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Availability-based methods for distributed storage systems

Anne-Marie Kermarrec

INRIA Bretagne Atlantique Technicolor

ABSTRACT

Distributed storage systems rely heavily on replication to
ensure data availability as well as durability. In networked
systems subject to intermittent node unavailability, repli-
cas need to be maintained (i.e. replicated and/or relo-
cated upon failure). Repairs are well-known to be extremely
bandwidth-consuming and it has been shown that, with-
out care, they may significantly congest the system. In this
paper, we propose an approach to replica management ac-
counting for nodes heterogeneity with respect to availabil-
ity. We show that by using the availability history of nodes,
the performance of two important faces of distributed stor-
age (replica placement and repair) can be significantly im-
proved. Replica placement is achieved based on complemen-
tary nodes with respect to nodes availability, improving the
overall data availability. Repairs can be scheduled thanks to
an adaptive per-node timeout according to node availabil-
ity, so as to decrease the number of repairs while reaching
comparable availability. We propose practical heuristics for
those two issues. We evaluate our approach through exten-
sive simulations based on real and well-known availability
traces. Results clearly show the benefits of our approach
with regards to the critical trade-off between data availabil-
ity, load-balancing and bandwidth consumption.

1. INTRODUCTION

Digital data is becoming increasingly common (photos,
videos, documents) and increasingly important as the digi-
tal revolution expands all over the world. As storage needs
grow with data production, capacities of modern disks are
thus compelled to follow the same tendency. Several stud-
ies [16, 10, 2] show that end user hard drives are on average
half empty and represent a considerable amount of unused
storage space available at the edge of the network. Indeed
the authors in [2] reveal, after a five-year study, that the ra-
tio of free space over the total file system capacity remained
constant over the years. Therefore we can reasonably argue
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that the available free space at the edge of the network will
follow the same trend as the user data increase. Aggregat-
ing this free space, represents therefore a real and scalable
Eldorado of available space. Distributed storage is a typ-
ical example of applications where this idle storage space
could be leveraged. In such a distributed storage system,
each node is in charge of storing the data of other nodes in
exchange for having its own data stored and made available
in a durable way. However performances largely depend on
the nodes availability. More specifically, nodes may join and
leave the system at will without previous warning.

Furthermore designing a pure peer to peer architecture in or-
der to offer a reliable distributed storage system may be im-
practical due to high churn as well as the fact that peers have
no incentives to store the data of others [5]. To solve these
issues while moving towards practical system deployment,
hybrid architectures have been very recently proposed [31,
12]. They add some centralization for reliability or efficiency,
and impose incentive mechanisms [31, 21] to discourage self-
ish nodes. However, even relying on a hybrid architecture,
managing the volatile part of nodes remains a complex task.
In fact when a node leaves the system unexpectedly, the data
it is responsible for is also unavailable. To face this volatility,
distributed storage systems replicate data on more than one
node so as to tolerate multiple node departures and/or fail-
ures. Typically a clever initial replica placement may either
for the same replication degree improves data availability or
for a given availability may reduce the number of replicas.
Moreover, once a degree of replication is set, it has to be kept
steady despite nodes leaving the system, in order to guar-
antee the durability of data. This maintenance mainly in-
volves two operations: (i) node failure detection; (i) replica
repairs. In this paper, we focus on the detection mechanism,
which may waste bandwidth unnecessary if it is inaccurate.
Interestingly enough, some well-known works [5, 29] reveal
that one of the key aspects of an efficient distributed storage
mechanism is precisely the bandwidth consumption.

In practical systems, distinguishing a permanent failure from
a transient one with a high success rate is challenging (this is
theoretically impossible in asynchronous systems). Yet, sig-
nificant bandwidth could be saved by triggering repairs only
in the event of a permanent failure, assuming that the data
is only temporarily inaccessible in the case of a transient
unavailability. Therefore too aggressive a repair mechanism
may congest the system because of an excessive and useless
bandwidth utilization. On the contrary, a low reactivity in
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Figure 1: Availability mean and dispersion for vari-
ous existing systems

the repair process may result in degradation of quality of
service (i.e. data availability and durability).

In this paper we take up the challenge of tackling this trade-
off while answering significant questions closely related to
the design of an efficient distributed storage system, namely:
(i) Where should the replicas be placed?, (ii) When should
the system conclude on a transient or a permanent failure
thus triggering a repair?

We argue that a one-size-fits-all approach is not sufficient
and that the statistical knowledge of every single node avail-
ability, as opposed to system-wide parameters, provides a
means to tackle those questions efficiently. In other words,
while most previous works have either assumed that nodes
are homogeneous or that simple averages on behaviors are
representative, we account for the heterogeneity of nodes
availability, in order to decide where replicas should be
placed as well as when repairs should be triggered.

Contributions. In this paper we propose two availability-
based methods to decide (i) where to place replicas and (iz)
when to trigger a repair using a limited availability history
of storage nodes. We make the following contributions:

Our replica placement algorithm relies on discovering
complementary availability patterns (that we name anti-
correlated) so as to maximize the availability of data across
time. Through extensive simulations based on real avail-
ability traces we show that this approach outperforms tra-
ditional random placement, resulting in a significantly lower
number of replicas for a given availability while load bal-
ancing is maintained. This includes facilities for erasure
codes [34]. For instance, on an availability trace of the Skype

network, 5 replicas are needed instead of 8 with random
placement, for an equivalent availability of around 99%.

