
ON POSITIVE CLASSICAL AND FREE STABLE LAWS

N. Demni1

Abstract. We derive the representative Bernstein measure of the density of
(Xα)−α/(1−α), 0 < α < 1, where Xα is a positive stable random variable, as
a Fox-H function. When 1 − α = 1/j for some integer j ≥ 2, the Fox H-
function reduces to a Meijer G-function so that the Kanter’s random variable
(see below) is closely related to a product of (j− 1) independent Beta random
variables. When α tends to 0, the Bernstein measure becomes degenerate
thereby agrees with Cressie’s result for the asymptotic behaviour of stable

distributions for small values of α. Coming to free probability, our result
makes more explicit that of Biane on the density of its free analog. The paper
is closed with analytic arguments explaining the occurence of the Kanter’s
random variable in both the classical and the free settings.

1. Motivation: Kanter’s random variable

The study of stable random variables has known a considerable growth during
approximately the last five decades, since they are shown to be an efficient model
for various phenomena occuring in biology, quantum physics, market finance ([16]).
Unfortunately, their densities has no closed formulas except in few cases. Consider
for instance, the stable random variable Xα of index 0 < α < 1 and of asymmetry
parameter equal one, known also as the positive stable variable since it is supported
by (0,∞) ([9], p.50). Its Laplace transform is given by e−tα , t > 0 and its density
admits the following expansion ((2.41) p.54 in [9], (14.31) p.88 in [12], see also [17]):

− 1

πx

∞
∑

k=1

(−1)k

k!
sin(kπα)Γ(1 + kα)

1

xkα
, x > 0.

The positivity of this series is not trivial and follows for instance from the integral
representation displayed p.74 in [16]. Amazing and not trivial as well is the com-
plete monotonicity of the density of (Xα)

−r, r ≥ α/(1−α) (in particular its infinite
divisibility, [12]) which follows from the following representation ([11]): there ex-
ists a standard exponential random variable L and an infinitely divisible random
variable Vα,r, both variables being independent and

(Xα)
r d
=

eVα,r

L
.

Recall that the proof of this fact relies on a suitable integral representation of the
Gamma function and that the random variable Vα,r is characterized by its Laplace
transform. For r = α/(1− α), the above representation is more precise and traces
back implicitely to Chernin and Ibragimov’s paper [4] (see also Ch.II in [9]). In
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2 ON POSITIVE CLASSICAL AND FREE STABLE LAWS

fact ([10] p.703)

(Xα)
α/(1−α) d

=
aα(U)

L
,

where U is a uniform random variable on (0, π) and

aα(u) = [bα(u)]
1/(1−α), b(u) = [cα(u)]

α[c1−α(u)]
(1−α), cα(u) :=

sin(αu)

sin(u)
.

We shall refer to aα(U) as the Kanter’s random variable. From the injectivity of
the Laplace transform, one gets

Vα,1−α
d
= log[aα(U)].

Mysteriously, the function aα is intimately related to the density of the free stable
law of index 0 < α < 1 and asymmetry parameter ρ = 1 derived p.1053 in [1], that
we shall call shortly the positive free stable law. More precisely, if U is defined on
some probability space (Ω,F ,P), then

P(aα(U) ≤ u) =
1

π
a−1
α (u), u ≥ aα(0) = (1− α)αα/(1−α)

since aα is strictly increasing ([10] p.704), while the density of the positive free
stable distribution takes the form ([1]):

(1)
1

πx

sin(a−1
1−α(x)) sin(αa

−1
1−α(x))

sin((1 − α)a−1
1−α(x))

,

for x ≥ a1−α(0). That is why we thought it is reasonable to start with seeking
an expression for the density of aα(U) as a special function and more generally for
that of eVα,r . The easiest way to proceed is to invert the Mellin transform of the
density of e−Vα,r given by ([11] p.292):

E(e−sVα,r ) =
Γ(rs/α + 1)

Γ(s+ 1)Γ(sr + 1)
, ℜ(s) > −α/r ≥ −(1− α).

