
HAL Id: hal-00521034
https://hal.science/hal-00521034v1

Preprint submitted on 24 Sep 2010 (v1), last revised 7 Mar 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Availability-based methods for distributed storage
systems

Anne-Marie Kermarrec, Erwan Le Merrer, Gilles Straub, Alexandre van
Kempen

To cite this version:
Anne-Marie Kermarrec, Erwan Le Merrer, Gilles Straub, Alexandre van Kempen. Availability-based
methods for distributed storage systems. 2010. �hal-00521034v1�

https://hal.science/hal-00521034v1
https://hal.archives-ouvertes.fr

Availability-based methods for distributed storage systems

Anne-Marie Kermarrec

INRIA Bretagne Atlantique

Erwan Le Merrer

Technicolor

Gilles Straub

Technicolor

Alexandre van Kempen

Technicolor

Abstract

Distributed storage systems heavily rely on replica-
tion to ensure both data availability and durability. In
networked systems subject to intermittent node un-
availability, replicas need to be maintained, i.e repli-
cated and/or relocated upon failures. Repairs typically,
are extremely bandwidth-consuming and it has been
shown that, without care, they may significantly conges-
tion the system. In this paper, we propose an approach
to replica management accounting for nodes hetero-
geneity with respect to availability. We show that by us-
ing the availability history of hosts, the performances
of two important faces of distributed storage can be
significantly improved namely (i) replica placement is
achieved based on complementary nodes with respect
to nodes availability, improving the overall data avail-
ability, and (ii) repairs can be scheduled according to
node availability, so as to decrease the number of repairs
while achieving comparable availability; this is achieved
by an adaptive per-node timeout, instead of relying on
a system-level timeout. We propose practical heuris-
tics for those two issues. We evaluate our approach
through extensive simulations based on real and well-
known availability traces. Results clearly show the ben-
efits of our approach with regards to the critical trade-
off between availability, load-balancing and bandwidth
consumption.

1 Introduction

Large scale peer to peer systems have proved to provide
an appealing alternative in the context of many applica-
tions to centralized ones for they improve upon robust-
ness and scalability. However their performance largely
depend on the nodes availability. More specifically,
nodes may join and leave the system at will without pre-
vious warning. Distributed storage is a typical exam-
ple of applications for which peer to peer systems are
natural candidates. Indeed, capacities of modern hard
disks have outgrown the storage need of many users,
leaving huge opportunities for this idle storage space to
be leveraged in a collaborative storage system. In such
a distributed storage system, each node is in charge of
storing other nodes data in exchange of the guarantee to

have its own data stored and available durably in time.
Nevertheless if a node leaves unexpectedly the system,
the data it is responsible for is also unavailable. To face
this issue, distributed storage systems replicate data on
more than one node so as to tolerate multiple nodes de-
partures and/or failures. Once a replication degree is
set, it has to be maintained across time despite nodes
leaving the system, in order to guarantee the durability
of data. This maintenance involves mainly two opera-
tions: (i) node failure or departure detection; (ii) replica
repairs. In this paper, we focus on the latter repair op-
eration which is highly bandwidth consuming. Interest-
ingly enough, some well-know works [4, 25] reveal that
one of the key aspect of an efficient distributed storage
mechanism is precisely the bandwidth consumption.

In practical systems, distinguishing reliably a perma-
nent failure from a transient one is challenging. Yet,
significant bandwidth could be saved by generating re-
pairs in the event of a permanent failure only, assum-
ing that the data is only temporarily inaccessible in case
of a transient unavailability. Therefore too aggressive a
repair mechanism may congestion the system resulting
from an excessive and useless bandwidth use. On the
contrary, a low reactivity in the repair may result in hurt-
ing the quality of service, i.e data availability and dura-
bility.

In this paper we take up the challenge of tackling this
trade-off answering significant questions closely related
to the design of an efficient distributed storage system,
namely:
-Where should the replicas be placed?

-When should the repair mechanism be triggered? (i.e.
when the system should conclude on a transient or a
permanent failure?)
We argue that a one size fits all approach is not suf-
ficient and that the statistic knowledge of every single

node availability, as opposed to system-wide parame-
ters, provide a mean to efficiently tackle those ques-
tions. As opposed to mechanisms existing in peer to
peer storage systems [3, 6, 13] the approaches pro-
posed in this paper rely on per node availability statis-
tics rather than network-wide average ones. In other
words, while most previous works have assumed either
that nodes are homogeneous or that simple averages on
behaviors are representative, we account for the hetero-

1

geneity of nodes availability, both to decide where repli-
cas should be placed and when repairs should be trig-
gered.

Many systems address the placement problem (the
where question) by replicating data on randomly chosen
nodes [3, 15, 23, 7]. Some other place replicas on highly
available nodes [18], at the risk of unbalancing the load
on the system. Instead, we leverage availability habits
of each node, that could be monitored by few dedicated
servers or by the nodes themselves. We propose to use
a targeted placement in order to put replicas on nodes
so that the sum of their availability periods covers the
whole prediction time, while preserving load balancing.
Thus for the same replication level and for a compara-
ble load on nodes, availability is significantly increased
compared to random strategy.

The second question (the when one) boils down to
a decision making process, where the goal is to detect
permanent failures, to ensure durability of data while
generating as few false positives (in terms of transient
failures) as possible in order to save bandwidth. In dis-
tributed storage systems, this question is typically ad-
dressed by the use of timeouts. After a given timeout,
a system parameter, a node is declared as failed and a
repair is triggered. Most of the timeouts used in exist-
ing systems are defined at the system level, and thus are
identical for all nodes regardless of their typical avail-
ability patterns [26, 30, 6, 4]. In addition, advanced

timeout are often computed with Markov models us-
ing network-wide statistics as in [26, 30]. Unfortunately,
some assumptions such as homogeneous behavior, or
memoryless exponential distributions are not verified
in certain systems [14, 5, 20]. Instead, in this paper, we
propose to trigger a repair process by inference of node
failure rather than conclusive knowledge. This suggests
that one might analyse node failure detection in a stan-
dard inference framework, using false alarm probabil-
ity. We then propose a per-node timeout determined
upon its individual availability behavior. In addition
this timeout is adaptive, as a function of the so called
criticality of the situation (number of replicas effectively
available in the system).

Contributions In this paper we propose a method ac-
counting for node heterogeneity with respect to avail-
ability to decide (i) where to place replicas and and (ii)

when to trigger a repair using a limited availability his-
tory of storage hosts. We make the following contribu-
tions.

The placement replica algorithm relies on a discover-
ing complementary availability patterns (that we name
anti-correlated) so as to maximize the availability of
data across time. We show through extensive simula-
tions based on real availability traces that this approach

outperforms traditional random placement, resulting in
a significantly lower number of replicas for a given avail-
ability. This includes facilities for erasure codes. For
instance, on an availability trace of the Skype network,
5 replicas are needed instead of 8 with random place-
ment, for an equivalent availability of around 99%.

The repair mechanism trades traditional system-level
timeout based on network-wide statistics against a per
node timeout, based on the node availability patterns.
Nodes self-organize to compute their adapted timeout
in a probabilistic way, according to their own behav-
ior and to the current replication factor. Experimen-
tal results show that we achieve a lower number of re-
pairs, while preserving the same level of availability of
the data. For instance, on the same Skype trace, our
method yields in 38% savings in repairs per-day, even
compared to aggressive global timeout, while still im-
proving availability of the data.