Our repair mechanism trades traditional system-level time-
out based on network-wide statistics against a per node
timeout, based on the node availability patterns. Nodes
self-organize to compute their adapted timeout in a prob-
abilistic way, according to their own behavior and to the
current replication factor. Experimental results show that
we achieve a lower number of repairs, while preserving the
same level of availability of data.

The combination of these methods sets the scene for efficient
placement and repair strategies in large-scale distributed
storage systems, improving the overall performance on real-
istic replication scenarios. For instance, on the same Skype
trace, our method yields a 37% saving in repairs, while of-
fering the same availability of data.

The rest of the paper is organized as follows: first we present
our main motivations for this work in Section 2. Section 3
introduces the system model we consider. Our placement
and repair strategies are then detailed in Sections 4 and 5
respectively. In Section 6, we jointly use these two tech-
niques and discuss some practical issues. Then we present
related work in Section 7 before concluding the paper in
Section 8.

2. LEVERAGING PREDICTABILITY AND
HETEROGENEITY

In this section, we review the three main motivations of
our availability-aware methods, namely: (i) leveraging node
predictability with respect to availability, (i) accounting
for heterogeneous node availability patterns, and (i77) im-
proving the trade-off between replication rate, availabil-
ity and bandwidth. For instance, these factors can enrich
performance-oriented storage systems, that are currently
availability-agnostic with regards to the set of edge nodes
they are using as a storage basis [12].

2.1 Availability and Predictability

In the context of distributed storage systems, where nodes
hosting data may leave and join at will, many systems that
do not explicitly deal with specific availabilities of nodes
were originally proposed [27, 8]. In the quest for better per-
formance, some works have studied and identified trends in
the availability of the hosting resources [9, 3, 18, 6]. The im-
portant question of leveraging predictability has then been
addressed [22, 18] to handle transient failures efficiently.

In this paper we propose to leverage this observed pre-
dictability in the behavior of nodes to provide adapted
heuristics that overcome availability-agnostic replica place-
ment and repairs.

2.2 Heterogeneous availability patterns

Most of the systems that account for availability of resources
rely on a single system-wide parameter, typically the mean
or the distribution of availabilities of all nodes of the sys-
tem [35, 30, 4, 31]. While it is convenient to apply theo-
retical models such as Markov models or basic probabilities
for the number of replicas to create, recent comments un-
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derline why such models have very limited applicability in
practice [13, 11].

While some storage systems use platforms such as home
gateways [32] that have a homogeneous and high availabil-
ity, the majority of deployment platforms exhibit a non-
negligible heterogeneity in practice. To illustrate our claim,
we plot on Figure 1 the mean, the standard deviation, and
the coefficient of variation of availabilities of nodes com-
posing systems such as Microsoft desktop computers, Skype
or PlanetLab'. The figure shows a significant variance in
node behavior. This is confirmed in a recent storage system
analysis [31]. This trend is even more striking for the two
leftmost systems. This demonstrates that availability can-
not be accurately expressed by a basic scalar mean trying
to represent the overall trend of the fraction of time nodes
are up. Furthermore, reducing availability to a mean or a
distribution [24, 31] ignores information about node avail-
ability patterns while such information could be leveraged
to increase the reliability of distributed storage systems [22,
28, 18]. This calls for a finer grain study accounting for
specific node availability patterns.

2.3 Storage System trade-offs

Blake et al. [5] have shown that for dynamic storage systems
using redundancy, a severe bandwidth bottleneck appears,
when maintaining a high data availability. In order to pro-
pose realistic system designs, recent works have thus relaxed
the 6 nines constraint on data availability, taking more prag-
matic replication rates into account.

The third motivation for our work is precisely the critical
trade-off between the storage overhead, the load balanc-
ing and the bandwidth consumed by the system. A dis-
tributed storage system targeting data availability may be
represented by a set of three strategies (Figure 2) : (i) a
redundancy strategy characterized by k (k may be either a
replication factor or the rate of an erasure code), (i) a place-
ment strategy (where to replicate the data) and (%ii) a repair
strategy (when and how to repair a lost replica). Those three
strategies characterize the trade-off between load-balancing,

!Those availability traces, from scientific publications, are
made available in a repository [1].
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Figure 3: A classification of distributed storage sys-
tems

availability and bandwidth, allowing a classification of dis-
tributed storage systems, is presented in Figure 3.

In this formalism, “basic” DHT-based systems such as [8,
27] reach high availability due to very high replication rates
(for instance PAST stores a chunk of replica on its whole
leafset in the DHT), while load balancing is ensured by a
pseudo random placement strategy (the hash function bal-
ances the load evenly). Furthermore, as pointed out in [19],
replicas have to be relocated each time a node is inserted in,
or leaves, the replication neighborhood of a file, triggering
cumbersome maintenance operations.

Solutions that are availability-aware suggest biasing the
placement of data towards highly available nodes [22, 25],
thus minimizing bandwidth due to repair cost caused by
transient nodes. Nevertheless, this creates a high pressure
on stable nodes that are required to contribute significantly
more than average nodes. Likewise, for a given availability,
reducing the number of replicas decreases the probability a
repair is needed. In turn, this has a direct impact on the
repair overhead. A clever replica placement algorithm can
precisely limit the number of replicas required to ensure an
availability degree.

Relaxing one of these three constraints can limit the com-
plexity of a proposed system, yet causes a hardly usable
solution in practice. Finally, very few storage systems such
as Total Recall [4] or Carbonite [7] address this trade-off by
using random placement and non-trivial repairs in order to
maximize availability. This is typically what we address in
this paper.

