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Abstract

We adapt the simulated annealing algorithm to the search of periodic orbits for classical multi-electron
atomic systems. This is done by minimizing the n-th return distance to the initial position on a Poincaré
surface of section under an energy constraint. Here we give evidence of the feasibility of the method by
applying it to the helium atom in the ground state for one to three spatial dimensions. We examine the
structure of the dynamics and connect its organization to the periodic orbits we have found.
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1. Introduction

Periodic orbits play a central role in the description and analysis of dynamical systems as they represent
the skeleton of the dynamics [1]. It means that some important dynamical properties can be deduced
from these orbits. By continuity of the flow a typical trajectory approaching a periodic orbit will mimic
its dynamics. The time delay during which the trajectory is caught by the periodic orbit depends on
the stability of the orbit: the more stable the periodic orbit, the longer the trajectory will stay in its
neighborhood. As a result, the knowledge of the periodic structures and their stability properties enables
one to predict the dynamical organization of the flow in their neighborhood. A fair amount of information
is provided by the linear stability properties of these invariant structures. As an example, cycle expansions
according to the length, stability or action of these orbits, are carried out to describe long time behavior
such as averages of observables [1, 2]. For chaotic systems, the symbolic dynamics describes a hierarchy
between periodic orbits, and the resulting expansion converges exponentially or superexponentially with the
cycle length. For autonomous Hamiltonian systems, the eigenvalues of the Jacobian matrix from which the
linear stability properties are determined come in quadruplet (λ, 1/λ, λ∗, 1/λ∗). In addition, there are at
least two marginal eigenvalues corresponding to the time translation invariance (along the periodic orbit)
and the energy conservation. These eigenvalues allow the classification of periodic orbits according to their
linear stability properties. For instance, for Hamiltonian systems with two degrees of freedom, the periodic
orbits can be sorted in three categories depending on their linear stability property: they are either elliptic
(in general, linearly stable), hyperbolic (linearly unstable) or parabolic (linearly neutral). Elliptic periodic
orbits are generally surrounded by an elliptic island inside which trajectories are trapped (and stay on
invariant tori). In this region, the dynamics is mainly ruled by the central periodic orbit and the size
of the island is determined by nonlinear stability properties. For hyperbolic periodic orbits, neighboring
trajectories (linearly or locally) exponentially diverge in time. In general, these orbits are surrounded by
a chaotic dynamics of stretching and folding since their stable and unstable manifolds intersect an infinite
number of times to create a chaotic tangle.

Of course the influence of various kinds of periodic orbits strongly depends on the problem at hand. For
atomic and molecular systems, the typical duration of a process is short compared to the other physical
processes. This is particularly true for systems driven by short and intense laser pulses. Periodic orbits
longer than this typical duration (or even of the same order) will not influence drastically the dynamics. On
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the contrary, periodic orbits much shorter than this duration will have a chance to trap the trajectory in its
neighborhood and hence significantly affect the dynamical properties.

Various algorithms have been developed for finding periodic orbits. Among them, some are commonly
used in atomic systems with a few number of electrons : Newton-Raphson algorithm or modified version of it
such as the damped Newton-Raphson algorithm offers high speed convergence provided one has a sufficiently
accurate initial guess for the periodic orbit. The precision of this initial guess is a thorny problem since
the basin of attraction shrinks exponentially with the instability and the length of the orbit [3, 4]. A
solution to overcome this difficulty is to consider a parallelized version of the algorithm through a multi-
shooting strategy [1]. Independently of the chosen version, a crucial point in Newton-Raphson methods
is the evaluation of the derivative of the trajectory which can be a delicate point from a numerical point
of view. For a flow with dimension N , the tangent flow is given by the evolution of a N × N matrix
which increases significantly the dimensionality of the problem at hand (even if in some cases, the structure
of the problem may enable one to reduce the actual number of components). Some methods were set
up to overcome this issue, and are generally based on relaxation algorithms [3, 5–8]. Overall, the goal is
to set up a deterministic dissipative dynamical system which has the periodic orbit as its attractor (with
hopefully a wide basin of attraction). Using the same philosophy, variational methods have been designed to
determine periodic orbits. For instance, a variational principle combined with a Newton descent [9] consists
in setting up a (dissipative) fictitious-time dynamics in a space of loops such that it drives a loop to a true
periodic orbit of the considered dynamical system. Similarly some other algorithms are designed based on
minimizing a function (or a functional). For instance one can consider a Newton-Gauss method by looking
at minimization of the distance between the starting and final points of an orbit on a particular surface
intersecting the periodic orbit: Global vanishing minima correspond to periodic orbits.