However, the Mellin’s inversion formula

(2)
1

2iπy

∫ +i∞

−i∞

Γ(rs/α+ 1)

Γ(s+ 1)Γ(sr + 1)
y−sds,

applies for any r > α/(1− α) (we take ℜ(s) = 0 as a path of integration) and does
not when r = α/(1 − α). The latter fact is seen from the following estimate of
|Γ(a+ ib)|, a, b ∈ R, |b| → ∞ displayed in formula 1.24. p.4 from [8]:

(3) |Γ(a+ ib)| ∼
√
2π|b|a−1/2e−a−π|b|/2, |b| → ∞

so that the absolute value of the integrand in (2) is equivalent to |s|−1/2 (up to a
constant). Note however that when r > α/(1 − α), the integral displayed in (2) is
nothing else but a so-called Fox H-function ([8] p.3, see below):

1

2iπy

∫ +i∞

−i∞

Γ(rs/α+ 1)

Γ(s+ 1)Γ(sr + 1)
y−sds =

1

y
H1,0

2,1

[

y|(1,1),(1,r)(1,r/α)

]

so that the density of eVα,r reads

1

y
H1,0

2,1

[

1

y
|(1,1),(1,r)(1,r/α)

]

, y > 0, r >
α

1− α
.
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The main result of this paper states then that in the pathological case r = α/(1−α),
the density of aα(U) is a H-function too represented through a path integral re-
sembling to (2) but with a different contour (Hankel path). When α approaches
zero, this density tends to zero pointwisely, a fact that agrees with Cressie’s re-
sult implying that the Kanter’s random variable becomes degenerate in the limit
α → 0+. When 1− α = 1/j for some integer j ≥ 2, the derived H-function reduces
to the so-called Meijer G-function so that aα(U) is closely related to a product of
suitably chosen j − 1 independent Beta random variables. The latter fact resem-
bles to Williams respresentation of positive stable variables ([15]). Coming to free
probability theory, the distribution function of aα(U) is computed yielding an ex-
plicit expression for the density of a positive free stable law. Using the free analog
of Zolotarev’s duality ([1]), a similar result holds for a free stable law with index
1 < α < 2 and asymmetry parameter ρ = 0. The paper is closed with supplying
analytic arguments that explain the occurence of aα in both probabilistic settings.
It turns out that it is resumed in the inverse formula for the Fourier transform of
the density of Xα together with deformations of paths of integration. Nevertheless,
we think that a group theoretical argument exists but seems to be very hidden.
For sake of completeness, some basic needed facts on the H-function are collected
in the next section. A good reference to them is the monograph [8].

2. On the Fox H-function

The Fox H-function is defined as a Mellin-Barnes integral:

Hm,n
p,q

[

z|(ai,Ai)1≤i≤p

(bi,Bi)1≤i≤q

]

=

∫

L

Θ(s)z−sds

where 1 ≤ m ≤ q, 0 ≤ n ≤ p, ai, bi ∈ R, Ai, Bi > 0,

Θ(s) =

∏m
i=1 Γ(bi +Bis)

∏n
i=1 Γ(1 − ai −Ais)

∏q
i=m+1 Γ(1− bi −Bis)

∏p
i=n+1 Γ(ai +Ais)

,

the principal determination of the power function is taken (though it is not necessary
here), an empty product being equal one and L is a suitable contour separating the
poles of both products of the meromorphic (Gamma) functions in the numerator
of Θ ([8] p.3,4). The choice of L and the domain of convergence of the Mellin-
Barnes integral defining the H-function for each contour depend on the parameters
ai, bi, Ai, Bi. Eight cases are discussed in [8] p.4. and we will only make use of five
of them in the sequel that we shall refer to whenever needed:

i) q ≥ 1,

µ :=

q
∑

i=1

Bi −
p

∑

i=1

Ai > 0,

then the H-function exists in the punctured complex plane.
ii) p ≥ 1, µ = 0, the H-function exists in the domain |z| > β where

β :=

p
∏

i=1

A−Ai

i

∏

i=1

BBi

i

and L = L+∞ described in [8] p.3.
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iii) Let Ω be the real number defined by

Ω :=

n
∑

i=1

Ai +

m
∑

i=1

Bi −
p

∑

i=n+1

Ai −
q

∑

i=m+1

Bi.