The combination of those methods sets the scene for
efficient placement and repair strategies in large-scale
distributed storage systems, improving the overall per-
formance on realistic replication scenarios.

The rest of the paper is organized as follows: we first
present related work in Section 2; this is followed by a
detailed section on the motivations for this work in Sec-
tion 3. Section 4 introduces the system model we con-
sider. Our placement and repair strategies are then de-
tailed in Sections 5 and 6 respectively. In Section 7, we
use jointly those two techniques and discuss some prac-
tical questions, before concluding the paper in Section
8.

2 Related Work

Numerous distributed storage systems have been de-
veloped, be they fully distributed [23, 15, 7], or peer-
assisted [27]. They address a wide range of issues
such as various access control, data privacy, fairness,
resilience to untrusted environment, or even propose
complete file systems. As opposed to those works, we
focus on core and well-identified issues in storage sys-
tems namely availability and durability of data. We pro-
pose an availability-aware plugin that could be applied
to any distributed storage system and address these is-
sues in a pragmatic way. Our approaches rely on ac-
counting for node heterogeneity with respect to avail-
ability. The idea of using availability knowledge is not
new and some systems like [3] already make predictions
based on node availability to adjust redundancy mech-
anism and repair policies; the difference between those
availability-aware systems and our approach is that they
use availability to compute averages on global trends for
nodes behavior, while we make use of finer grain infor-
mation at the node level, namely availability patterns

2

themselves.

Also many host availability studies exist in the litera-
ture, independently of their application to storage sys-
tems [14, 8, 2]. Yet, all those approaches rely on statisti-
cal analysis of the nodes behavior in order to extract reg-
ular patterns in the system traces. Most of them agree
on a certain level of predictability, a diurnal pattern is
for example very common [16, 18, 5, 2]. J.Douceur even
wonders if host availability is governed by a universal

law [8]. Node availability in those systems is thus ex-
tracted from real traces and averaged so as to define typ-
ical node availability patterns.

Interestingly, location [14] has very recently made
available to the community an online public repository
of availability traces taken from diverse parallel and dis-
tributed system. In order to remain at a practical level as
much as possible, we use these public traces to validate
the efficiency of the methods proposed in this paper.

2.1 Availability-aware replica placement

Studies on availability have for example motivated the
idea of biasing the replica placement strategy, instead of
a random one. In [18], the author propose to store repli-
cas towards highly available nodes. The work in [21]
suggests to offer a data availability proportional to the
node stability.

In paper [16], replica placement is biased towards
nodes that have similar availability patterns, typically
available at the same time. Very recently, paper [24]
analyses replica placement strategies which optimize
availability, “patching” the time by selecting highly
available nodes when some time slots are not covered
by at least one replica. We share the availability max-
imization aim with works [18, 21, 24]. Yet, since those
approaches tend to bias the replica placement towards
highly-available nodes, most of the storage load is con-
centrated on such nodes. Instead, our availability-
aware replica placement leverages all nodes, balancing
the load evenly in the system by design, as confirmed by
our experimental results.

2.2 Failures and repairs

Regardless of availability, a storage system has to ensure
data durability. In a distributed systems, this implies
that data has to be replicated and repaired when fail-
ures occur. For example [7] uses eager repair, i.e. the
system immediately repairs the loss of data as soon as
a host failure is detected. However, the repair process
is extremely bandwidth consuming. It has been shown
that bandwidth one of the most important factor in de-
signing a distributed storage system [4]. In order to min-
imize the impact of the repair process, different tech-

niques have been proposed. In [3], repairs are deliber-
ately delayed in an attempt to mask transient failures.
In [13], the authors suggest using a high replication level
in order not to generate a repair in case of failure, pro-
viding data durability even if correlated failures occur;
nevertheless, the counterpart is that the price in terms
of generated storage overhead is very high. In [9], avail-
ability knowledge is used to adjust the repair rate of the
system as a whole, not a the node level.

The designers of Carbonite [6] were the first to place
reintegration (ie. reintegrate replicas which have been
wrongfully considered as failed) as a key of conceiving
a functional distributed storage system. Very recently,
some authors have proposed advanced timeout design
in order to deal with distinction between transient and
permanent failures. The authors in [22] analyse the use
of timeout in a stochastic model and compare solutions
with reintegration against standard ones. The approach
of [26] is the closest to ours. However their proposed
algorithm mainly focuses on the accuracy of instanta-
neous detection but does not consider the impact of the
false positive or false negative errors on average data
availability and replication cost. The authors of [30]
are the first to model node behavior by a continuous
semi-Markov chain, which does not require the use of
exponential distribution. However, they always assume
a scalar value as availability measure, and an homoge-
neous behavior for all hosts in the system.

3 Motivations

In this section, we expose the three main motivations to
availability-aware replica placement and repair in dis-
tributed storage systems, namely: (i) leveraging node
predictability with respect to availability, (ii) accounting
for nodes heterogeneous availability patterns, and (iii)

improving the trade-off between replication rate, avail-
ability and bandwidth.

3.1 Availability and Predictability

In the context of distributed storage systems, where
nodes hosting data may leave and join at will, many
systems have been originally proposed that do not ex-
plicitly deal with specific availabilities of nodes [23, 7].
In the quest for better performances, some works have
studied and identified trends in the availability of the
hosting resources [8, 2, 16, 5]. The important question
of leveraging predictability has then been addressed [18,
16] to effectively handle transient failures.

We propose in this paper to build on this predictabil-
ity in the behavior of nodes to provide adapted heuris-
tics that overcome basic availability agnostic replica

3

 0

 0.2

 0.4

 0.6

 0.8

 1

DNS Websites Microsoft Planet Lab N-dame Skype

A
va

ila
bi

lit
y

m
ea

n

Traces

standard deviation
Uptime mean

 0

 0.2

 0.4

 0.6

 0.8

 1

DNS Websites Microsoft Planet Lab N-dame Skype

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Traces

Figure 1: Availability mean and dispersion for various
existing systems

placement and repairs; this also improves systems
where the availability notion is used at a coarse grain.

3.2 Heterogeneous availability patterns

Most of systems that take availability of resources into
account do so in a basic way. The general approach is to
leverage one single parameter, the mean or the distribu-
tion of availabilities of all nodes that have participated
in the system [30, 26, 3]. While this is convenient to
apply theoretical models as the Markov model or basic
probabilities for the number of replicas to create, or the
expected lifetime of the system, recent comments un-
derline the limited applicability of such models in prac-
tice [11, 10].

While some storage systems use platforms like home
gateways [28] that have a homogeneous and high avail-
ability, the majority of deployment platforms exhibit a
non-neglectable heterogeneity in practice. To illustrate
our claim, we plot on Figure 1 the mean, standard devi-
ation, as well as the dispersion of availabilities of hosts
composing systems like Microsoft desktop computers,
Skype or PlanetLab1.