Independently of the chosen algorithm, the chance to see the algorithm converging strongly depends
on the basin of attraction of the periodic orbit of the deterministic dynamical system. Often, there is a
trade-off between the size of the basin of attraction with the speed of convergence of the algorithm. This
is in particular the case for the Newton-Raphson and its damped version. In this article we propose a
method which extends this basin of attraction by use of systematized trial and error converging procedure.
In order to do that, we combine these deterministic algorithms with a Simulated Annealing (SA) algorithm
to approximate the periodic orbits. In other words, the goal of this stochastic method is to enable the
determination of initial guesses with sufficient accuracy to lay them into the basin of attraction of a fast
converging algorithm like the Newton-Raphson algorithm. As a consequence of the underlying stochastic
nature of the algorithm, it enables one to determine several different periodic orbits for the considered
dynamical system by launching the algorithm several times. One of the advantages of the SA algorithm is
that it does require neither the computation of the tangent flow nor a high accuracy in the integration of
the trajectory. We show below that it makes this method a tool of choice for systematic search for periodic
orbits in phase space.

To illustrate the feasibility of the SA algorithm for finding periodic orbits, we consider the classical
helium atom in its ground state. The dynamics is modeled by the following Hamiltonian with soft Coulomb
potentials [10]:
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where xi is the position of the i-th electron (the nucleus being set at the origin), and pi is its canonically
conjugate momentum. The norm |·| is the Euclidian norm. Depending on the dimensionality of the model,
the vectors xi and pi can be considered in R, R2 or R3. Tuning the softening parameters a and b enables
to reproduce various atomic configurations. The parameter a is chosen as to reproduce the ground state
energy (defined as the sum of the first and second ionization potentials) while preventing any self ionization
of the atom. The parameter b is chosen as to allow significant energy exchange between the electrons when
they are close to each other. For helium, one usually considers a = b = 1 and the ground state energy is
Eg = −2.24 a.u. [11].
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The dynamical organization corresponding to Hamiltonian (1) is crucial for understanding the (multiple)
ionization processes of these atoms driven by an intense and short laser pulse. In Ref. [12] it was argued
from a one dimensional model that the dynamics of Hamiltonian (1) is mainly organized by a reduced set of
periodic orbits which naturally places one electron close to the nucleus and one further away. This distinction
between the two electrons is crucial when understanding the action of an intense linearly polarized laser
field when it is applied to the system : The electron far away from the nucleus is picked up by the field
and hence quickly ionizes while the other electron remains bound to the nucleus. This distinction between
the two electrons is at the origin of the classical interpretation of the recollision or the ”‘three-step”’ model
which is the keystone of strong-field physics [13–15]. The question we are addressing here is whether this
emerging picture of an inner (close to the nucleus) and an outer electron (further away) still exists in two
or three dimensions, or if it is just an artifact of the one dimensional model which is very peculiar given the
presence of the nucleus. We show below that this dynamical picture still persists and and it does so because
of the organization of short periodic orbits in phase space.

In Sec. 2, we describe the algorithm we use to determine periodic orbits. In Sec. 3, we analyze the lay-out
of these periodic orbits in phase space and their implication for the dynamical organization of the helium
atom in the ground state.

2. Simulated annealing algorithm to determine periodic orbits

The Simulated Annealing (SA) algorithm [16] is a metaheuristic algorithm designed for optimization
under constraints which generalizes the ideas developed from the Metropolis algorithm [17]. The main idea
of the algorithm is to automate a trial and error search for a better solution within a controlled neighborhood
whose diameter is successively reduced.

