes, which we will refer to as the size of the graph. When the graph is the Tanner graph of an LDPC code, N is the codeword length. For a given graph setting, namely a 3-tuple (d v , d c , g), we denote by N (dv,dc) g the lower bound on N such that a regular (d v , d c) graph of girth g exists. This lower bound can be easily computed by using the results of [3, lemma 3],

FebruaryFig. 1 .

 1 Fig. 1. Performance comparison for the design of non-binary LDPC codes: two codes whose underlying Tanner graphs were constructed with

 February 13, 2008 DRAFT monopartite representation of the Tanner graph where the vertices of the monopartite graph represent check nodes, and edges represent variable nodes. When such a graph is minimal, meaning that it achieves the lower bound on the size, it is called a cage.

TABLE I FOR

 I VARIOUS VALUES OF GIRTH g AND VARIOUS VALUES OF CHECKNODE DEGREE dc, WE REPORT THE SMALLEST GRAPH SIZE N SUCH THAT THE RANDPEG ALGORITHM COULD CONSTRUCT A REGULAR (2, dc) GRAPH OF GIRTH g.