Then the Fox H-function exists for all z 6= 0 such that | arg(z)| < πΩ/2,Ω >
0 and L is the infinite semi-circle γ − i∞, γ + i∞ for a suitable real γ.

iv) When q ≥ 1, µ = 0, the H-function exists in the open disc |z| < β and
L = L−∞ is described in [8] p.3.

v) Let

δ :=

q
∑

i=1

bi −
p

∑

i=1

ai +
p− q

2
.

If µ = 0, δ < −1, then the H-function is well-defined for complex numbers
lying on the circle |z| = β.

The most crucial fact when looking at these definitions is that whenever more
than one definition make sense, they lead to the same value of the integral. In
fact, the integral is evaluated by means of Cauchy’s residue Theorem applied to
truncated contours together with asymptotic estimates at infinity, and the contour
of integration can be deformed into another one provided that the deformation
is admissible ([6], [14], see also CH.V. in [7] for a similar discussion on Meijer’s
G-function which fits the Fox H-function when Ai = Bj = 1, 1 ≤ i ≤ p, 1 ≤ j ≤ q).

Remark 1. In the sequel, the complex variable z will take only strictly positive
values thereby s 7→ z−s is defined through the real-valued logarithm function.

3. The density of aα(U)

According to Kanter’s representation, there exists a density hα supported by
aα(0, π) = (aα(0),∞) such that

−1− α

απx

∞
∑

k=1

(−1)k

k!
sin(kπα)Γ(1 + kα)xk(1−α) =

∫ ∞

0

e−xyyhα(y)dy.

The main result of this paper is stated as:

Proposition 1. The density of the Kanter’s variable is expressed as:

hα(y) =
1

y
H1,0

2,1

[

1

y
|(1,α/(1−α)),(1,1)
(1,1/(1−α))

]

=
2(1− α)

y
H1,0

2,1

[

1

y2(1−α)
|(1,2α),(1,2(1−α))
(1,2)

]

for y ∈ [aα(0),∞[.

Proof: We shall start from the density of (Xα)
−α which has the expansion

− 1

απx

∞
∑

k=1

(−1)k

k!
sin(kπα)Γ(1 + kα)xk.

Using the mirror formula satisfied by the Euler’s Gamma function ([7] p.3),

Γ(1 + kα)Γ(−kα) = − π

sin(kαπ)
,

the density of X−α
α is transformed to

1

αx

∞
∑

k=1

(−1)k

k!

xk

Γ(−kα)
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and the infinite summation may start from k = 0 since z = 0 is a pole of the Gamma
function. According to A.6 p.218 in [8], this is expressed through the H-function
as follows 2:

− 1

απx

∞
∑

k=1

(−1)k

k!
sin(kπα)Γ(1 + kα)xk =

2

αx
H1,0

1,1

[

x2|(0,2α)(0,2)

]

for all x > 0 (note that the H-function in the RHS exists for all z 6= 0 in the complex
plane by i) since q ≥ 1, µ = 2 − 2α > 0). Therefore, the density of (Xα)

−α/(1−α)

reads
2(1− α)

αx
H1,0

1,1

[

x2(1−α)|(0,2α)(0,2)

]

.

According to iii), one has

H1,0
1,1

[

x2(1−α)|(0,2α)(0,2)

]

=
1

2iπ

∫ γ+i∞

γ−i∞

Γ(2s)

Γ(2αs)

ds

x2(1−α)s

where ℜ(s) = γ > 0. With the help of the Gamma integral

2(1− α)

αx2
H1,0

1,1

[

x2(1−α)|(1,2α)(1,2)

]

=
2(1− α)

2αiπ

∫ γ+i∞

γ−i∞

Γ(2s)

Γ(2αs)Γ(2 + 2(1− α)s)

∫ ∞

0

e−xyy2(1−α)s+1dyds

=
2(1− α)

2iπ

∫ γ+i∞

γ−i∞

Γ(2s+ 1)

Γ(2αs+ 1)Γ(2 + 2(1− α)s)

∫ ∞

0

e−xyy2(1−α)s+1dyds.