The figure clearly shows a significant variance among
nodes behavior. This is confirmed in a recent storage

1Those availability traces, from scientific publications, are made
available in a repository [1]

system analysis [27]. Even the DNS system has a disper-
sion of uptimes of around 20%. This trend is even more
striking for the two leftmost systems. This demonstrates
that availability cannot be accurately expressed by a ba-
sic scalar mean trying to represent the overall trend of
the fraction of time hosts are up. Furthermore, reducing
availability to a mean or a distribution [20, 27] ignores
information about hosts availability patterns while such
information could be leveraged to increase reliability of
distributed storage [18, 24, 16]. This calls for a finer grain
study and accounting for specific peers availability.

3.3 Storage System trade-offs

Blake et al. [4] have shown that for dynamic storage sys-
tems using redundancy, a severe bottleneck appears in
bandwidth, when maintaining a high availability for the
stored data. To propose realistic system designs, recent
works have thus relaxed the 6 Nines constraint on data
availability, taking into account more pragmatic replica-
tion rate.

Another trade-off, allowing a classification of dis-
tributed storage systems, is presented on Figure 2. The
third motivation for our work is precisely the critical
trade-off between replication rate, load balancing and
bandwidth consumed by the system. A distributed stor-
age system targeting data availability may be repre-
sented by a set of three strategies: (i) a redundancy strat-
egy characterized by k (k may be either a replication
factor or the rate of an erasure code), (ii) a placement
strategy (where to replicate the data) and (iii) a repair
strategy (when and how to repair a lost replica). In this
formalism, “basic” DHT-based systems as [7, 23] reach
high availability due to very high replication rates (for
instance PAST stores a chunck of replica on its leafset in
the DHT), while load balancing is ensured by a pseudo
random placement strategy due to the PUT operation
on the DHT (the hash function balances evenly the dis-
tribution on the system). Furthermore, as pointed out
in paper [17], replicas have to be relocated each time
a node is inserted in or leave the replication neighbor-
hood of a file, triggering cumbersome maintenance op-
erations.

Solutions that are availability-aware suggest to
bias the placement of data towards highly available
nodes [18, 21], thus minimizing bandwidth due to
repair cost caused by transient nodes. Nevertheless,
this creates a high pressure on stable nodes that are
asked to contribute significantly more than average
nodes.

Relaxing one of these three constraints can limit the

complexity of a proposed system, yet cause a hardly

usable solution in practice. Finally, very few storage
systems such as Total Recall [3] or Carbonite [6] ad-

4

Storage system (k,placement,repair)

load balancing availability bandwidth

DHT-based High availability bias

Total Recall

Carbonite

Figure 2: A classification of distributed storage systems.

dress this trade-off by using random placement and
non-trivial repairs in order to maximize availability. A
motivation for our work is precisely to improve the lat-
ter and more challenging class of systems, by proposing
availability-aware methods that are applicable as “plug-
ins” to their architecture.

4 Storage system model

Storage systems that leverage available disk space on
hosts connected through the network range from peer
to peer applications on users computers [13] to hard-
ware boxes like Internet providers gateways [28]. Our
availability-aware solution is specifically designed to be
applied to any type of network where hosts may ex-
hibit temporary and recurrent, periods of unavailability.
Systems with a near-perfect availability of their compo-
nents obviously have no need for such a study. We ex-
plain later on that our methods does not degrade perfor-
mances for replication on stable or unpredictable net-
works.

For the sake of clarity and because we focus on the
replica and repair strategies, this approach is illustrated
as a peer-assisted method. We assume the existence of
a service providing requesting nodes with a set of accu-
rate partners. Those partners are then used by the re-
questing nodes to place replicas or repair replicas; repli-
cation clusters are then created for each data to store,
following for instance the replication in DHTs leafsets
where groups monitoring and storing the same data are
created [23, 7]. While such a service is trivial to im-
plement using a server, it is directly applicable to pure
distributed systems, where hosts can collaborate to dis-
tributively achieve this computation, through gossip for
example [16, 24]; each node in a cluster then monitors
other cluster nodes to detect failures.

In order to exploit information on hosts availability,
our system requires to keep track of a limited history of
those availability and unavailability periods. In practice,
such availability vectors can be maintained by a cen-

tral server, the node itself providing it on demand, or
by a distributed monitoring system if nodes cannot be
trusted to self-monitor [19].

Concerning explicit rewarding of stability, we are
looking to improve data availability at the network level.
Therefore we do not focus explicitly on free-riders in our
approach. This is out of the scope of the paper. This
design choice is made in order to keep applicability to
a wide range of distributed storage systems, including
those with no direct possible intervention of a user on
the storage device availability.

Finally, as our aim is a pragmatic study of what can
be achieved beside purely theoretical models for place-
ment or timeouts, we use as a basis publicly available
traces, that have been deeply studied in their respective
original papers [1]. Those traces are from systems of a
great variety; when applying techniques on them, the
goal is to underline tendencies for the associated kind
of availability they exhibit, more than just proposing a
specific improvement for a narrow range of systems.

5 Availability-aware placement strategy

In this section, we propose an answer to the question:
Where should replicas be placed so as to maximize avail-

ability while ensuring an evenly balanced load?. The
availability-aware placement strategy proposed relies
on leveraging the monitored availability of nodes.

5.1 The R&A placement strategy

The aim of the method proposed below, as presented
in Section 3, is to offer a better data availability than
a random strategy placement using the same storage
overhead k and without getting a high skewed load
distribution. Thus this excludes biased placement to-
wards highly available nodes, which by definition only
considers specific nodes for the whole system satisfac-
tion. To this end, we leverage the availability knowl-
edge of each node in order to choose other nodes to
place the replicas. Those nodes are chosen so that their
availability patterns match the unavailability periods of
the requesting node. Such nodes are denoted as anti-

correlated nodes as we explain below.
This availability history of a node is represented as a

vector of a predefined size (acting as a sliding window
of time). For each time unit, the corresponding vector
entry is set to 1 if the particular node was online at that
time, and −1 otherwise. In this paper, we assume his-
tory vectors of one week, with one hour as unit time.
This length has been shown to capture accurately most
of user behaviors (e.g. diurnal, and week end presence
patterns) [2, 18, 16, 8]. Let

−→
Ax be the availability vector

of node x.

5

Figure 3: Perfect anti-correlation between hosts x and
y .

We define the notion of availability anti-correlation,
for a requesting node x as the opposed presence of a
node y on the same predefined period (thus minimizing
overlapping periods). Figure 3 illustrates this notion: y

is perfectly anti-correlated to x, as it is online during all
periods of unavailability of node x. Comparing nodes
vectors of availability history, nodes can be sorted by
their effective correlation to a given node x.

In practice, the (anti)correlation of two nodes is mod-
elled as the angle, noted Θx,y , between the two vectors
−→
Ax and

−→
Ay of nodes x and y :

Θx,y = arccos(
−→
Ax ·

−→
Ay

‖
−→
Ax‖·‖

−→
Ay ‖

)

• Θx,y = 0 : Perfect correlation between nodes x & y

• Θx,y =π/2 : No correlation between x & y

• Θx,y =π : Perfect anti-correlation between x & y

For example, two nodes available only at daytime
and sitting in opposite time zone would have an anti-
correlated behavior at the system level. The objective of
using −1 instead of the classical 0 value to express the
unavailability of a node is to not only capture the corre-
lation, but also the anti-correlation between two behav-
iors. In fact the knowledge of unavailability is as inter-
esting as the one about availability.

