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Abstract: In this paper, we describe and evaluate the performance of a linear classifier learn-
ing technique for use in a brain-computer interface. Electroencephalogram (EEG) signals ac-
quired from individual subjets are analyzed with this technique in order to detect responses to
visual stimuli. Signal processing and classification are used for implementing a palliative com-
munication system which allows the individual to spell words. Performance with this technique
is evaluated on data collected from eight individuals.
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1 Introduction

A brain-computer interface (BCI) is a system which allows direct communication, without us-
ing muscles or peripheral nerves, between an individual and a computer. This technique aims at
giving people suffering form severe disabilities a way to communicate with their environment.
For people who are locked-in, after a complete loss of muscular control, a BCI is the most
promising palliative communication technique. Some patients, suffering from degenerative dis-
eases like ALS (Amyotrophic Lateral Sclerosis), who lose all voluntary muscular control in
the late stages of the disease, could benefit from this technique. Several million people could
benefit from BCI systems worldwide.

The functioning principle of a BCI is sketched in figure1. Brain activity is measured by elec-
trical signals, acquired either on the scalp (EEG: electroencephalogram), on the cortex surface
(ECoG: electrocorticogram), or directly on single neurons (SNA: Single Neuron Activity). The
recorded signals are processed by the system, which translates the brain activity into commands
sent to the computer.

The BCI team of the Laboratory of Nervous System Disorders at Wadsworth Center (NYS
Department of Health, Albany, NY, USA) has proposed numerous paradigms that allow the
use for communication of information extracted from EEG signals in order to build a BCI [1].
A first approach consists in analyzing the amplitude of rhythms normally related to muscular
activity, which are mainly detected in EEG from sensorimotor areas of the cortex [2]. For
example, the amplitude of theµ rhythm changes not only during actual movement, but also
when the individual only imagines that he is moving. After a training period of 3-4 hours over
several weeks, most people can use their sensorimotor rhythms to operate a simple BCI. This
approach has been used in the Wadsworth BCI to control a cursor on a computer screen, along
one and more recently two dimensions [2].

Another approach to BCI, which was initially proposed by Farwel and Donchin [3], consists
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Figure 1: Structure of a brain-computer interface

in detecting in EEG signals the potentials evoked by stimuli perceived by the individual (ERP:
Event Related Potentials). More specifically, P300 ERPs, that are elicited when the individual
reacts in a cognitive way to visual, tactile or auditive stimuli, have been used to control a BCI.
One advantage of P300-based BCIs is that they do not require user training. The P300 potentials
are mainly elicited when the individual reacts to rare stimuli appearing from time to time among
standard ones. This paradigm is called the ’Oddball paradigm’ [4].

An ingenious visual paradigm, which satisfies the oddball condition, consists in presenting to
the individual a matrix of symbols and asking him to stay focused on one of these (cf. figure2).
During the trial, columns and rows of the matrix are intensified in a random order, and the user
must count the number of intensifications occuring for the selected symbol. The stimuli are the
column and row intensifications. The rare stimuli are the intensifications of the column and the
row including the symbol to be selected. For a majority of individuals, these rare stimuli elicit
a P300 ERP which can be detected by the BCI. This paradigm has been used by several teams
to build BCIs that allow simple word processing.

Figure 2: Matrix of symbols, here alphanumeric, whose columns and rows are individually
intensified in a random order during the spelling sequence



Rare stimuli, which correspond to an intensification of the column or row including the sym-
bol on which the user focuses his attention, elicit an ERP which must be detected in the signals.
As soon as the ERP is detected, the system can determine which stimulus has elicited it, the
latter being called ’target stimulus’. Other stimuli, which correspond to columns or rows not
including the selected symbol, are called ’non-target stimuli’. EEG signals are recorded con-
tinuously, each signal being sampled and digitized in order to be processed by the system. The
set of values corresponding to all the signals, in a time window of fixed duration starting at the
stimulus onset, is called ’temporal response’ to the stimulus.