In order to change the order of integration, one needs to check that

∫ +∞

−∞

|Γ(2is+ 2γ + 1)|
|Γ(2iαs+ 2αγ + 1)Γ(2(1− α)s+ 2(1− α)γ + 2)|

∫ ∞

0

e−xyy2(1−α)γdyds < ∞.

Performing an integration with respect to y, it amounts to check

∫ +∞

−∞

|Γ(2is+ 2γ + 1)|
|Γ(2iαs+ 2αγ + 1)Γ(2i(1− α)s+ 2(1− α)γ + 2)|ds < ∞

which follows again from the estimate of |Γ(a + ib)|, |b| → ∞ (see (3)). Thus,
Fubini’s Theorem yields

∫ ∞

0

e−xyyhα(y)dy = 2(1− α)

∫ ∞

0

xe−xy

∫ γ+i∞

γ−i∞

Γ(2s+ 1)

Γ(2αs+ 1)Γ(2 + 2(1− α)s)
y2(1−α)s+1dsdy

= 2(1− α)

∫ ∞

0

xe−xyyH1,0
2,1

[

1

y2(1−α)
|(1,2α),(2,2(1−α))
(1,2)

]

dy.(4)

Note that the H-function displayed in (4) may be represented for y > (1−α)αα/(1−α)

as a path integral through the loop L−∞ according to iv), it vanishes for 0 < y <
(1 − α)αα/(1−α) since according to ii) the contour is a loop L+∞ that contains no
pole of the meromorphic function s 7→ Γ(1 + 2s), and it takes a finite value at
z = (1 − α)αα/(1−α) regarding v) since µ = 0, δ = −3/2 < −1 (in particular, it
vanishes there by continuity). Hence, an integration by parts shows that the density

2It is a special kind of what V. M. Zolotarev called incomplete hypergeometric function in [17].
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of the Kanter’s random variable is

hα(y) =
2(1− α)

y

d

dy

{

yH1,0
2,1

[

1

y2(1−α)
|(1,2α),(2,2(1−α))
(1,2)

]}

=
2(1− α)

y

d

dy

∫

L−∞

Γ(2s+ 1)

Γ(2αs+ 1)Γ(2 + 2(1− α)s)
y2(1−α)s+1ds

=
2(1− α)

y

∫

L−∞

Γ(2s+ 1)

Γ(2αs+ 1)Γ(2(1− α)s+ 1)
y2(1−α)sds

=
2(1− α)

y
H1,0

2,1

[

1

y2(1−α)
|(1,2α),(1,2(1−α))
(1,2)

]

=
1

y

∫

L′
−∞

Γ(s/(1− α) + 1)

Γ(αs/(1− α) + 1)Γ(s+ 1)
ysds =

1

y
H1,0

2,1

[

1

y
|(1,α/(1−α)),(1,1)
(1,1/(1−α))

]

,

where L′
−∞ is the image of L−∞ under the map s 7→ 2(1− α)s. The density hα is

well defined for y > (1−α)αα/(1−α) by iv) and vanishes for 0 < y < (1−α)αα/(1−α)

according to ii) (see also 1.33 p.6 in [8]). �

4. Special indices

4.1. The 1/2-stable case. When α = 1/2, the density of the positive stable ran-
dom variable reads ([16] p.66)

1

2
√
π
x−3/2e−1/(4x)1{x>0}.

According to Kanter’s representation, the image of the above density under the
map x 7→ 1/x, that is

1

2
√
πx

e−x/41{x>0} =
1

2π

√

π

x
1{x>0}e

−x/4,

should be the Laplace transform of y 7→ yh1/2(y) which takes the form (after the
use of the mirror formula):

yh1/2(y) =
1

2π2

∞
∑

k=0

sin2[(k + 1)π/2]Γ2[(k + 1)/2]
(−1)k

k!