One of our motivation is precisely to improve the latter and
more challenging class of systems, by proposing availability-
aware methods that are applicable as “plugins” to their archi-
tecture. Obviously these plugins may also be implemented
on the volatile part of hybrid architectures such as those
proposed in [31, 12].

3. STORAGE SYSTEM MODEL

Storage systems that leverage available disk space at the
edge of the network are using nodes that range from user
computers [15] to hardware boxes such as Internet provider
gateways [32]. These systems are either fully distributed
[17, 27, 19, 4, 7] or hybrid architectures [31, 12]; our
availability-aware solution is specifically designed to be ap-
plied to any type of network logic where nodes may exhibit



temporary and possibly recurrent, periods of unavailability.
Systems with a near-perfect availability of their components
obviously have no need for such a study. Furthermore, even
systems exhibiting unpredictability of some significant part
of nodes of the network can leverage our approach.

For the sake of clarity and because we focus on the replica
and repair strategies, we assume the existence of a service
providing requesting nodes with a set of accurate partners.
These partners are then used by the requesting nodes to
place replicas or repair replicas; replication clusters are then
created for each data to be stored, following for instance the
replication in DHTs leafsets where groups monitoring and
storing the same data are created [27, 8]. While such a
service is trivial to implement using a server, it is directly
applicable to pure distributed systems, where nodes can col-
laborate to achieve this computation, through gossip for ex-
ample [18, 28]; each node in a cluster then monitors other
cluster nodes to detect failures.

In order to exploit information on node availability, our sys-
tem must keep track of a limited history of those availability
and unavailability periods. In practice, such availability his-
tory can be maintained by one or a few servers, the node
itself providing it on demand, or by a distributed monitor-
ing system if nodes cannot be trusted [23]. This availability
history is represented as a vector of a predefined size (act-
ing as a sliding window of time). For each time unit, the
corresponding vector entry is set to 1 if the particular node
was online at that time and —1 otherwise. In this paper,
we assume one-week history vectors and one-hour time unit.
This length has been shown to capture most user behaviors
accurately (e.g. diurnal and week end presence patterns) [3,
22, 18, 9].

Since we focus on data availability, we do not consider devi-
ating node behavior (e.g. free riders).

Finally, as our aim is a pragmatic study of what can be
achieved beside purely theoretical models for placement or
timeouts, we use as a basis publicly available traces, that
have been deeply studied in their respective original pa-
pers [1]. Those traces come from a wide range of systems;
when applying techniques on them, the goal is to underline
tendencies for the associated kind of availability they ex-
hibit, more than just proposing a specific improvement for
a narrow range of systems.

4. AVAILABILITY-AWARE PLACEMENT
STRATEGY

In this section, we propose an answer to the question: Where
should replicas be placed so as to maximize availability while
ensuring an evenly balanced load ? The availability-aware
placement strategy proposed relies on leveraging the moni-
tored availability of nodes.

4.1 The R&A placement strategy

Our goal, as presented in Section 2, is to offer a better
data availability than a random placement strategy using
the same storage overhead k and without getting a high
skewed load distribution. Thus, this excludes biased place-
ment towards highly available nodes, which by definition
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Figure 4: Perfect anti-correlation between nodes =
and y.

only considers specific nodes for the whole system satisfac-
tion. Instead, we leverage the knowledge of the availability
of each node in order to choose other nodes to place the
replicas. Those nodes are chosen so that their availability
patterns match the unavailability periods of the requesting
node. Such nodes are denoted as anti-correlated nodes as
we explain below.

We define the notion of availability anti-correlation, for a re-
questing node x as the opposed presence of a node y on the
same predefined period (thus minimizing overlapping peri-
ods of uptime). Figure 4 illustrates this notion: node y is
perfectly anti-correlated to node x, as it is online during all
periods of unavailability of z. Comparing vectors of node
availability history, nodes can be sorted by their effective
correlation to a given node x.

— —
Let A, and A, be the availability vector of respectively node
z and y. In practice, the (anti)correlation is modelled as the

_)
angle, noted © 4, between the two vectors A, and A,.

— —
A,-A
Og,y = arccos(——2+)
Azl Ayl

e O, , = 0: Perfect correlation between nodes = & y
e O, , =7/2: No correlation between z & y

e O, , = 7 : Perfect anti-correlation between z & y

Our placement strategy relies on building clusters (i.e. sets
of nodes holding replicas of the same data) with pairs of
nodes exhibiting anti-correlated behavior so as to cover the
whole prediction period. Since our goal is to increase the
global availability, an anti-correlated node to a reference
node is the best candidate to patch the time when this refer-
ence node is offline, as illustrated in Figure 4. By picking a
node, finding its best anti-correlated counterpart and iterat-
ing until the cluster contains enough nodes to replicate data
k times , the effect of time patching is increased. We call
this scheme R&A, for Random and Anti-correlated place-
ment scheme.

In order to overcome a random strategy (where the cluster
is built up with nodes chosen uniformly at random) using
our placement method, part of the system nodes must have
some predictability on their availability behavior. The more
predictable the nodes in the system are, the more efficient is
our method when compared to availability-agnostic place-
ment. On the contrary if all nodes in the system show a
random behavior then the R&A scheme is equivalent to a



random one, as our placement also leverages random selec-
tions. Recent works on availability prediction of at least a
subset of the network back up this claim [22, 18, 28].