Our placement strategy relies on building clusters (re-
call that a cluster is the set of nodes holding replicas
of the same data) with pairs of nodes exhibiting anti-
correlated behavior so as to cover the whole prediction
period. Since our goal is to increase the global availabil-
ity, an anti-correlated host to a reference host is the best
candidate to patch the time when this reference host is
offline, as illustrated on Figure 3. By picking a node,
finding its best anti-correlated counterpart, and iterat-
ing on this process until the cluster contains enough
nodes to replicate k times a data, the effect of time
patching is increased. We call this scheme R&A, for Ran-
dom and Anti-correlated placement scheme.

In order for our placement method to overcome a
random strategy (where the cluster is built up with
nodes chosen uniformly at random), part of the system
nodes must have some predictability on their availabil-
ity behavior. The more predictable the nodes in the sys-

tem, the more performance may increase when com-
pared to availability-agnostic placement. On the con-
trary if all nodes in the system show absolutely no pre-
dictability then the R&A scheme is equivalent to a ran-
dom one, as our placement also leverages random se-
lections. We thus use recent works on feasibility of be-
havior prediction of at least a subset of the network
nodes to back up our claim [18, 16, 24].

5.1.1 R&A method core

When a new data item has to be stored, a new clus-
ter is created, where each node belonging to this clus-
ter stores a replica (nodes may of course participate to
more than one cluster). This cluster is filled as follow:
the system first selects a reference node randomly. Then
the node whose behavior is the most anti-correlated to
this reference node is selected to form a pair of anti-
correlated nodes. This pair is then added to the clus-
ter. This process is iterated until the number of nodes in
the cluster is equal to the system replication factor k. In
case of an odd k, an additional random node is included
in the cluster. Note that the selection of each reference

node might be achieved using a random walk in a de-
centralized system for example or simply by a uniform
sampling in a server-assisted system. The randomness
inherent to the selection of devices in the cluster leads
to a low bias regarding to load balancing while pairs of
anti-correlated behaviors improve data availability.

5.1.2 Experimental evaluation of R&A

In order to evaluate our R&A placement strategy we use
a public trace of Skype [12], which exhibits a high het-
erogeneity among availabilities of nodes. As availabil-

ity of a data is defined as the presence of at least one
replica at anytime, random placement performs well on
stable traces as DNS, as a majority of the nodes are al-
ways up; this ensures with high probability that if they
are selected, the replicas they host suffice to achieve the
targeted availability. In the Skype trace, nodes having
uptime less that 1% have been removed from the trace,
resulting in a number of alive nodes equals to 1901.

We conducted the simulations as follows: each of
the alive nodes stores one data item, with different k

(from 2 to 10). Then we evaluate the availability mean
compared to a random placement strategy. We con-
sider a two-week period for the evaluation: the anti-
correlation between availability behaviors is computed
over the first week (training period). The evaluation of
data availability is performed on the second week. A
data is available if at least one node holding a replica is
online for each unit time of the entire evaluation period.
Availability mean and standard deviation are plotted for

6

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 1 2 3 4 5 6 7 8 9 10 11

A
va

ila
bi

lit
y

(%
)

Replication factor

R & A selection
Random Selection (measured)

Random selection(analytical)

Figure 4: Availability using replication

different replication factors k. Results are depicted on
Figure 4.

We compare our R&A strategy to practical random
placement [3, 6, 23, 7], as well as with with the analyt-
ical model of random placement (often used in replica
maintenance papers). The availability is plotted for
each k (denoted Ak) given by:

Ak =

k
∑

i=1

C i
k (p̄)i (1− p̄)k−i (1)

where p̄ =
∑N

x=1
px

N (px is the mean availability of
node x on the period and N is the number of hosts par-
ticipating in the system). In the Skype trace we mea-
sured p̄ = 0.4.

Results Whereas both strategies tend to achieve the
same availability with a high replication factor, R&A
placement leads to an increased availability mean com-
pared to a random placement strategy up to k = 9.
As replicating the whole dataset more than 10 times is
highly unrealistic in any practical system, this consti-
tutes a significant improvement over random strategy.
Note that complex systems such as Total Recall or Car-
bonite rely on such a random strategy. For example, the
same availability and standard deviation (98.6%±3.4 for
random, 98.7%±2.4 for R&A) are obtained with 8 repli-
cas with a random strategy whereas only 5 replicas are
sufficient using our method. Conversely for the same
replication factor k, availability is increased. For ex-
ample for a k equals to 5, a random strategy achieves
95.5%±12.6 of availability while our method leads to an
availability equals to 98.7%±2.4.

In addition we observe that analytical availability, de-
spite giving the right trend, is under-estimated. This il-
lustrates that in a practical heterogeneous system, avail-
ability might not be reduced to a simple arithmetic
mean. In fact equation (1) ignores all distributional in-
formation on nodes availability, as it is reduced to the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
D

F

Number of replicas hosted

Random selection (k=3)
R & A selection (k=3)

Random selection (k=5)
R & A selection (k=5)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
D

F

Number of replicas hosted

Random selection (k=4)
R & A selection (k=4)

Random selection (k=6)
R & A selection (k=6)

Figure 5: Load balancing for k=3;5 & k=4;6

scalar value p̄. The drawback of this definition of avail-
ability are explained in more details in [10].

5.1.3 Load balancing

One of the main drawback of biasing replica placement
(as opposed to a uniform random strategy) is the poten-
tial impact on the load balancing. In order to remain
as scalable as possible, it is desirable the load balancing
not be too impacted by the placement strategy. Obvi-
ously, when replicas are preferentially placed on highly
available nodes [18], the feasibility of the placement
scheme directly depends on the proportion of those
highly available nodes in the system.

Even a random placement scheme is impacted by the
effective availability of nodes in the network as this im-
pacts the uniformity of the random choice. As nodes
for replication are chosen online when a new replica has
to be inserted, or repaired, highly available nodes tends
to be naturally contacted more than their less available
counterparts. This results in a slight skew in distribution
(see for instance [27]). Random placement is the most
simple and efficient scheme for load balancing, with no
notion of fairness involved. Yet, it is an important stan-
dard to compare too.

Figure 5 plots the cumulative frequency of the num-
ber of replicas hosted by all nodes in the system, when
random placement and R&A are used. Results show
that the load balancing resulting from creating clus-

7

ters with random placement and their anti-correlated
counterparts is close to the random placement strat-
egy. It could be explained by the fact that in addition
to the random part of the heuristic, no behavior is ad-
vantaged while computing anti-correlation, as opposed
to a system where highly available nodes are always
rewarded. Then if nodes availability patterns exhibit
enough heterogeneity, R&A provides a natural load bal-
ancing, close to the one obtained with random place-
ment.

5.1.4 R&A placement for erasure codes

Erasure codes have been proved as being another effi-
cient way to obtain data availability and durability in
distributed storage systems [29]. We now assess the ap-
plication of our R&A placement strategy in such set-
tings.

So far, we consider that the availability of a repli-
cated data was achieved with at least one node hold-
ing a replica online at any time, among k, thus mask-
ing transient unavailability of other replicas. This can
be considered as a particular application of providing j

available nodes out of a set of n. Erasure codes are able
to reconstruct a data with j out of n encoded blocks.
We thus seek to provide a subset j of nodes that maxi-
mize availability, so that the correct amount of encoded
blocks can be found to reconstruct the data.