In this paper, we focus our work on the determination of the type of stimulus, i.e. ’target’
or ’non-target’, which has elicited a given temporal response. In the first part of the article,
we show that a linear classification technique allows one to reach this goal. We recall the
principles of linear classification and explain why standard classifier training techniques are
not well adapted in our case. In the second part, we show how the coefficients of the linear
classifier can be determined by a statistical analysis of the temporal responses belonging to
a small training set. In the last part, we present the classification results obtained using the
proposed method on experimental data recorded from eight individuals.

2 Classification technique

In this part, we describe the technique used for determining the stimulus type, target or non-
target, using the samples of the temporal response. The weight vector of a linear classifier is
determined by a simple but efficient technique, in which the dimensions of the feature space are
used independently.

2.1 Linear classifier

In the two-class case, a linear classifier is a functionh(·) defining a mapping between the feature
spaceX , a subset ofRn, and the set of labelsY = {−1, +1}. It is defined by a weight vector
w ∈ Rn and a biasb ∈ R by:

h(x) = sign(wT x + b) =

{
+1 if wT x + b > 0
−1 if wT x + b < 0

. (1)

wT x+b = 0 is the equation of a hyperplane which dividesRn into two subspaces corresponding
to classes. For example, withn = 2, a linear classifier is defined by a straight line dividing the
plane into two half-planes, as indicated in figure3.

In our case, the goal of the classification step is to determine, using the temporal responses
recorded over the set of electrodes, whether the stimulus corresponds or not to a target. Let’s
consider the average responses to target and non-target stimuli recorded on the Cz electrode,
which are represented in figure4. As can be seen in Figure 4, only some of the samples of the
temporal response are useful in discriminating the stimulus type. If two values, on the average
responses to target and non-target stimuli, are equal for a given sample, the latter cannot be
used to determine the stimulus type. On the other hand, if the two average values are different,
this sample can be used to recognize the response type, assuming that the associated variance is
small enough.
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Figure 4: Average responses to target and non-target stimuli, recorded on electrode Cz of the
EEG

Therefore, a basic linear classifier can be defined on the basis of a limited number of samples,
found to be informative on some specific electrodes [3]. The weight vector of this classifier
is determined empirically using the average responses to target and non-target stimuli. For
example, one can use the samples of the signal recorded on the Cz electrode between 200
and 600 milliseconds after stimulus onset, since it is known to show typical P300 type evoked
potentials. Statistically, for a P300 ERP, an informative sample takes a higher value for a target
stimulus than for a non-target one. In this case, one assigns a positive value to the weight of this
sample, in order to get a positive term for this sample in the scalar productwT x of equation (1).
The informative dimensions of feature space and the associated coefficients must be determined
for each individual, since the ERPs are very variable in space and time between different people.

Rather than selecting a few particular feature dimensions, we recommend using all the di-
mensions of the feature space in the linear classifier. The temporal response to a stimulus is
therefore represented by a vector, denotedx, with ne×ns coordinates, including all the dimen-
sions of the feature space.ne is the number of electrodes of the EEG cap, each one delivering
a signal digitized inns samples. With a sampling rateτ , the response duration is thennsτ . For
example, with 64 electrodes sampled at 300Hz, a one-second response is described by a vector
with 19200 coordinates. With such a representation, the spatial and temporal orders of features
are lost, since the coordinates of a vector are not ordered.



2.2 Drawbacks of learning techniques

In the supervised case, classifier parameters are determined using a learning set, composed of
pairs(xi, yi) ∈ X ×Y of elementsxi of the feature space for which the labels are known. This
set is used as a whole by batch learning techniques, or element by element by iterative learning
techniques. The reader can refer to [5] for a detailed presentation of learning techniques.

Fisher’s discriminant analysis is the reference batch learning method [6]. All the elements
of the learning set are projected onto the straight line perpendicular to the hyperplane defined
by w, in order to define to subsetsm+ = {wT xi | yi = +1} andm− = {wT xi | yi = −1}
corresponding to the two classes. On this straight line, the two subsets are well separated when
their two centers of gravity are distant, whereas in each subset the variance of positions remains
small. In order to determine the best separating hyperplane, Fisher proposes to maximize the
criterion:

J(w) =
[avg(m+)− avg(m−)]2

var(m+) + var(m−)
, (2)

in which avg(·) and var(·) denote respectively the average value and the variance of positions
of all the points of a set.