1

y(k+1)/2
, y > 1/4.

Note that x 7→ x−1/2 is completely monotone since x 7→ x1/2 is a Bernstein function,
and that the representing measure is easily computed using the Gamma integral as

dy√
πy

1{y>0}.

Now, since sin(nπ) = 0 for any integer n, then

yh1/2(y) =
1

2π2

∞
∑

k=0

sin2[(2k + 1)π/2]Γ2[(2k + 1)/2]

(2k!)

1

y(2k+1)/2

=
1

2π2y1/2

∞
∑

k=0

Γ2(k + 1/2)

Γ(2k + 1)

1

yk

for y > 1/4. Using Legendre’s duplication formula ([7] p.5)
√
πΓ(2k + 1) = 22kΓ(k + 1/2)Γ(k + 1),
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one gets

yh1/2(y) =
1

2πy1/2

∞
∑

k=0

(1/2)k
k!

1

(4y)k
=

1

2πy1/2
1

√

1− 1/(4y))

=
1

2π

1
√

y − 1/4
, y > 1/4,

which is nothing but
1

2π

1√
y
1{y>0} ⋆ δ1/4(dy)

where ⋆ is the classical convolution of positive measures.

4.2. Relation to product of independent Beta variables. Let

1− α =
1

j
, α =

j

j − 1

for some integer j ≥ 2, then

E

[

1

[a1−1/j(U)]s

]

=
Γ(js+ 1)

Γ(s+ 1)Γ((j − 1)s+ 1)
ℜ(s) > −1/j.

The multiplication Theorem (generalization of Legendre’s duplication formula, [7]
p.4)

Γ(js+ 1) =
1

(
√
2π)j−1

jjs+1/2

j
∏

k=1

Γ

(

s+
k

j

)

yields

E

[

1

[a1−1/j(U)]s

]

=
1√
2π

√

j

j − 1

jjs

(j − 1)(j−1)s

j−1
∏

k=1

Γ (s+ k/j)

Γ(s+ k/(j − 1))
.

Now, let β1, β2, · · · , βj−1 be independent Beta random variables of the first kind
such that the density of βk reads:

1

B(k/j + 1, k/(j(j − 1)))
tk/j(1− t)k/(j−1)−k/j−11(0,1)(t)

where B(·, ·) stands for the Beta function. According to formula (4.11) p.122 in [8],

E[(β1 · · ·βj−1)
s−1] =

j−1
∏

k=1

Γ(k/(j − 1) + 1)

Γ(k/j + 1)

j−1
∏

k=1

Γ(s+ k/j)

Γ(s+ k/(j − 1))

=
1√
2π

√

j − 1

j

jj

(j − 1)(j−1)

Γ(j − 1)

Γ(j)

j−1
∏

k=1

Γ(s+ k/j)

Γ(s+ k/(j − 1))

=
1√
2π

√

1

j(j − 1)

jj

(j − 1)(j−1)

j−1
∏

k=1

Γ(s+ k/j)

Γ(s+ k/(j − 1))

again by the multiplication Theorem. It follows that

E

[

1

[a1−1/j(U)]s

]

= j

[

jj

(j − 1)(j−1)

]s−1

E[(β1 · · ·βj−1)
s−1].
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When s 6= 0, the last equality may be written as
∫ ∞

0

us−1
P(a1−1/j(U) < 1/u)du = jE

[

(

jj

(j − 1)(j−1)
V β1 · · ·βj−1

)s−1
]

where V is uniformly distributed in (0, 1) and is independent from the βks.