Given a dynamical system Ẋ = F (X), we first consider a Poincaré section Σ and the associated Poincaré
map Φ : Σ 7→ Σ. If a trajectory cuts Σ in a finite set of points (X1,X2, . . . ,Xn) such that Φ (Xn) = X1

and Φ (Xi) = Xi+1, 1 ≤ i < n it corresponds to a periodic orbit with period n on the section (in other
words Φn (X1) = X1). The periodic orbit search is obtained by minimizing the distance between the
starting point and the n-th return on Σ using the SA algorithm. From a random initial guess X(0) ∈ Σ we
build up a sequence

{

X(k)
}

k∈N
∈ ΣN which aims at minimizing the Euclidean distance between X(k) and

Φn
(

X(k)
)

. If the SA algorithm converges, the limit X(∞) of the sequence exists and fulfills the condition

Φn
(

X(∞)
)

= X(∞), therefore corresponding to a periodic orbit (with period n on Σ). For the problem at
hand, finding periodic orbits of Hamiltonian (1) in the ground state, an additional constraint to take care
of during the SA algorithm is the energy of the system (which is constant for autonomous Hamiltonian
systems). There are several ways of doing it : The first one is to ensure that the points X(k) remain on the
energy surface after each step of the SA algorithm by an additional procedure which adjusts one coordinate.
The second way is a specific prescription on the function to minimize which only ensures that the limit
X(∞).

For a given function f : Γ → R, where Γ is a subset of Σ, called cost function, the goal is to approximate
the global minimum of f over Γ. First a random initial condition X(0) ∈ Γ is chosen to initiate the SA
algorithm and we define two parameters T0, the initial temperature, and κ ∈ R

+ which serves as error
tolerance.

The SA algorithm proceeds in successive stages of annealing and cooling steps.

• During the annealing process, a random initial guess X(1) is chosen in the neighborhood of X(0)

in Γ (the size of the neighborhood is controlled by T0; for simplicity one usually chooses a ball with
diameter T0). It corresponds to a melting of the system with a controlled temperature T0. If f

(

X(1)
)

<

f
(

X(0)
)

then X(1) replaces X(0) in the following step. If not, X(1) replaces X(0) with a probability

exp(−(f(X(1)) − f(X(0)))/κT0). Otherwise, the same X(0) is kept in the next step. The process of
melting for a fixed temperature is iterated until the system reaches a steady state.

• The cooling consists in decreasing the temperature to a new temperature T1 < T0, realized at the
end of the annealing process. Then a new iteration of annealing with the updated temperature T1, is
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performed.

The successions of annealing and cooling steps are iterated until the system reaches a global steady state
which is the resulting approximation of the global minimum. Since the size of the neighborhood where the
perturbation is performed is controlled by the temperature, it has to shrink with iterations of cooling. At
the limit for zero temperature, the neighborhood of control is reduced to a single point.

The constant κ is used to avoid the algorithm to be trapped in local minima. It has to be chosen carefully
as two critical situations may arise:

• If κ is too large, the algorithm will not converge since too many “bad” perturbations are allowed.

• If κ is too small, one runs the risk to be trapped in local minima.

The cooling law also has to be chosen carefully to allow the algorithm to sufficiently explore the region around
the initial guess. If the cooling is too fast, the system is frozen in its current position and the algorithm may
not converge. If the cooling is too slow, the algorithm spends a lot of time in useless explorations which
slows down the process. Usually, an exponential decrease is considered for the cooling by multiplying the
current temperature with a constant, i.e. Tn+1 = αTn where 0 < α < 1.

Recall that our goal is to find periodic orbits for Hamiltonian (1) with the constraint to be on the ground
state, and to do that, we are looking for n periodic points on a Poincaré surface. For instance, we choose the
Poincaré surface Σ of equation x1 = 0 with ẋ1 > 0, where x1 is the first component of x in the canonical basis
(other surfaces which intersect the ground state energy surface might also be suitable). For convenience,
we denote X = (x1,x2,p1,p2) the vector position in phase space. Our problem is to find a periodic point
X(∞) on the Poincaré (and the ground state energy) surface such that X(∞) = Φn

(

X(∞)
)

. We define the
cost function as the n-th return distance function

f : X 7→ |X− Φn (X)| . (2)

such that periodic orbits with period n correspond to positions where the global minimum of the function
f is reached and thus may be investigated using the SA algorithm. This function is defined on Γ which is
the intersection of the ground state energy surface {X s.t. H (X) = Eg} with the Poincaré section Σ.