Among iterative learning techniques, the simplest and most widely used is the perceptron
learning rule, originally described by Rosenblatt [7]. The elements of the learning set, which
in this case is not always defined a priori, are used one after the other in order to update the
weight vector of the linear classifier. Letwk denote the weight vector estimated using the firstk
elements of the learning set andŷk the estimation of the class obtained withxk. If the classifier
makes a mistake for one of the elements of the learning set (i.e. if the predicted valueŷk is
different from the actual oneyk for this element), the weight vector is updated following the
rule:

wk+1 = wk + ηykxk , (3)

in whichη is a constant called the learning rate.

These well known learning methods, and their equivalents, are not well adapted to our case,
either because they require too many computations, or because the learning set does not in-
clude enough observations. Indeed, our learning set includes a limited number (several hun-
dreds) of time responses associated with a given type of stimulus, while the feature space has
a much higher dimension (several thousands). Maximizing Fisher’s discriminant criterion re-
quires computing a cross-correlation matrix, a square matrix with sizenens × nens, and its
inverse. This computation would require hours of processing time for a square matrix with size
19200 × 19200 even on a powerful computer. Moreover, the result would probably be very
imprecise because of the accumulation of thousands of unavoidable computation errors due to
arithmetic rounding. On the other hand, for iterative learning methods, the problem of the lim-
ited size of the learning set arises. Learning several thousands of coefficients using an iterative
method requires at least a comparable number of elements in the learning set. One usually con-
siders that the ratio between the number of learning elements and the number of coefficients
should be at least ten, which is far from our case.



3 Proposed tuning technique

Pearson’s correlation coefficient, usually denoted byr, is a statistical analysis tool that we use
to quantify the degree to which a given feature of a time series predicts the criterion. This
coefficient, which measures the correlation between two seriesX = xi, 1 ≤ i ≤ ni and
Y = yi, 1 ≤ i ≤ ni, is computed by the equation:

r =
ni

∑
xiyi −

∑
xi

∑
yi√

[ni

∑
x2

i − (
∑

xi)2] [ni

∑
y2

i − (
∑

yi)2]
. (4)

r reflects the degree of proportionality between the two series by a value ranging between−1
and+1. If all the values of the first series are stricly proportional to those of the second series,
r is either+1 or−1. If the two series show no correlation,r is equal to zero.

Let ni denote the number of elements in the learning set andY the series of valuesyi, 1 ≤
i ≤ ni defining the type of stimulus for each element, with+1 for a target stimulus and−1 for
a non-target one.X(s, e) is the series of valuesxi(s, e), 1 ≤ i ≤ ni, of the particular samples
of electrodee in theni time responses. We compute the Pearson’s correlation coefficientr(s, e)
between the seriesX(s, e) andY according to equation4. The higher the absolute value of
r(s, e), the most discriminant the samples of electrodee to determine the type of stimulus. For
example, one can verify this property on the curve infigure5, which represents the values of the
r(s, e) coefficients for all the sampless of thee=Cz electrode.
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Figure 5: Pearson’s correlation coefficient vs. time, Cz electrode

Rather than selecting the most informative samples of the time response, we use all the co-
efficientsr(s, e) as the weight vectorw of a linear classifier defined on a feature space with
dimensionsne × ns. If a sample is informative, its value is multiplied by a non-null coefficient
and accumulated to the sum. If it is not informative, its value is multiplied by a very small
coefficient and therefore has no influence on the result. On the other hand, the value of a sam-
ple in the average response to a target stimulus can be either greater or lower than the value
of the same sample in the average response to a non-target stimulus. The sign ofr(s, e) takes
this property into account, since the productr(s, e)x(s, e) is statistically greater that zero for a
sample of a target response.

This technique for determining the coefficients of the linear classifier, which is a batch type
approach, uses each axis of the feature space independtly. It is very efficient in terms of compu-
tation time, since its complexity is onlyo(n), wheren is the dimension of the feature space. For
comparison, standard batch techniques, such as maximization of Fisher’s discriminant, have a
o(n3) complexity. However, our technique does not yield a solution that maximizes any opti-
mality criterion, and therefore it can hardly be described as a ’learning’ technique.