4.1.1 R&A method core

When a new data item has to be stored, a new cluster is
created, where each node belonging to this cluster stores a
replica (nodes may of course participate in more than one
cluster). This cluster is filled as follows: first the system
randomly selects a reference node; this selection might be
achieved using a random walk in a decentralized system for
example or simply by a uniform sampling in a hybrid system.
Then the node whose behavior is the most anti-correlated
to this reference node is selected to form a pair of anti-
correlated nodes. This pair is then added to the cluster.
This process is iterated until the number of nodes in the
cluster is equal to the system replication factor k. In case
of an odd k, an additional random node is included in the
cluster. The randomness inherent to the selection of devices
in the cluster is intended to ensure load balancing while pairs
of anti-correlated behaviors improve data availability.

4.1.2  Experimental evaluation of R&A

In order to evaluate our R&A placement strategy we use a
public trace of Skype [14], which exhibits a high heterogene-
ity among availabilities of nodes. As availability of data is
defined as the presence of at least one replica at anytime,
random placement, as well as R&A, performs well on sta-
ble traces such as DNS, Microsoft or Planet Lab. In fact a
majority of the nodes are always up (Figure 1); this ensures
with high probability that if they are selected, the replicas
they host are sufficient to achieve the targeted availability.
Deploying an advanced placement strategy is thus of no in-
terest on this type of trace. In the Skype trace, nodes having
an uptime below 1% have been removed from the trace, re-
sulting in a number of alive nodes equal to 1901.

We conducted the simulations as follows: we assume a homo-
geneous storage demand, then each of the alive nodes seeks
to back-up one data item, with different replication factor &k
(from 2 to 10). For instance, for k = 2 the number of objects
to be stored in the system is thus 3802. We consider a two-
week period for the evaluation: the anti-correlation between
availability behaviors is computed over the first week (train-
ing period). The evaluation of data availability is performed
on the second week. Data is considered available if at least
one node holding a replica is online for each time unit of the
entire evaluation period. Then we evaluate the availability
mean compared to both a random placement strategy and a
strategy biased towards highly available nodes . Availabil-
ity mean and standard deviation are plotted for different
replication factors k. Results are depicted in Figure 5.

The strategy biased towards highly available nodes (called
highly available strategy for brief) is included in the evalu-
ation in order to assess its impact on availability and even
more on load balancing. This strategy, mainly simulated to
back-up our claim about the high skew produced on load
balancing, is straightforward and has already been used as
a point of comparison in [22]. For each replica to store, 10
nodes are first randomly selected. Then, within this 10 node
subset, the one expected to be available the longest accord-
ing to an oracle, is selected to store the replica. This process
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Figure 5: Availability using replication

is then iterated until all replicas have been stored.

In addition to compare our R&A strategy to practical ran-
dom placement [4, 7, 27, 8] as well as the highly available
strategy we also plot the availability provided by the an-
alytical model of random placement (often used in replica
maintenance papers). This availability is plotted for each k
(denoted Ay ) given by:

A=Y Cip)'(1—-p)*" 1)

where p = % Zij:l P (ps is the mean availability of node
z on the period and N is the number of nodes participating
in the system). In the Skype trace we measured p = 0.4.

Results. First of all, the highly available strategy unsur-
prisingly leads to a near-perfect availability even for very
low replication factor. However, as explained in Section 2.3,
load balancing is hurt. Turning to more realistic strategies
we observe that whereas both R&A and random placement
tend to achieve the same availability with a high replica-
tion factor, R&A placement leads to an increased availabil-
ity mean compared to a random placement strategy up to
k = 9. Replicating the whole dataset more than 10 times
is highly unrealistic in any practical system, therefore our
method represents a significant improvement over random
strategy. For example, the same availability and standard
deviation (98.6% =+ 3.4 for random, 98.7% =+ 2.4 for R&A)
are obtained with 8 replicas with a random strategy whereas
only 5 replicas are required using our method.

Finally, we observe that analytical availability, despite show-
ing the correct trend, is under-estimated. This illustrates
that in a practical heterogeneous system, availability might
not be reduced to a simple arithmetic mean. In fact equa-
tion (1) ignores all distributional information on the avail-
ability of the nodes, as it is reduced to the scalar value p.
The drawbacks of this definition of availability are explained
in more detail in [11].



4.1.3 Load balancing
One of the main drawbacks of biasing replica placement (as
opposed to a uniform random strategy) is the potential im-
pact on the load balancing. In order to remain as scalable
as possible the load balancing should not be too impacted
by the placement strategy.

Note that even a random placement scheme is impacted by
the effective availability of nodes in the network as this im-
pacts the uniformity of the random choice. Since the algo-
rithm performs the replication on online nodes, highly avail-
able ones tends to be naturally contacted more than their
less available counterparts. This results in a slight skew in
distribution (also observed in [31]). Random placement is
an important standard to compare against for it is simple
and efficient wrt load balancing.

Figure 6 plots the cumulative frequency of the number of
replicas hosted by all nodes in the system, where random
placement, highly available strategy and R&A are used. We
note the critical skew when replicas are preferentially placed
on highly available nodes. In fact less than 40% of nodes
are burdened with 100% of the replicas. The load unbal-
ance might eventually hurts the scalability of the system.
resulting from creating clusters with R&A strategy is close
to the random placement one. It could be explained by the
fact that in addition to the random part of the heuristic,
no behavior is given an advantage while computing anti-
correlation, as opposed to a system where highly available
nodes are always rewarded. Then if nodes availability pat-
terns exhibit enough heterogeneity, R&A naturally balances
the load, almost as well as the random placement strategy.
Thus, R&A placement increases availability while balancing
the load, providing a scalable alternative to existing solu-
tions.