Schematically, the algorithm is written as

% Initialization

Xold = InitCond() % Random initial condition generation

DistError = ReturnDist(Xold) % n return distance from initial condition

CoolIter = 0 % Cooling iteration counter

% Simulated annealing algorithm

while (CoolIter < #CoolIter) and (DistError < #DistError)

MeltIter = 0 % Melting iteration counter

while (MeltIter < #MeltIter) and (DistError < #DistError)

Xnew = Xold + Tprt*2*(rand()-.5) % (*) random perturbation of current guess

Dist = ReturnDist(Xnew) % n return distance for perturbed condition

if Dist < DistError % Improved guess

Xold = Xnew

DistError = Dist

% Allowed not improving perturbation

else if (exp(-(Dist-DistErr)/(#ErrTol*Tprt)) < rand())

Xold = Xnew

DistError = Dist
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end if

MeltIter = MeltIter + 1

end while

Tprt = Tprt*#TprtFact

CoolIter = CoolIter + 1

end while

where user-defined constants are labeled by # and % starts comments. The function ReturnDist plays the
role of the function f as defined by Eq. (2). Finally, the function rand is a random generator uniformly
distributed over [0, 1]. The melting process (∗) is draffed in its simplest way above and it has to be followed
by a projection on Γ, which has to be chosen accordingly to the problem at hand. In our case, after the
melting (∗), the new initial condition is neither on Σ nor on the ground state energy. The projection on Σ
is simply done by setting x1 = 0. The projection on the ground state is done by changing px,1 accordingly
to the energy constraint and we select the positive solution for px,1 in order to be sure to remain on the
Poincaré section. We also define a threshold distance under which the algorithm is considered as converged.

The projection of the perturbed position on the ground state energy surface ensures that the series of
guesses stay on the energy surface at each iteration. However, one can also see the ground state energy as
an additional constraint to minimize together with the n-return distance. In this case, one adds the energy
error to the cost function

f : X 7→ |X− Φn (X)|+ γ |H (X)− Eg| , (3)

where γ > 0 is a constant. Then, after each perturbation, we only project the new guess on the Poincaré
surface Σ. We have successfully implemented both methods for n ∈ {1, 2, 3}. All numerical results displayed
in this paper and the values given for the parameters correspond to the projection (on both the Poincaré
and ground state energy surfaces) method.

Many improvements of the algorithm can be implemented depending on the problem at hand. For
instance, there is no requirement for choosing the initial condition randomly. If one has an approximate
guess for the location of a periodic orbit, or any subset of phase space where it is included (e.g., given the
symmetries of the problem), it is more suitable to start the SA algorithm with this particular point. In such
a case, it can be interesting to set the initial temperature cooler than for a random initial guess.

For improving the convergence, it is more efficient to combine the SA algorithm with a second method
based on a Newton-Raphson method for instance. Here we use the function fsolve of Matlab, which is a
Newton-Gauss minimizing scheme.

3. Application to two electron atoms with soft Coulomb potentials

For two spatial dimensions the complexity of the system is increased compared to one dimensional models
since the number of degrees of freedom is increased from 2 to 4. In addition, for two spatial dimensions,
the system has a continuous symmetry which corresponds to a global invariance by rotation of the atom in
phase space. The associated conserved quantity is the total angular momentum x1 ×p1 +x2 ×p2, where ×
is the cross product in R

2: x×p = xpy − ypx. It means that any periodic orbit generates an infinite family
of periodic orbits deduced from this single one by a rotation of the atom in phase space. In addition, the
system also has some discrete symmetries (the exchange of the role of the two electrons for instance). To
simplify the analysis, in what follows, we identify as a single one all periodic orbits which can be deduced
by one of those symmetries from another periodic orbit. We notice that these periodic orbits have the
same period and the same linear stability properties. In the numerical implementation, we consider that a
periodic orbit has converged when the distance in phase space between the starting and final points on the
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Poincaré section is smaller than 10−10. We consider a periodic orbit to be a new one when the difference in
period or in the spectrum of the monodromy matrix is larger than 10−2 from any already known periodic
orbit in the list.