In practice, we model a typical version of j out of n

redundancy scheme in which n code blocks are build-
ing in a cluster, and data is defined as available only if
at least j code blocks are available within this cluster.
The code rate is defined as j /n. The availability denoted
A(j ,n) is adapted from (1) and given by :

A(j ,n) =

n
∑

i= j

C i
n (p̄)i (1− p̄)n−i (2)

We evaluate our R&A method using erasure codes on
the same Skype trace, along with a random placement
also on n nodes. This simply consists in now placing n

blocks with both methods. Figure 6 plots the availabil-
ity obtained for three different code rate (1/2;1/3;1/4),
with an increasing n. The top figure corresponds to data
availability resulting from the real Skype trace while
availability on the other one is computed analytically
using equation (2) and p̄ = 0.4 as in part 5.1.2. We ob-
serve a clear improvement in data availability regardless
of the code rate over the random placement scheme. For
example, the same performance is obtained for a ran-
dom selection with a code rate equals to 1/4 while us-
ing our method a code rate only equals to 1/3 is suffi-
cient. At the scale of the whole network, this may save
an important amount of overhead. The intuition behind

this result is that our placement strategy has a “built-
in” notion of time span over a predefined period; each
time the algorithm picks a random node and its anti-
correlated counterpart, availability is increased on this
period, while random placement relies on “luck” to pick
nodes that will fill temporary unavailability holes. As
we seek a larger set j of nodes online at the same time
(where with basic replication, k = 1 replica is enough),
the positive effect of a clever placement is increased.

An interesting effect can be observed on both theoret-
ical and simulation figures. While for reasonable rates,
curves are showing good availability, the rate 1/2 causes
performance to significantly degrade as n increases, for
both placement schemes (even if R&A still performs bet-
ter). This is explained by the fact that in this system (i.e.

in this availability trace), there is not enough sets of j

nodes simultaneously available at the same time, so that
j nodes among n could not be satisfied. This suggests
that a deep study of availability of nodes in a network
must be considered when deploying erasure codes.

Another observation is that as in Section 5.1.2, we
note that whereas analytical results provide tendencies
about variations of availability with an increasing n,
data availability values are under-estimated in all cases.
This results from the too restrictive definition of the
availability in Equation (2). More details can be found
in [10].

Finally, we remark that this j among n availability tar-
get can also have other fields of application, as for in-
stance providing higher throughput when downloading
a data from the storage system, as j replicas are avail-
able for parallel downloads.

6 Timeout for repairs

In addition to the initial replica placement strategy, a
distributed storage system has to provide a reliable re-
pair mechanism so as to ensure data durability. Band-
width is a crucial element in the reliable repair strategy
for data durability since it can only be ensured if there is
sufficient bandwidth to repair lost replicas. In our case,
bandwidth can be inferred by the number of repairs the
system has to perform; we then explicitly count repairs.

When designing a repair mechanism, one challenge
is to decide when to trigger the repair. In other words,
when is it reasonable to conclude that a node has failed
or left permanently, thus requiring to repair or if the
node is only temporarily disconnected. In the latter
case, a repair may turn out to be useless, consuming
unnecessarily some bandwidth. A traditional way to de-
cide on the nature of a failure is to use a timeout. Typi-
cally, once a node has not replied to a solicitation after
a timeout has expired, it is considered as permanently
failed. However deciding on a timeout value is difficult.

8

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30 35

A
va

ila
bi

lit
y

(%
)

n

R & A (rate=1/2)
Random (rate=1/2)

R & A (rate=1/3)
Random (rate=1/3)

R & A (rate=1/4)
Random (rate=1/4)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35

A
va

ila
bi

lit
y

(%
)

n

Random (rate=1/2)
Random (rate=1/3)
Random (rate=1/4)

Figure 6: Availability using erasure codes
More specifically, nodes may exhibit various availabil-
ity patterns; therefore, defining a system-wide timeout
value might not be optimal. Deciding on an optimal
value for an administrator is also a tedious and difficult
task. So in order to simultaneously solve these issues,
we designed an adaptive per-node timeout mechanism
which sets a timeout at a node granularity, leveraging
the availability history of each node in the system.

6.1 Node-specific & adaptive timeout

This section describes how the timeout value is made
both adaptive and node-specific, i.e. tailored to every
single node based on its availability history. Recall that
in a cluster, all nodes are monitored. Therefore at each
node disconnection (i.e. the beginning of an unavail-
ability session), a timer is started measuring time un-
til its reconnection (either on a monitoring server, or by
cluster nodes themselves, as explained in Section 4).

The cluster is then aware of unavailability duration
of each disconnected node. As in the classical timeout
model, if the unavailability period of a given node ex-
ceeds its timeout value, the node is considered as per-
manently down and the system provides this cluster
with a new node to be used to repair the lost replica.
As opposed to most approaches that set a system-
wide timeout, we seek determining an accurate time-
out value reflecting each node behavior with respect to
availability. An important observation is that the re-

pair process is triggered by inference of node failure
rather than conclusive knowledge. This suggests that
one might analyse node failure detection in a standard
inference framework, using false alarm probability. In
fact the a priori probability for a given system that nodes
will return give little information at the host level.

Contrarily adding extrinsic information, such as the
habits of a given node, might help when observing a
given unavailability time to evaluate the probability that
this node will return, therefore that the disconnection
(the failure) is transient. To illustrate our purpose, con-
sider the following example: if a node, usually available
at all times, is detected unavailable for a few hours, the
probability that it will reconnect is low, and lower as
time passes. On the contrary, consider now a node sub-
ject to a diurnal availability pattern. If such a node is
detected unavailable for the same number of hours, the
probability that the disconnection is transient is high.
This simple example illustrates that considering statis-
tical knowledge at a node granularity can be useful to
determine the probability that a node will reconnect
and therefore the probability that the failure is transient.
This instances why a per-host timeout value is desirable
in a heterogeneous system.

An important point is that if a host is wrongfully de-
clared as permanently failed (i.e. if it returns in the sys-
tem whereas its timeout has expired) it will be reinte-
grated within clusters which it was part of before the
disconnection. This timed-out host involved a repair in
clusters it belonged to, then its return yields an excess
of replicas. This excess authorizes a relaxed reparation
process, as the current count is over the target k. Our
idea is to adapt dynamically the timeout for each host,
reflecting the current “criticality” of the situation (more
or less replicas online that the fixed threshold k). In case
of an excess, this is translated in our adaptive method
by setting a less aggressive timeout for each host of the
concerned cluster. Thus in addition to be defined at
the node-level, timeout is adaptive in this way: a con-
sequence is that a balance is created, emerging from
the fact that errors are compensated by a less aggressive
policy. Hereafter is explained how the timeout is com-
puted at the node-level.