4 Performance evaluation and discussion

4.1 Experimental data

Eight people (six men and two women between24 and50 years of age) used the BCI system to
provide the data used in the following experiment. Some had already used a BCI system, but no
one had experience with an ERP-based BCI. The data, acquired during five independent sessions
for each individual, were recorded in similar experimental conditions over several months.

The user sat in front of a video monitor and viewed the matrix of alphanumeric symbols
presented as in figure2. During each trial, he or she had to focus on a given symbol and to
count the number of flashes occurring for this target character. All the data were collected in the
so-called copy mode (the target symbol was designated a priori to the user by the computer).
During each session, the user had to spell nine words or series of symbols, namely the eight
words of the sentence ”The quick brown fox jumps over the lazy dog” and a number with three
digits. These series were chosen to span a large part of the matrix of symbols during each trial.
Columns and rows were intensified for100 milliseconds with a period of175 milliseconds. For
spelling one symbol, each column and each row was intensified15 times, in a random order,
which corresponds to180 stimuli, among which30 were targets.

The EEG signals were acquired using a64 electrodes cap (Electro-Cap International Inc.) or-
ganized following the standard international10−20 system. All the electrodes were referenced
to the right ear lobe and grounded to the right mastoid. Signals were amplified by a factor of
20 000 (SA Electronics amplifier), band-pass filtered between0.1 and60Hz, sampled at240Hz
and recorded. Data collection and stimulus generation were handled entirely by the BCI2000
software [8].

4.2 Validation and comparison protocol

A potential evoked by a stimulus appearing within800 milliseconds following the stimulus on-
set was considered informative. This duration corresponds to192 samples for each electrode
when the signal is sampled at240Hz. Taking into account the64 electrodes, this leads to pro-
cessing12288 features for each time response. In most other classification techniques, the first
step consists in removing many dimensions from the feature space to reduce complexity, which
allows for a more efficient learning step. Dimension reduction is obtained by subsampling the
signals in either the temporal or spatial domain, or in both. In order to check the validity of these
subsamplings and to validate simultaneously our classification technique, we analyzed the data
in the following four configurations:

1. with the initial 12288 dimensions of the feature space, i.e.64 electrodes sampled at
240Hz.

2. using only8 electrodes, selected by an expert as the most interesting for detecting ERPs,
reducing the dimensions to1536.

3. by subsampling the signal down to20Hz, with low-pass filtering and decimation, reducing
the dimensions to1024.



4. using simultaneously both reductions, i.e.8 electrodes sampled at20Hz, which yields a
feature space with128 dimensions.

With five sessions for each individual, several learning/test combinations could be used. We
selected two options: 1) learning classifier parameters on the data of the first session and testing
them on the remaining four sessions; 2) learning the parameters on each session and testing
them on the following one. Under these conditions, seven pairs of (learning, testing) sessions
were available for each individual. For learning the coefficients, all the time responses available
in the session were used, i.e.35 symbols, each one including180 time responses, yielding6300
elements in the learning set.

The performance of the proposed technique was evaluated using the correct classification
rate for each pair (learning, testing) previously described. We also studied the evolution of the
correct classification rate versus the number of stimuli used for testing, considering a number
of flashes ranging between1 and15.

4.3 Learning results

An example of a learning result, for a single session of a given individual in the four configu-
rations of the feature space, is presented in figure6. Each image represents the weight vector
of the classifier, the horizontal direction corresponding to the sample number (time), the ver-
tical direction to the electrode number, and the gray level to the absolute value of the weight
determined for this axis of the feature space. White corresponds to a large absolute value of the
weight, which means that this axis is informative in terms of stimulus discrimination, whereas
black corresponds to a null weight.
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Figure 6: Learning results in four configurations. The weight vector is represented as an im-
age: the abscissa is the sample number, the ordinate the electrode number, the gray level is
proportional to the absolute value of the weight

As can be seen in Figure 6, some samples of the time response are very informative (e.g., near
the sixty-fifth sample for240Hz and near the sixth sample for20Hz). These samples correspond



quite precisely to a time offset of300 milliseconds, which confirms their relation to P300 ERPs.
In addition, a reduction of the resolution, either spatial or temporal, yields consistent weight
vectors, since their aspects are very similar when they are represented by an image.