Remark 2. The relation to product of independent Beta variables is not surprising
since the H-function involved in the density of h1−1/j reduces, when 1−α = 1/j to
a Meijer’s G-function ([8] p.123). It somewhat matches with Williams result ([15])
if one keeps in mind the Gamma-Beta algebra. In fact, 1/Xα is distributed, when
α = 1/j, j ≥ 2 as a product of j − 1 Gamma random variables γk, 1 ≤ k ≤ j − 1
with densities

1

Γ(k/j)
tk/j−1e−t1{t>0}, 1 ≤ k ≤ j − 1.

Moreover, since
[aα(θ)]

(1−α)/α = a1−α(θ),

then Williams result implies

jjγ1 · · · γk d
=

1

X1/j

d
=

Lj−1

a1−1/j(U)
.

Note also that, for α = 1/(jd), j ≥ 2d, d ≥ 1, a more general representation of
positive stable laws is due to T. Simon ([13]) and involves independent Gamma and
Beta variables.

5. Free positive stable distribution

Free stable distributions may be defined in a similar way as in the classical
setting, when substituting the classical convolution of probability measures by
Voiculescu’s free convolution (see [1]). As mentioned in the introduction, the in-
verse function (in the composition’s sense) of a1−α provides an explicit expression
of the density of a stable law of index 0 < α < 1 and asymmetry parameter ρ = 1
in the free probability setting. More precisely, if V is a uniform random variable
on (0, 1) defined on some probability space (Ω,F ,P), then

1

π
a−1
1−α(x) = P(a1−α(πV ) ≤ x)

for x > α(1− α)(1−α)/α. When α = 1/2, it simplifies to

a−1
1/2(x) =

1

2

∫ x

1/4

dy

y
√

y − 1/4
=

1

2

∫ x−1/4

0

dy

(y + 1/4)
√
y

= 2

∫ x−1/4

0

2dy

1 + 4y2
= 2 arctan

[

2

√

x− 1

4

]

.

Using the trigonometric identity

sin(θ) = 2
tan(θ/2)

1 + tan2(θ/2)

one recovers the density given by Biane ([1])

2

πx
sin[a−1

1/2(x)] =
2

πx

tan(a−1
1/2(x)/2)

1 + tan2(a−1
1/2(x)/2)

=
2

πx

√
4x− 1

1 + 4(x− 1/4)
=

√
4x− 1

2πx2
.
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For general α ∈ (0, 1), we use the integral representation

H1,0
2,1

[

1

y2α
|(1,2α),(1,2(1−α))
(1,2)

]

=
1

2iπ

∫

L−∞

Γ(2s+ 1)

Γ(2αs+ 1)Γ(1 + 2(1− α)s)
y2αsds.

Now, assume for a while that Fubini’s Theorem applies so that

1

π
a−1
1−α(x) =

2α

2iπ

∫

L−∞

Γ(2s+ 1)

Γ(2αs+ 1)Γ(1 + 2(1− α)s)

∫ x

α(1−α)(1−α)/α

y2αs−1dyds

=
2

2iπ

∫

L−∞

Γ(2s)

Γ(2αs+ 1)Γ(1 + 2(1− α)s)

[

x2αs − (α2α(1− α)2(1−α))s
]

ds.

Since the poles of s 7→ Γ(2s) are s = −k/2, k ∈ N and simple, and since the pole
s = 0 lies outside L−∞, then Cauchy’s Residue Theorem yields

1

2iπ

∫

L−∞

Γ(2s)

Γ(2αs+ 1)Γ(1 + 2(1− α)s)
x2αsds = H1,0

2,1

[

1

x2α
|(1,2α),(1,2(1−α))
(0,2)

]

−Res(x, 0)

where Res(x, 0) is the residue of the meromorphic function

s 7→ Γ(2s)

Γ(2αs+ 1)Γ(1 + 2(1− α)s)
x2αs

at s = 0 for fixed parameter x > α(1 − α)(1−α)/α. This residue is easily computed
as

lim
s→0

sΓ(2s)

Γ(2αs+ 1)Γ(1 + 2(1− α)s)
x2αs =

1

2
, x > α2α(1− α)2(1−α).