For actual use of the SA algorithm we set the initial temperature around 5. A tolerance parameter
κ = 0+ (a perturbation is accepted if an only if it reduces the cost function) is enough for our problem
when we perform the projection on the ground state energy surface. It should be noted that if we add the
energy error to the cost function [see Eq. (3)], κ ≈ 5 × 10−2 is a better choice. For the cooling we set the
temperature ratio to α = 0.75. Finally, we iterate the melting step a fixed number of times (3000 melting
steps during the annealing process for each temperature). We stop the cooling when the temperature has
reached a threshold value (here the threshold temperature is 10−5). We also define a threshold dcrit for
which the algorithm is stopped as soon as the current guess X satisfies f (X) < dcrit, and here dcrit = 10−3.

For actual use of the SA, there are two main strategies when choosing the temperature ratio and the
number of melting steps. One strategy is to choose a fast cooling law (i.e. α small) and a large number of
melting steps for each annealing. Another strategy is to consider a slow cooling rate (i.e. α ≈ 0.95) and a
much reduced number of melting per annealing iteration. For the problem at hand, we have used the first
strategy when considering a projection on the ground state energy surface, and we have used the second
strategy when adding the energy error to the cost function.

The total angular momentum is a conserved quantity of the dynamics and to model a configuration closer
to the quantum ground state, one may wish to impose it to be zero. That becomes a new constraint for
our system and it decreases the actual dimensionality of the problem at hand, but still it is worth looking
for periodic orbits which may organize this particular subclass of the dynamics. To do so, there are two
straightforward ways to adapt the algorithm presented here. The first one consists in adding the total
angular momentum to the cost function (in the same way as for the energy constraint)

f : X 7→ |X− Φn (X)|+ γ |x1 × p1 + x2 × p2| ,

where γ is constant. The total angular momentum is then considered as an additional constraint and the
SA will try to minimize it together with the n-th return distance function. Another solution is to project,
after each melting iteration, the guess on the intersection of the ground state energy and zero total angular
momentum surfaces. We have successfully adapted our algorithm to find one dimensional, three dimensional
and zero total angular momentum two dimensional (considering the projection alternative) periodic orbits.

Since we are interested in finding as many periodic orbits as possible up to a finite period due to the
finite duration of laser pulses in experiments, we launch a large number of times the algorithm, to explore
the whole accessible phase space. We do it for periodic orbits of Hamiltonian (1) which have up to three
intersections on the Poincaré section. Because of the rotational invariance of the system, the monodromy
matrix associated with a periodic orbit has an additional pair of eigenvalues 1 (in addition to the pair
associated with time-translation along the orbit). As a result, for two spatial dimensions, four eigenvalues
are equal to one in the monodromy matrix and the four others determine the linear stability properties.
Consequently the system can exhibit nine kinds of linear stability, (elliptic, parabolic or hyperbolic)-(elliptic,
parabolic or hyperbolic). However, for numerical computations, is it difficult to distinguish precisely the
parabolic features, e.g., between a parabolic and an elliptic or a weakly hyperbolic periodic orbit. When
checking the linear stability of the periodic orbits we have found, we arbitrarily group together parabolic
and elliptic features (it is worth noting that we have found no fully parabolic periodic orbit).