4.4 Correct classification rate

The correct classification rate allows one to verify the correct behavior of the proposed learning
technique. In table1, we indicate the correct classification rates obtained for the eight indi-
viduals (A-H) with the seven available pairs (learning session, testing session). The method
yields high correct classification rates, although closely related to the individual’s ability to
use an ERP-based BCI. There is no noticable evolution of this rate during successive sessions,
presumably because ERPs are unlearned responses on which learning has very little influence.

1-2 1-3 1-4 1-5 2-3 3-4 4-5

A 66,67 55,56 44,44 36,11 69,44 41,67 41,67
B 78,38 75,68 71,05 72,97 59,46 78,95 64,86
C 86,11 80,56 83,33 88,89 66,67 88,89 88,89
D 66,67 86,11 75 30,56 75 72,22 36,11
E 97,22 96,55 97,22 97,22 100 100 100
F 62,16 77,42 57,89 78,38 83,87 68,42 83,78
G 86,11 80,56 100 91,67 88,89 97,22 94,44
H 66,67 63,89 16,67∗ 83,33 72,22 11,11∗ 83,33

Table 1: Correct classification rate (in %) for each individual versus the pair (learning session,
testing session).∗ during session 4, the individual H did not stay well focused on the task

In figure7, we show the evolution of the correct classification rate versus the number of inten-
sifications series used for testing. This rate increases with the number of intensifications, which
is explained by the noise lowering effect of averaging. There is also a disparity among indi-
viduals in terms of ERPs, since some users can reach high rates (70% to 100%), with only six
intensifications, whereas for some others the rate evolution with the number of intensifications
is progressive.
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Figure 7: Evolution of the correct classification rate versus the number of intensifications

As previously indicated, the method has been applied to data in four different configurations
of spatial and temporal resolutions. This way, it is possible to compare the correct classifica-
tion rates obtained versus the dimension of the feature space. The result of this comparison is



summarized in table2, which presents the evolution of the correct classification rate for each
individual among all sessions when the resolution is changed.

A B C D E F G H
Modification of electrode number (64 downto 8), constant sampling rate

Average variation of the rate compared to table I
64 downto 8 (240) +10,19-4,46 +8,89+10,79+2,73+12,21+4,92+8,47
64 downto 8 (20) +9,02 -5 +8,99+8,86 +3,77+12,17+5,79+7,46

Modification of sampling rate (240 downto 20), constant electrode number
Average variation of the rate compared to table I

240 downto 20 (64)+0,53 -1,29 -2,75 -1,75 -3,09 -2,44 -3,25 -0,53
240 downto 20 (8) -0,63 -1,83 -2,65 -3,68 -2,05 -2,48 -2,38 -1,53

Table 2: Correct classification rate (in %) versus modifications of spatial and temporal resolu-
tions

Let us consider first the effect of changing the spatial resolution. Electrode selection allows
an increase in the correct classification rate for seven of the eight individuals (e.g., up to 12%
increase for individual F). We believe that this improvement comes from the reduction of the
noise introduced in the response by non informative electrodes. The noise is not perfectly
removed by the learning technique, which is non-optimal. On the other hand, for individual
B, reducing the resolution down to eight electrodes leads to a4.5% decrease in the correct
classification rate, which means that some useful information was available in the cancelled
signals. In sum, a priori reduction of the number of electrodes is a useful technique, but the
informative electrodes should be selected on an individual basis.

The effect of reducing the temporal resolution of signals is that it globally leads to a decrease
in the correct classification rate, although limited to about3% with our experimental data. A
priori subsampling removes, in a way not adapted to each individual, some information that was
initially available in the signals. This result suggests that it is best to keep all the samples of the
original signal and let the learning technique select the informative ones.

5 Conclusion

In this article, we have described a technique for the classification of time responses to visual
stimuli that can be easily implemented in a brain-computer interface. Its algorithmic complexity
is low compared to those of the standard learning techniques described in the literature. More-
over, this technique can process raw signals coming from the EEG recording system, without
requiring a reduction of data resolution. Using experimental data, we have shown that a re-
duction of the number of electrodes can noticeably increase the correct classification rate. In
contrast, reducing the sampling rate decreases the correct classification rate.
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