4.1.4 R&A placement for erasure codes

Erasure codes have been proved to be another efficient way
of obtaining data availability and durability in distributed
storage systems [34]. We now assess the application of our
R&A placement strategy when using such codes in place of
replication.

So far, we have considered that the availability of a repli-
cated data was achieved with at least one node holding a
replica online at any time, among k, thus masking transient
unavailability of other replicas. Erasure codes are able to
reconstruct a data with j out of n encoded blocks. This can
be considered as providing j available nodes out of a set of n.
We thus seek to provide a subset j of nodes that maximize
availability, so that the correct amount of encoded blocks
can be found to reconstruct the data.

In practice, we model a typical j out of n redundancy scheme
in which n code blocks are bunched in a cluster, and data is
defined as available only if at least j code blocks are available
within this cluster. The code rate is defined as j/n. The
availability denoted A(; ) is adapted from (1) and given by

Ay = ZCZ(ﬁ)i(l -p)" (2)

We evaluate our R&A method using erasure codes on the
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Figure 6: Load balancing for k=3;7 & k=4;8

same Skype trace, along with a random placement on n
nodes. Figure 7 plots the availability obtained for three dif-
ferent code rate (1/2;1/3;1/4), with an increasing n. The top
figure corresponds to data availability resulting from the real
Skype trace while availability on the other one is computed
analytically using equation (2) and p = 0.4 as in part 4.1.2.
We observe a clear improvement in data availability regard-
less of the code rate over the random placement scheme.
For example, the same performance is obtained with a ran-
dom selection and a code rate equal to 1/4 while using our
method a code rate equal to 1/3 is sufficient. At the scale of
the whole network, this 25% reduction saves an important
amount of overhead. The intuition behind this result is that
our placement strategy has a “built-in” notion of time span
over a predefined period; each time the algorithm picks a
random node and its anti-correlated counterpart, availabil-
ity is increased on this period, while random placement relies
on “luck” to pick nodes that will fill temporary unavailabil-
ity holes. As we look for a larger set j of nodes online at
the same time (whereas with basic replication, k = 1 replica
is enough), the positive effect of a clever placement is in-
creased. Moreover, this j among n availability target can
also have other fields of application, such as for instance
providing higher throughput when downloading a data from
the storage system, as j replicas are available for parallel
downloads (see e.g. [12]).

An interesting effect can be observed on both analytical and
simulation figures. While for reasonable rates, curves show
good availability, the rate 1/2 causes performance to degrade
significantly as m increases, for both placement schemes
(even if R&A still performs better). This is explained by



100 [;//*”‘J:,i,_)‘«'0""*" ;* foeees - SRR =

95 e T . . .

90 : i
~ 85
O\o R & A (rate=1/2) ——
: 80T Random (rate=1/2) ----- VR q
5 75 R&A (rate=1/3) - |
% X Random (rate=1/3) &
s 70 o R&A (rate=1/4) ——-#—— ]
g: Random (rate=1/4) ----e---

65

60

55

50

0 35
n
100 ‘ B

20 T

80 N U FPREEEEEE — e X-m=== X
g 70
2 60 | Random (rate=1/2) ———— |
E Random (rate=1/3) --—- e
g 50 r Random (rate=1/4) ------ B |
@®©
Z 40 <

20 S

10 : . . . . .

0 5 10 15 20 25 30 35
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the fact that in this system (i.e. in this availability trace)
the mean availability (p = 0.4) is below the 1/2 code rate
value. More details concerning this effect, and the relation
between the mean availability and the code rate can be found
in [20].

As in Section 4.1.2, we note that whereas analytical results
provide tendencies about variations of availability with an
increasing n, data availability values are under-estimated in
all cases. This results from too restrictive a definition of
the availability in Equation (2). More details can be found
in [11].

S. TIMEOUT FOR REPAIRS

In addition to the initial replica placement strategy, a dis-
tributed storage system has to provide a reliable repair
mechanism over time so as to ensure data durability. Band-
width is a crucial element since data durability can only be
ensured if there is sufficient bandwidth to repair lost repli-
cas. There is a direct relation between a repair and the
bandwidth consumed to perform it. In the following, we
evaluate the bandwidth consumption as the number of re-
pairs.

When designing a repair mechanism, the crucial challenge is
to decide when to trigger a repair. In other words, how to

distinguish permanent failures requiring a repair from tem-
porary disconnections. In the latter case, a repair may turn
out to be useless, consuming some bandwidth unnecessar-
ily. A common way to decide on the nature of a failure
is to use a timeout, a practical solution in asynchronous
settings. Typically, once a node has not replied to a so-
licitation after a timeout has expired, it is considered as
permanently failed. However deciding on a timeout value is
difficult. More specifically, nodes may exhibit various avail-
ability patterns; therefore, defining a system-wide timeout
value might not be optimal. Deciding on an optimal value
for an administrator is also a tedious and difficult task.

We design an adaptive per-node timeout mechanism that
solves both issues at once. This approach automatically sets
a timeout at a node granularity, leveraging the availability
history of each node in the system.

5.1 Per-node & adaptive timeout

This section describes how the timeout value is made both
adaptive and per-node, (i.e. tailored to every single node
based on its availability history). Remember that in a clus-
ter, all nodes are monitored. Therefore for each node dis-
connection (i.e. the beginning of an unavailability session),
a timer is started and runs until reconnection (either on a
monitoring server, or by cluster nodes themselves, as ex-
plained in Section 3).