For the case of two spatial dimensions for Hamiltonian (1), we have found a total of 155 periodic orbits
with period smaller than 65 a.u. whose repartition is the following one : 43 periodic orbits with period one,
74 periodic orbits with period two (which cannot be reduced to period one, that is to say, prime periodic
orbits) and 38 periodic orbits with period three. Regarding their stability properties, 22 are elliptic-elliptic
or parabolic-elliptic, 71 are elliptic-hyperbolic or parabolic-hyperbolic and 62 are hyperbolic-hyperbolic. In
Fig. 1, we display the period T as a function of the modulus of the largest eigenvalue λmax of the monodromy
matrix for each periodic orbit determined by the algorithm. By no means are these periodic orbits the only
ones in phase space. However, these are the ones obtained by launching a large number of times the SA
algorithm (with the restrictions mentioned above).
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Figure 1: Period T versus the norm of the largest eigenvalue λmax of the monodromy matrix for the detected periodic
for Hamiltonian (1) with two spatial dimensions. Elliptic-elliptic and parabolic-elliptic periodic orbits are labeled with red
crosses, elliptic-hyperbolic and parabolic-hyperbolic ones with cyan squares and hyperbolic-hyperbolic ones with blue circles.
Hyperbolic periodic orbits into the dashed black rectangle are depicted in Fig. 2.

There are five periodic orbits which are weakly hyperbolic and with relatively low period, and which
are likely to organize the dynamics of Hamiltonian (1) (see dashed black rectangle in Fig. 1). This is so
because all of those periodic orbits have a small period (around 15 a.u.) which is consistent with the short
duration of laser pulses (typically of a few hundreds of a.u. which correspond to few tens of fs) and are
weakly hyperbolic. These five hyperbolic periodic orbits are well separated, in the (λmax, T ) diagram, from
the other periodic orbits which are significantly longer and more hyperbolic. We display these five periodic
orbits in the configuration space (x, y) in Fig. 2. We notice that all of them are composed of one electron
close to the nucleus and another further away. A closer inspection at Fig. 1 also shows a group of four
weakly hyperbolic periodic orbits with a larger period (around 30 a.u.). Looking at their shape in phase
space (not shown here) they are also composed of one electron close to the nucleus and the other one further
away. It means that for a typical trajectory of Hamiltonian (1) under the influence of these periodic orbits
it is possible to identify, at any time, an inner (close to the nucleus) and an outer (further away) electron
with possible exchanges of the roles of the two electrons as the trajectory visits different areas of influence.
The observation that all small period and weakly hyperbolic periodic orbits are clearly composed of an inner
and an outer electrons, supports what we have shown for the model with one spatial dimension where we
identified four dominant periodic orbits in the organization of phase space (which actually reduce to only
one orbit by symmetry) [12, 18]. However, for models with two spatial dimensions, the variety of periodic
orbits and the invariance by rotation make it difficult to identify a reduced number of dominant orbits in
the skeleton of the dynamics. In order to show that a typical trajectory has an inner and an outer electron,
we consider two distances in phase space as functions of time : one from the nucleus and the other one
from the boundary of the admissible phase shape for a typical trajectory of Hamiltonian (1) as shown in
Fig. 3. At any time an inner and an outer electron are identified with quick and frequent exchanges of their
roles : The inner electron is close to the nucleus and thus have a short distance from it while the outer one,
further away will be closer to the edge of the accessible phase space. It is worth noticing that due to the
exchanges of the roles of the two electrons, the invariance by rotation and the dimensionality of the problem,
a projection on the configuration plane does not clearly show any significant organization of the dynamics,
contrary to the case with one spatial dimension which clearly shows the specific role played by mainly one
periodic orbit (and its symmetric orbits).

The same study can be carried out in three spatial dimensions. The numerical results suggest that in
most of the periodic orbits, the two electrons are co-planar or nearly co-planar (but not all). One of them is
depicted in Fig. 4. These periodic orbits display a similar organization with one electron close to the nucleus
and one further away. As a consequence, from a systematic inspection of the periodic orbits in phase space,
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Figure 2: Projection in the two dimensional configuration plane (x, y) of the five hyperbolic periodic orbits inside the dashed
black rectangle in Fig. 1. Periodic orbits are sorted in increasing norm of the largest eigenvalue of the monodromy matrix,
from left to right and up to down. Each electron is labeled with a different color (blue or red).

we are able to draw a picture of the dynamics consisting of one electron close to the nucleus and another
one further away (with fast exchanges between the two), confirming a result obtained with a reduced system
with only one spatial dimension.
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