Since the last H-function is defined on the whole real line, in particular at α(1 −
α)(1−α)/α by the virtue of v) since µ = 0 and δ < −3/2 < −1, then

1

π
a−1
1−α(x) = 2H1,0

2,1

[

1

x2α
|(1,2α),(1,2(1−α))
(0,2)

]

− 2H1,0
2,1

[

1

α2α(1− α)2(1−α)
|(1,2α),(1,2(1−α))
(0,2)

]

Regarding the continuity of the H-function at α(1 − α)(1−α)/α, it vanishes there
(since it vanishes for x < α(1− α)(1−α)/α) and one gets

1

π
a−1
1−α(x) = 2H1,0

2,1

[

1

x2α
|(1,2α),(1,2(1−α))
(0,2)

]

, x > α(1 − α)(1−α)/α

and zero otherwise. Finally, in order to fit in the density of the free positive stable
law displayed in (1), we can rewrite the last H-function as

1

α
H1,0

2,1

[

1

x
|(1,1),(1,(1−α)/α)
(0,1/α)

]

=
1

1− α
H1,0

2,1

[

1

xα/(1−α)
|(1,α/(1−α),(1,1)
(0,1/(1−α))

]

.

Note that the duality relation given in [1] allows to derive the density of a free
stable distribution of index 1 < α < 2 and asymmetry coefficient ρ = 0 (the case of
an asymmetry parameter ρ = 1 is obtained by the simple variable change x 7→ −x).
Coming back to the validity of Fubini’s Theorem, one has to prove, after integrating
with respect to the variable y, the convergence of

∫

L−∞

|Γ(2s+ 1)|
|Γ(2αs+ 1)Γ(1 + 2(1− α)s)|

[

x2αℜ(s) − (α2α(1− α)2(1−α))ℜ(s)
] |ds|
|ℜ(s)| .

This is easily cheked from the estimate of Γ(a + ib) for large a (formula 1.23 p.4.
in [8]):

|Γ(a+ ib)| ∼
√
2π|a|a−1/2e−a−a(1−sgn(b))/2, |a| → ∞
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which shows that the integrand is equivalent to

C

|ℜ(s)|3/2 e
−(α log(α)+(1−α) log(1−α))ℜ(s), |ℜ(s)| → ∞

for some constant C = C(ℑ(s)) depending only on ℑ(s).

5.1. Behaviour for small indices: Cressie’s result and its free analog. In
this section, we investigate the limiting behaviour of hα as α → 0. In the clas-
sical setting, the density tends to zero pointwisely therefore agrees somehow with
Cressie’s result we recall below. The latter implies that aα(U) becomes degener-
ate when α approaches zero. In the free setting, the limiting density is an infinite
positive measure whose image under the map x 7→ 1/x is the Haar measure on the
compact interval [0, 1]. Start with the series expansion of hα is given by (A.6 p.
218 in [8])

hα(y) = (1− α)

∞
∑

k=0

1

Γ(1− α− kα)Γ(α − k(1− α))

(−1)k

k!

1

y(k+1)(1−α)+1

for y > (1− α)αα/(1−α). The mirror formula

Γ(α− k(1− α))Γ((1 − α)(k + 1)) =
π

sin((1 − α)(k + 1)π)

transforms hα to

hα(y) =
1− α

π

∞
∑

k=0

sin[(1 − α)(k + 1)π]Γ[(1− α)(k + 1)]

Γ(1− α− kα)

(−1)k

k!

1

y(k+1)(1−α)+1
.