The cluster is then aware of the unavailability duration of
each disconnected node. As in the classical timeout model,
if the unavailability period of a given node exceeds its time-
out value, the node is considered as permanently down and
the system provides this cluster with a new node to be used
to repair the lost replica. As opposed to most approaches
that set a system-wide timeout, we aim at determining an
accurate timeout value reflecting each node’s behavior with
respect to availability. This tends to suggest that one might
analyze node failure detection in a standard model of deci-
sion making under uncertainty. In fact the a priori prob-
ability for a given system is too coarse to provide usable
information for each given node.

Contrarily, adding extrinsic information, such as the avail-
ability patterns of a given node, might help when observing
a given unavailability time to evaluate the probability that
this node will return, therefore that the disconnection (the
failure) is transient. To illustrate our purpose, let us consider
the following example: if a node, usually always available ,
is detected unavailable for a few hours, the probability that
it will reconnect is low, and lower as time passes. On the
contrary, let us consider a node subject to a diurnal avail-
ability pattern. If such a node is detected unavailable for
a few hours, the probability that it will reconnect is high.
Hence, considering statistical knowledge at a node granular-
ity can be useful to determine the probability that a node
will reconnect (i.e. the failure is transient). This motivates
the need for per-node timeouts in heterogeneous systems.

In systems implementing reintegration, it may be the case
that a node, wrongfully declared as permanently failed, is
reintegrated after the repair has taken place. This yields the
presence in the cluster of more replica than the k required.
In our approach we propose to adapt each node’s timeout



dynamically to account for such situations. In case of an
excess of replicas, this is translated in our adaptive method
by setting a less aggressive timeout for each node in the
cluster.

In the following we describe our per-node adaptive timeout
mechanism.

5.2 Timeout model

The novelty of our timeout model is to be constructed at
the node granularity. The model described below is then
defined for each node, depending on its own attributes.

After the failure of a node, we call Hy, the event representing
the fact that the node will return into the system and H;, the
event representing the fact the node will not return into the
system. Hi; and Hy are two disjoint events then Pr(H) =
1—Pr(Ho). Pr(Hoy) is the a priori probability that the node
will return into the system. Pr(Hy) is evaluated as the ratio
between transient failures and all failures (either transient
or permanent) in the system directly computed on a server.
Note that this a priori probability could also, for example,
be estimated from an aggregation protocol in a decentralized
way. Let tdowntime be the duration of the current downtime
of the node and t¢imeout the timeout value associated to this
node. Let its downtime distribution be fg; this distribution

verifies :
)
/ fadt =1
(t=0)
then
Pr(tdowntime > ttimeout | HO) = / fddt
(t=timeout)

By definition Pr(tdgowntime > ttimeout | Ho) € [0,1] and
Pr(Ho) € [0,1]. Pr(taowntime > ttimeout | Ho) then corre-
sponds to the statistical knowledge on each node behavior.
In fact as the availability history of each node is stored, its
downtime probability distribution can be computed directly,
and then also Pr(tgowntime > ttimeout | Ho) depending on
the timeout value. By definition:

Pr(tdowntime > ttimeout | Hl) =1

Pr(tdowntime < ttimeout | Hl) =0

If the node does not come back into the system, on the one
hand its downtime will be superior to any timeout value,
on the other hand its downtime cannot be inferior to any
timeout value. We also note:

Pra = Pr(HO ‘ tdowntime > ttimeout)

Pr4 is called the False Alarm probability. Ppa represents
the probability that a node comes back in the system while
the system has decided that it would not (i.e. the node has
been timed-out). The higher the Pra, the more (proba-
bly) useless reparations are tolerated. According to Bayes’
Theorem :

PI‘(H() N (tdowntime > ttimeout))
Pr(tdowntime > ttimeout)

Pra =

PT(HO) X Pr(tdowntime > ttimeout | HO)
Pr(tdowntime > ttimeout)

Pra =

PI‘(H()) X Pr(tdowntime > ttimeout | HO)

P =
A [Pr(Ho) X Pr(taowntime > ttimeout | Ho)] + 1 — Pr(Ho)
Finally :
P o PI‘(H(]) X Pr(tdowntime > ttimeout ‘ HO)
FA =

1 + PI‘(Ho) X [Pr(tdowntime > ttimeout ‘ HO) - 1]
3)
The definition interval of Pr4 is then [0, Pr(Hp)].

To sum up, Equation (3) expresses the false alarm proba-
bility as a function of the a priori probability that a node
will eventually come back into the system and of its down-
time distribution. This expression is necessary to compute
per-node timeouts, as explained in the next section.

5.3 Computing an adaptive per-node timeout
The scheme presented hereafter is performed in each cluster
at each time unit (order of hours or days, depending on the
stability of the system).