6.2 Timeout model

The novelty of our timeout model is to be constructed at
the node-level, so all the following is given for a particu-
lar node. Then all hosts in the system follow this model
using their own attributes. Consider the following hy-
pothesis:

• H0 The host will return in the system

• H1 The host will not return in the system

9

H1 et H0 are two disjoint events then Pr(H1) = 1−Pr(H0).
Pr(H0) is the a priori probability that the host will return
in the system. Pr(H0) could for example be evaluated as
the ratio between transient failures and all failures (ei-
ther transient or permanent) in the system directly com-
puted on a server or resulting from an aggregation pro-
tocol in a decentralized way. Let tdowntime be the dura-
tion of the current downtime of the host and tt i meout the
timeout value associated to this host. Let its downtime
distribution be fd , this distribution verifies :

∫

∞

(t=0)
fd d t = 1

then

Pr(tdowntime > tt imeout | H0) =

∫

∞

(t=t imeout)
fd d t

By definition Pr(tdowntime > tt imeout | H0) ∈ [0,1] and
Pr(H0) ∈ [0,1]. Pr(tdowntime > tt imeout | H0) then cor-
responds to the statistical knowledge on each host be-
havior. In fact as the availability history of each host
is stored, its downtime probability distribution can
be computed directly, and then also Pr(tdowntime >

tt imeout | H0 depending on the timeout value. By hy-
pothesis :

Pr(tdowntime > tt imeout | H1) = 1

Pr(tdowntime < tt imeout | H1) = 0

In fact if the node does not come back in the system,
on the one hand its downtime will be superior to any
timeout value, on the other hand its downtime cannot
be inferior to any timeout value. We also assume :

PF A = Pr(H0 | tdowntime > tt imeout)

PF A is the probability that a host comes back in the sys-
tem whereas it has been timed-out and thus it has been
decided by the system that it would not return. PF A is
called the False Alarm probability. The higher PF A the
more (probably) useless reparations are tolerated. Ac-
cording to the Bayes’Theorem :

PF A =
Pr(H0 ∩ (tdowntime > tt imeout))

Pr(tdowntime > tt imeout)

PF A =
Pr(H0)×Pr(tdowntime > tt imeout | H0)

Pr(tdowntime > tt imeout)

PF A =
Pr(H0)×Pr(tdowntime > tt imeout | H0)

[Pr(H0)×Pr(tdowntime > tt imeout | H0)]+1−Pr(H0)

Finally :

PF A =
Pr(H0)×Pr(tdowntime > tt imeout | H0)

1+Pr(H0)× [Pr(tdowntime > tt imeout | H0)−1]
(3)

The definition interval of PF A is then [0,Pr(H0)].

To sum up, we have (3) that expresses the false alarm
probability as a function of the a priori probability that a
host will eventually return in the system and of its down-
time distribution. This expression is necessary to com-
pute per-node timeouts, as explained in next section.

6.3 Method core of node-specific timeout

We now show how to compute an adaptive timeout for
each node. The scheme presented here after is per-
formed in each cluster at each time unit.

Each cluster has to deal with its departed and
coming-back hosts. Returning nodes reintegrate their
cluster. On the contrary, if a node is timed-out and if the
cluster size falls under the replication factor, the system
provides this cluster a new node in order to create a new
replica. This new node can be chosen randomly or fol-
lowing a specific placement strategy as proposed in the
first part of this paper.

The following steps are executed at each cluster peri-
odically:

• Update cluster (Reintegrate and/or replicate)

• Compute false alarm probability

• Determine timeout for each node of the cluster

The false alarm probability is then computed at the
cluster level. The purpose of varying this probability is
to reflect how critical is the situation compared to avail-
ability history of hosts. Hereafter is proposed a method
used to evaluate this situation (note that this method is
not proved as being an optimal one, but just a practical
example that we use for evaluation). At each time unit
a comparison is made on the number of available repli-
cas between the current one and the one the week be-
fore (or that would have been here with current updated
cluster). This difference, noted ∆, is thus positive if
there is more replicas, and negative otherwise. Note that
the only relevant parameter measured is the number of
available replicas, regardless of which node stores them.
If there is no difference, the false alarm probability is de-
fined as the middle of its interval so PF A = Pr(H0)/2. We
define the step of variation as Pr(H0)/k, with k the num-
ber of desired replicas of a data. PF A is computed as:
PF A = Pr(H0)/2− (∆ ·Pr(H0)/k). At the end of this step,
each cluster thus has a false alarm probability that has
varied as a function of the measured criticality of the sit-
uation, regarding effective k.

Once the false alarm probability has been determined
in each cluster, each host is able to specify its own time-
out value. From Equation (3) we have :

10

Pr(tdowntime > tt imeout | H0) =
PF A · (1−Pr(H0))

Pr(H0) · (1−PF A)

∫

∞

(t=t imeout)
fd d t =

PF A · (1−Pr(H0))

Pr(H0) · (1−PF A)
(4)

Therefore timeout value is placed in order to solve the
above equation (4).

6.4 Evaluation

We simulate our per-host timeout on public traces. We
compare the cost/availability trade-off of our approach
against systems using global timeout from aggressive
(low) to relax (high) values. So as to make a fair com-
parison, clusters are here generated in a random way.
Replicas of false positive nodes are also reintegrated in
the global timeout simulation. We evaluate the trade-
off on three different system traces, namely PlanetLab,
Microsoft and Skype. As in Section 5.1.2 nodes hav-
ing uptime inferior to 1% have been removed from the
trace, resulting in a number of alive nodes respectively
equals to 308, 51313 and 1901. We simulate that each
of the alive nodes stores one data item, varying replica-
tion factor from 3 to 6 (5 to 8 for Skype). We evaluate our
approach and the global timeout one along the follow-
ing metrics: mean data availability and number of re-
pairs generated by timed-out hosts. We provide results
for Microsoft (Figure 8) and PlanetLab (Figure 7) traces.
The Skype results (Figure 9) are given in next Section, as
we will finally add on plots results from the combination
of the R&A placement strategy and the use of per-host
timeout.

The learning period is the first week, after which the
history window simply slides. In fact an initial availabil-
ity history must be available so that each host can afford
to compute its initial downtime distribution. Data avail-
ability mean and number of repairs are then evaluated
on the next two weeks. During this two weeks downtime
distributions of each host are updated following their
behavior, after each new end of a downtime session. On
Figures 7, 8 and 9, the X-axis represents the mean of data
unavailability in percent (i.e. 1 − availability). The Y-
axis is the number of repairs by data and by day, it is
equivalent to the number of timed-out hosts, as each of
them triggers a repair. Then unavailability versus num-
ber of repairs trade-off is plotted for various values of
global timeout (10 to 80 hours for Microsoft and 20 to
280 hours for PlanetLab) and for the per-host timeout;
this is the classic way of representing timeouts versus
repairs, as done in recent papers [26, 30].

Results A first observation applicable to all plots is
that not surprisingly, an aggressive global timeout value

(10H) leads to a low unavailability but produces a high
repair rate, triggering an important bandwidth con-
sumption in practice. On the contrary, a relaxed time-
out value (80H) enables to reduce the number of repairs
at the price of decreased data availability.

A second observation is that regardless of the global
timeout value, our per-host timeout always provides
a better trade-off between availability and number of
repairs. In other words in all cases for an equivalent
availability (and obviously for the same replication fac-
tor), the number of repairs will always be higher using
global timeout than our per-host timeout. This repre-
sents a significant bandwidth saving resulting from the
decreased number of repairs.