Each cluster has to deal with its departed and returning
nodes. Returning nodes reintegrate their cluster. On the
contrary, if a node is timed-out and if the cluster size falls
under the replication factor, the system provides this cluster
with a new node in order to create a new replica. This
new node can be chosen randomly or following a specific
placement strategy as proposed in the first part of this paper.
Periodically, the following steps are performed within each
cluster:

1. The cluster is updated so as to reintegrate wrongfully
timed-out nodes and insert new nodes to compensate
the removal of timed-out nodes;

2. The false alarm probability is computed (at the cluster
level);

3. The timeout of each node in the cluster is computed.

The false alarm probability varies depending on how critical
the situation is wrt replicas. We propose hereafter a method
used to evaluate this situation (note that this method is not
proved as being an optimal one, but just a practical example
that we use for evaluation). At each time unit, we compare
the current number of available replicas against the one on
the previous week. This difference, noted A, is positive if
there are more replicas currently than in the past, negative
otherwise. Note that the only parameter measured is the
number of available replicas, regardless of which node stores
them. If there is no difference, the false alarm probability
is defined as the half of its interval so Pra = Pr(Ho)/2.
We define the step of variation as Pr(Ho)/k, with k the
number of desired replicas of data. Pra is computed as:
Pra =Pr(Hy)/2 — (A -Pr(Ho)/k). At the end of this step,
each cluster has a false alarm probability that is a function
of the measured criticality of the situation.

Once the false alarm probability has been determined in each
cluster, each node is able to specify its own timeout value.
According to Equation (3) we have :

PFA (1 — Pl“ H()
Pr(tdowntime > ttimeout | HO) = PI‘(HQ() ) (1 —(F’FA)§




o  Pra-(1 - Pr(Hy)
/( Jadt = 5oy - (1 = Pra) “)

t=timeout)

Therefore the timeout value is set so as to solve Equation (4).

5.4 Evaluation

We evaluate our per-node timeout on public traces. We com-
pare the cost/availability trade-off of our approach against
systems using global timeout from aggressive (low) to re-
laxed (high) values. In order to evaluate the impact of the
timeout in isolation from the replica placement strategy, we
rely on a random placement scheme. Replicas of false pos-
itive nodes are also reintegrated in the global timeout sim-
ulation. We evaluate the trade-off on three different system
traces, namely PlanetLab, Microsoft and Skype. As in Sec-
tion 4.1.2 nodes having an uptime below 1% have been re-
moved from the trace, resulting in a number of alive nodes
respectively equal to 308, 51313 and 1901. The simulation
is performed on a three-week period. The learning period is
the first week, after which the history window simply slides.
In fact an initial availability history must be available so
that each node is able to compute its initial downtime dis-
tribution. Data availability mean and number of repairs are
then evaluated during the next two weeks. During these
two weeks downtime distributions of each node are updated
following their behavior, after each new end of a downtime
session.

Each of the alive nodes stores one data item, replication
factor ranges from 3 to 6 (5 to 8 for Skype). We evaluate
our approach and the global timeout one along the follow-
ing metrics: mean data availability and number of repairs
generated by timed-out nodes. Results for Microsoft and
PlanetLab traces are provided in Figure 8 and Table 1. The
Skype results (Figure 9 and Table 2) are given in the next
section, as we will finally add results from the combination of
the R&A placement strategy and the use of per-node time-
out.

In Figures 8 and 9, the X-axis represents the mean of data
unavailability in percent (i.e. 1— availability). The Y-axis is
the number of repairs per data item and per day, it is equiv-
alent to the number of timed-out nodes, as each of them
triggers a repair. Then unavailability versus the number of
repairs is plotted for various values of global timeout (10 to
80 hours for Microsoft and 20 to 280 hours for PlanetLab)
and for the per-node timeout, in the classic way of represent-
ing timeouts versus repairs, as done in recent papers [30, 35].

Table 1 and 2 summarize the savings on the number of re-
pairs when using our adaptive timeout, compared to global
ones. These savings are given in percent and evaluated
for equivalent availability which is linearly interpolated for
global timeouts and for each replication factor. For instance
on the Microsoft trace and for k = 3 (Figure 8 (bottom))
the interpolated point has coordinates (0.4 , 0.075). For an
equivalent unavailability of 0.4% the global timeout would
lead to 0.075 repairs by object and by day whereas our per-
node timeout only need 0.063 , thus resulting in a 16% sav-
ing. Note that values have been rounded in the example and
exact computations are given in Tables 1 & 2.
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Figure 8: PlanetLab (top) & Microsoft (bottom) re-
sults for £ =3 .

3 4 5 6 mean
Microsoft 16.3% | 17.9% | 19.1% | 20.7% || 18.5%
Planet Lab | 16.8% 23% 62.8% | 48.4% || 37.7%

Table 1: Reduction of the number of repairs

Results. Unsurprisingly a first observation applicable to all
plots is that an aggressive global timeout value (10H) leads
to a low unavailability but produces a high repair rate, trig-
gering an important bandwidth consumption in practice. On
the other hand, a relaxed timeout value (80H) enables to re-
duce the number of repairs at the expense of decreased data
availability.

A second observation is that regardless of the global time-
out value, our per-node timeout always provides a better
trade-off between availability and the number of repairs. In
other words, in all cases for an equivalent availability (and
obviously for the same replication factor), the number of re-
pairs will always be higher using global timeout than our
per-node timeout. Note that both traces show various lev-
els of node predictability (especially when using a one-week
prediction period) [22]. Our approach thus saves significant
bandwidth, resulting from the decreased number of repairs.

In addition, we emphasize that not only raw performance on



those metrics is greatly improved, but another important
benefit of the adaptive timeout method is that a system
administrator does not have to arbitrarily set a static value
for timeout. The system self-organizes to compute adapted
values, thus suppressing the need for such a decision before
the runtime of the storage application.

6. COMBINING R&A AND ADAPTIVE
PER-NODE TIMEOUT

So far, we have proposed and evaluated two techniques,
leveraging the availability history of nodes. In this section,
we consider their combination, for possible improvements.

As their respective merits have been presented separately,
we now use both R&A placement and adaptive per-node
timeout in the same simulation setting. The experiments
are conducted on the Skype trace with adaptive and per-
node timeout, while adding the R&A placement strategy to
constitute clusters. Note that results on Planet Lab and Mi-
crosoft traces are not presented here as the random place-
ment strategy already provides high availability on these
traces, due to their high availability means (Figure 1). Note
that R&A achieves similar performance. Deploying another
placement strategy is thus of no interest. As in 5.4 the sim-
ulation is performed on a three week period. The learning
period lasts a week. In fact, an initial availability history
must be accessible so that (i) the system is able to estab-
lish anti-correlation on behaviors, and (i) each node is able
to compute its initial downtime distribution. In practice,
traditional random placement could be used during the first
week, so the storage system can be operational while the
leaning phase is processed. The mean data availability and
the number of repairs are then evaluated during the next
two weeks.

Results are plotted in Figure 9 for a replication factor k = 5;
other results are then summarized in Table 2. The compar-
ison is made between our per-node timeout and a global
timeout varying from 10 to 80 hours with a random place-
ment strategy. Again, to ensure a fair comparison, reinte-
gration of replicas (then hosted by returning nodes) is also
included in the global timeout scheme. Finally, we plot mean
unavailability and the number of repairs resulting from the
combination of the R&A placement strategy and the per-
node timeout in order to measure the additional gain while
applying both our availability-based methods.

Results show that the combination of our two methods
clearly outperforms global timeout and random placement.
In fact even when compared with the most aggressive global
timeout value (10H), availability is slightly increased regard-
less of the replication factor while the repair rate is greatly
reduced by 37% on average in comparison to this most ag-
gressive timeout approach.

7. DISCUSSION

Before concluding, we briefly discuss two other aspects of
our proposal, namely cost and applicability.

Cost of the methods. A practical question is whether or
not such availability-based methods imply significant costs
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Figure 9: Results of R&A placement combined with
adaptive timeout on Skype trace (k =5).

5 6 7 8 mean
Random 4% 9.5% | 7.9% | 10.7% 8%
R&A 36.2% | 37.2% | 37.5% | 38% 37.2%

Table 2: Reduction of the number of repairs for
different placement strategies, both using per-node
timeout

for their implementation in a large-scale storage system.
Such a framework requires operations that appear to be
lightweight in terms of bandwidth and control message over-
head: for monitoring, simple PINGs, in order to track
other cluster nodes availability can be used. Finding anti-
correlated nodes can be achieved in a scalable and inex-
pensive manner through a gossip mechanism (see T-Man
for example) in a pure P2P system, while in a hybrid ap-
proach, the central server basically sorts its list of participat-
ing nodes. Finally, local operations on vectors are only CPU
consuming. This is to compare with the replication and re-
pair costs of distributed storage systems. The amount of
data to store in modern systems, as well as the size of data
files are constantly increasing. We sketch a basic example
based on results from Table 2, where each of the 1901 nodes
participating, backups 1GB of data; the system has to han-
dle around 15T B. A 38% mean saving of repairs per-node
per-day represents around 47" B of bandwidth saved per-day
at the network scale. In this light, network costs required
to implement our techniques are marginal, especially when
the network or the data stored grows large.

Applicability of our proposal. 1t is also important to note
that the application of our mechanisms to availability issues
is an illustration, and that their design goes way beyond.
Other systems may leverage our approach, such as systems
where activity patterns of some kind exist and can be pre-
dicted. It is for example known that workloads in enterprise
data centers may exhibit patterns [33]; accurate workload
placement may then save computation time if tasks are at-
tributed to idle servers while known one are busy. Timeouts
that are adapted to recurrent load of servers can help to dis-
tinguish between a crashed and a loaded server. This may



then constitute straightforward application of this work.

8. RELATED WORK

Studies on availability have motivated the idea of biasing
the replica placement strategy, instead of using a random
one. In [22], authors propose to store replicas towards highly
available nodes. The work in [25] suggests offering a data
availability proportional to the node stability. In paper [18§],
replica placement is biased towards nodes that have similar
availability patterns, typically available at the same time.
Very recently, paper [28] analyses replica placement strate-
gies which optimize availability, “patching” the time by se-
lecting highly available nodes when some time slots are not
covered by at least one replica.

With regard to the distinction between transient and perma-
nent failures some authors have very recently proposed ad-
vanced timeout design. The authors in [26] analyze the use
of timeout in a stochastic model and compare solutions with
reintegration against standard ones. The approach of [30]
is the closest to ours. However their proposed algorithm
mainly focuses on the accuracy of instantaneous detection
but does not consider the impact of the false positive or false
negative errors on average data availability and replication
cost. The authors of [35] are the first to model node behav-
ior with a continuous semi-Markov chain, which does not
require the use of exponential distribution. However, they
always assume a scalar value for availability, and a homoge-
neous behavior for all nodes in the system.

9. CONCLUSION

In this paper, we demonstrate the interest of leveraging the
knowledge of node availability patterns, in particular when
node exhibit heterogeneous behavior wrt uptime. While this
idea has already been explored at a general level, we have
advocated an implementation at a finer granularity, namely
on a per node basis. We have addressed two important faces
of distributed storage systems, namely replica placement
and timeouts for repairs. Our evaluations conducted on real
traces have shown substantial gain of this availability-aware
framework. We expect those two practical contributions to
be used as plug-ins in deployed systems.
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