In addition not only raw performances on those met-
rics are greatly improved, but another important benefit
of the adaptive timeout method is that a system admin-
istrator does not have to arbitrarily set a static value for
timeout. Instead, the system self-organizes to compute
adapted values, thus suppressing the need for such a de-
cision before runtime of the storage application.

7 R&A and per-host timeout combined

So far, we have proposed two techniques, leveraging the
availability history of hosts. In this section, we consider
their combination, for possible improvements.

As their respective merits have been presented sep-
arately, we now use both R&A placement and adaptive
per-host timeout in the same simulations. The exper-
iments are conducted on the Skype trace with adap-
tive and per-host timeout, while adding the R&A place-
ment strategy to constitute clusters. The learning pe-

riod, where the system “learns” the availability habits of
its hosts, lasts one week in order to initialize the stor-
age system. In fact an initial availability history must
be accessible so that (i) the system is able to establish
anti-correlation on behaviors, and (ii) each host can af-
ford to compute its initial downtime distribution. In
practice, traditional random placement could be used
the first week, so the storage system can be operational
while the leaning phase is processed. The data availabil-
ity mean and the number of repairs are then evaluated
on the next two weeks.

Results are plotted on Figure 9 for a replication factor
k varying from 5 to 8; same positive results are obtained
for a larger panel of values for k. The comparison is
made between our per-host timeout and a global time-
out varying from 10 to 80 hours with a random place-
ment strategy. Again, to ensure a fair comparison, rein-
tegration of replica (then hosted by returning nodes)
is also included in the global timeout scheme. Finally,
we plot unavailability mean and number of repairs re-
sulting from the combination of the R&A placement

11

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

N
um

be
r

of
 r

ep
ai

rs
 p

er
 o

bj
ec

t p
er

 d
ay

Unavailability (%)

20h

40h

280h

Per Peer timeout
Global timeout

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37

N
um

be
r

of
 r

ep
ai

rs
 p

er
 o

bj
ec

t p
er

 d
ay

Unavailability (%)

Per Peer timeout
Global timeout

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.295 0.3 0.305 0.31 0.315 0.32 0.325 0.33

N
um

be
r

of
 r

ep
ai

rs
 p

er
 o

bj
ec

t p
er

 d
ay

Unavailability (%)

Per Peer timeout
Global timeout

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.297 0.298 0.299 0.3 0.301 0.302 0.303 0.304 0.305 0.306 0.307 0.308

N
um

be
r

of
 r

ep
ai

rs
 p

er
 o

bj
ec

t p
er

 d
ay

Unavailability (%)

Per Peer timeout
Global timeout

Figure 7: PlanetLab results for values of k ranging from 3 to 6.

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

N
um

be
r

of
 r

ep
ai

rs
 p

er
 o

bj
ec

t p
er

 d
ay

Unavailability (%)

10h

20h

80h

Per Peer timeout
Global timeout

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36

N
um

be
r

of
 r

ep
ai

rs
 p

er
 o

bj
ec

t p
er

 d
ay

Unavailability (%)

Per Peer timeout
Global timeout

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.29 0.292 0.294 0.296 0.298 0.3 0.302 0.304

N
um

be
r

of
 r

ep
ai

rs
 p

er
 o

bj
ec

t p
er

 d
ay

Unavailability (%)

Per Peer timeout
Global timeout

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.2905 0.291 0.2915 0.292 0.2925 0.293

N
um

be
r

of
 r

ep
ai

rs
 p

er
 o

bj
ec

t p
er

 d
ay

Unavailability (%)

Per Peer timeout
Global timeout

Figure 8: Microsoft results for values of k ranging from 3 to 6.

12

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
um

be
r

of
 r

ep
ai

rs
 p

er
 o

bj
ec

t p
er

 d
ay

Unavailability (%)

10h

20h

80h

Per Peer timeout
Global timeout

R & A + Per Peer timeout

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

N
um

be
r

of
 r

ep
ai

rs
 p

er
 o

bj
ec

t p
er

 d
ay

Unavailability (%)

Per Peer timeout
Global timeout

R & A + Per Peer timeout

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46

N
um

be
r

of
 r

ep
ai

rs
 p

er
 o

bj
ec

t p
er

 d
ay

Unavailability (%)

Per Peer timeout
Global timeout

R & A + Per Peer timeout

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37
N

um
be

r
of

 r
ep

ai
rs

 p
er

 o
bj

ec
t p

er
 d

ay
Unavailability (%)

Per Peer timeout
Global timeout

R & A + Per Peer timeout

Figure 9: Results of R&A placement and adaptive timeout on Skype trace, for values of k ranging from 5 to 8.

strategy and the per-host timeout in order to measure
the additional gain while applying both our availability-
based methods.

Results show that the combination of our two meth-
ods clearly outperforms the global timeout. In fact even
compared with the most aggressive global timeout value
(10H), which produces the lowest unavailability, avail-
ability is slightly increased regardless of the replication
factor when applying our methods; the repair rate is also
greatly reduced by a mean factor of 38% in comparison
to this most aggressive timeout approach.

Cost of the methods A practical question is whether or
not such availability-based methods imply significant
costs for their implementation in a large-scale storage
system. Such a framework requires operations that ap-
pear to be lightweight in terms of bandwidth and con-
trol message overhead: for monitoring , simple PINGs,
in order to track other cluster nodes availability are to
be used. Finding anti-correlated nodes can be achieved
in a scalable and inexpensive manner through a gossip
mechanism (see T-Man for example). Finally, local op-
erations on vectors are only CPU consuming. This is
to compare with the replication and repair costs of dis-
tributed storage systems. The amount of data to store in
modern systems, as well as the size of data files are con-
stantly increasing. We sketch a little example based on
results from Figure 9, where every of the 1901 nodes par-
ticipating, backups 1GB of data, with k = 8; the system

has to handle around 15T B . A saving of 38% of repairs
per-node per-day represents around 4T B of bandwidth
saved per-day at the network scale. In this light, network
costs needed to implement our techniques is marginal,
especially when the network or the data stored grows
large.

8 Conclusion

In this paper, we have motivated and shown the inter-
est of using the availability information of nodes partic-
ipating in a system. While this idea has already been ex-
plored at a general level, we have advocated for imple-
mentation at a finer level than the system level, that is to
say at the granularity of nodes. We have tackled two im-
portant points in storage systems, namely replica place-
ment and timeouts for repairs; results on real traces
have shown substantial gain of this availability-aware
framework. We expect those two practical contributions
to be used as plugins in deployed systems.

References

[1] Repository. http://www.cs.uiuc.edu/homes/pbg/availability/.

[2] Ranjita Bhagwan, Stefan Savage, and Geoffrey Voelker. Under-
standing availability. In IPTPS, Int’l Work. on Peer-to-Peer Sys-

tems, 2003.

[3] Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage,
and Geoffrey M. Voelker. Total recall: system support for auto-
mated availability management. In NSDI’04: Proceedings of the

13

1st conference on Symposium on Networked Systems Design and

Implementation, pages 25–25, Berkeley, CA, USA, 2004. USENIX
Association.

[4] Charles Blake and Rodrigo Rodrigues. High availability, scalable
storage, dynamic peer networks: pick two. In HOTOS’03: Pro-

ceedings of the 9th conference on Hot Topics in Operating Systems,
pages 1–1, Berkeley, CA, USA, 2003. USENIX Association.

[5] William J. Bolosky, John R. Douceur, David Ely, and Marvin
Theimer. Feasibility of a serverless distributed file system de-
ployed on an existing set of desktop pcs. In SIGMETRICS ’00:

Proceedings of the 2000 ACM SIGMETRICS international confer-

ence on Measurement and modeling of computer systems, pages
34–43, New York, NY, USA, 2000. ACM.

[6] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit,
Hakim Weatherspoon, Frans Kaashoek, John Kubiatowicz, and
Robert Morris. Efficient replica maintenance for distributed stor-
age systems. In Proceedings of the 3rd USENIX Symposium on

Networked Systems Design and Implementation (NSDI ’06), San
Jose, CA, May 2006.

[7] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris,
and Ion Stoica. Wide-area cooperative storage with cfs. In SOSP

’01: Proceedings of the eighteenth ACM symposium on Operat-

ing systems principles, pages 202–215, New York, NY, USA, 2001.
ACM.

[8] John R. Douceur. Is remote host availability governed by a uni-
versal law? SIGMETRICS Perform. Eval. Rev., 31(3):25–29, 2003.

[9] Alessandro Duminuco, Ernst Biersack, and Taoufik En-Najjary.
Proactive replication in distributed storage systems using ma-
chine availability estimation. In CoNEXT ’07: Proceedings of the

2007 ACM CoNEXT conference, pages 1–12, New York, NY, USA,
2007. ACM.

[10] Richard J. Dunn, John Zahorjan, Steven D. Gribble, and Henry M.
Levy. Presence-based availability and p2p systems. In P2P ’05:

Proceedings of the Fifth IEEE International Conference on Peer-

to-Peer Computing, pages 209–216, Washington, DC, USA, 2005.
IEEE Computer Society.

[11] Kevin M. Greenan, Parascale Inc, James S. Plank, and Jay J. Wylie.
Mean time to meaningless: Mttdl, markov models, and storage
system reliability. In The 2nd Workshop on Hot Topics in Storage

Systems (HotStorage2010), 2010.

[12] Saikat Guha, Neil Daswani, and Ravi Jain. An experimental study
of the skype peer-to-peer voip system. In Proceedings of the

5th international workshop on peer-to-peer systems (IPTPS ’06),
2006.

[13] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier:
highly durable, decentralized storage despite massive correlated
failures. In NSDI’05: Proceedings of the 2nd conference on Sym-

posium on Networked Systems Design & Implementation, pages
143–158, Berkeley, CA, USA, 2005. USENIX Association.

[14] Derrick Kondo, Bahman Javadi, Alexandru Iosup, and Dick
Epema. The failure trace archive: Enabling comparative anal-
ysis of failures in diverse distributed systems. Cluster Computing

and the Grid, IEEE International Symposium on, 0:398–407, 2010.

[15] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwin-
ski, Patrick Eaton, Dennis Geels, Ramakrishan Gummadi, Sean
Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, and
Ben Zhao. Oceanstore: an architecture for global-scale persis-
tent storage. SIGPLAN Not., 35(11):190–201, 2000.

[16] Stevens Le Blond, Fabrice Le Fessant, and Erwan Le Merrer.
Finding good partners in availability-aware p2p networks. In
Rachid Guerraoui and Franck Petit, editors, Stabilization, Safety,

and Security of Distributed Systems, volume 5873 of Lecture Notes

in Computer Science, pages 472–484. Springer Berlin / Heidel-
berg, 2009.

[17] Sergey Legtchenko, Sébastien Monnet, Pierre Sens, and Gilles
Muller. Churn-resilient replication strategy for peer-to-peer dis-
tributed hash-tables. In SSS, pages 485–499, 2009.

[18] James W. Mickens and Brian D. Noble. Exploiting availability pre-
diction in distributed systems. In NSDI’06: Proceedings of the

3rd conference on Networked Systems Design & Implementation,
pages 6–6, Berkeley, CA, USA, 2006. USENIX Association.

[19] R. Morales and I. Gupta. Avmon: Optimal and scalable discov-
ery of consistent availability monitoring overlays for distributed
systems. Parallel and Distributed Systems, IEEE Transactions on,
20(4):446 –459, apr. 2009.

[20] Daniel Nurmi, John Brevik, and Rich Wolski. Modeling machine
availability in enterprise and wide-area distributed computing
environments. In JosÃl’ C. Cunha and Pedro D. Medeiros, edi-
tors, Euro-Par 2005 Parallel Processing, volume 3648 of Lecture

Notes in Computer Science, pages 432–441. Springer Berlin / Hei-
delberg, 2005.

[21] L. Pamies-Juarez, P. Garcia-Lopez, and M. Sanchez-Artigas. Re-
warding stability in peer-to-peer backup systems. pages 1 –6,
dec. 2008.

[22] Sriram Ramabhadran and Joseph Pasquale. Durability of repli-
cated distributed storage systems. In SIGMETRICS ’08: Proceed-

ings of the 2008 ACM SIGMETRICS international conference on

Measurement and modeling of computer systems, pages 447–448,
New York, NY, USA, 2008. ACM.

[23] Antony I. T. Rowstron and Peter Druschel. Storage management
and caching in past, a large-scale, persistent peer-to-peer stor-
age utility. In Symposium on Operating Systems Principles, pages
188–201, 2001.

[24] Krzysztof Rzadca, Anwitaman Datta, and Sonja Buchegger.
Replica placement in p2p storage: Complexity and game the-
oretic analyses. Distributed Computing Systems, International

Conference on, 0:599–609, 2010.

[25] Kiran Tati, , Kiran Tati, and Geoffrey M. Voelker. On object main-
tenance in peer-to-peer systems. In In Proc. of the 5th Interna-

tional Workshop on Peer-to-Peer Systems, 2006.

[26] Jing Tian, Zhi Yang, Wei Chen, Ben Y. Zhao, and Yafei Dai. Proba-
bilistic failure detection for efficient distributed storage mainte-
nance. In SRDS ’08: Proceedings of the 2008 Symposium on Reli-

able Distributed Systems, pages 147–156, Washington, DC, USA,
2008. IEEE Computer Society.

[27] Laszlo Toka, Matteo Dell amico, and Pietro Michiardi. Online
data backup : a peer-assisted approach. In P2P’10, 10th IEEE

International Conference on Peer-to-Peer Computing, August 25-

27, 2010, Delft, The Netherlands, 08 2010.

[28] Vytautas Valancius, Nikolaos Laoutaris, Laurent Massoulié,
Christophe Diot, and Pablo Rodriguez. Greening the internet
with nano data centers. In CoNEXT ’09: Proceedings of the 5th in-

ternational conference on Emerging networking experiments and

technologies, pages 37–48, New York, NY, USA, 2009. ACM.

[29] Hakim Weatherspoon and John Kubiatowicz. Erasure Coding Vs.
Replication: A Quantitative Comparison. In IPTPS, 2002.

[30] Zhi Yang, Yafei Dai, and Zhen Xiao. Exploring the cost-
availability tradeoff in p2p storage systems. In ICPP ’09: Proceed-

ings of the 2009 International Conference on Parallel Processing,
pages 429–436, Washington, DC, USA, 2009. IEEE Computer So-
ciety.

14