The defining term of the last series converges as α → 0 to

(−1)k sin((k + 1)π)

yk+2
= 0

for any integer k ≥ 0 while the support ((1 − α)αα/(1−α),∞) of hα decreases to
[1,∞) as α → 0. Since

Γ[(1 − α)(k + 1)]

Γ(1 − α− kα)k!
→ 1

as α → 0 and it defines a continuous function on the variable α, then Lebesgue’s
convergence Theorem ensures the convergence of hα(y), for fixed y > 1, to zero as
the positive index α does. According to [5], (see also [3]), a stable variable with
shape parameter c = 1 and zero shift γ = 0 satisfies

(Xα)
α d→ 1

L
, α → 0

so that aα(U) converges in distribution to the Dirac measure δ1. For a positive free
random variable, we start from the image of its density function under the map
x 7→ xα:

a−1
1−α(x

1/α)

πx

sin(αa−1
1−α(x

1/α))

αa−1
1−α(x

1/α)

sin(a−1
1−α(x

1/α))

sin((1− α)a−1
1−α(x

1/α))
,
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for x > [a1−α(0)]
α = αα(1− α)1−α ≥ 1/2. Then, we expand

a−1
1−α(x

1/α)

π
= 2H1,0

2,1

[

1

x2α
|(1,2α),(1,2(1−α))
(0,2)

]

=

∞
∑

k=0

1

Γ(1− kα)Γ(1 − k(1− α))

(−1)k

k!

1

xk
.

With the help of the mirror formula,

Γ(1− k(1− α))Γ((1 − α)k) =
π

sin(k(1− α)π)
, k ≥ 1,

one easily derives

lim
α→0

1

π
a−1
1−α(x

1/α) = 1 +
1

π
lim
α→0

∞
∑

k=1

sin(k(1 − α)π)Γ(k(1 − α))

Γ(1− kα)

(−1)k

k!

1

xk
= 1

for fixed x > 1. Since αα(1 − α)1−α → 1 as α → 0, then

lim
α→0

a−1
1−α(x

1/α)

πx

sin(αa−1
1−α(x

1/α))

αa−1
1−α(x

1/α)

sin(a−1
1−α(x

1/α))

sin((1 − α)a−1
1−α(x

1/α))
=

1

x

for any x > 1. Note that Scheffé’s Lemma does not apply as in the classical setting,
nevertheless the image of

dx

x
1{x>1}

under the map x 7→ 1/x is the Haar measure on [0, 1], namely:

dx

x
1{0<x<1}.

6. On the function aα

As stated in the introductory part, the occurence of aα in both probabilistic
settings is resumed in the integral representation of the density of Xα together
with deformations of integration paths. Start with the inversion formula for the
Fourier transform to see that the density of Xα reads ([9] p.49):

1

π
ℜ
∫ ∞

0

e−itxe−tαe−iαπ/2

dt =
1

π
ℜ
∫ ∞

0

eitxe−(it)αdt.

The path of integration may be deformed into the positive half imaginary-line
yielding ([16])

1

π
ℜ
∫ ∞

0

eitxe−(it)αdt = − 1

π
ℑ
∫ ∞

0

e−txe−eiαπtαdt

=
1

π
ℑ
∫ ∞

0

e−txe−e−iαπtαdt.

Performing the variable change t = x1/(1−α)u, the last integral transforms to

x1/(1−α)

π
ℑ
∫ ∞

0

e−xα/(1−α)(u+e−iαπuα)du =
x1/(1−α)

π
ℑ
∫ ∞

0

e−xα/(1−α)(u+φ1−α(u))du
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where φ1−α(u) := e−iπαuα. Following [4] (see also Ch.II [9]), the path of integration
may be taken as the curve

Cα := {u = reiθ, θ ∈ [−π, 0],ℑ(u+ φ1−α(u)) = 0}

=

{

u = reiθ, θ ∈ [−π, 0], r =

[

sin(α(π − θ))

sin θ

]1/(1−α)
}

=

{

u = −reiθ, θ ∈ [0, π], r =

[

sin(αθ)

sin θ

]1/(1−α)
}

.

Then for u = −reiθ ∈ Cα,
ℜ(u+ φ1−α(u)) = −r cos θ + rα cos(αθ)

= rα[−r1−α cos θ + cos(αθ)]

=

[

sin(αθ)

sin θ

]α/(1−α)
sin((1− α)θ)

sin(θ)

and aα(θ) shows up. Now, consider Fα := 1/Gα where Gα is the Stieltjes transform
of the positive free stable distribution ([1]). Then, Fα is a one-to-one correspondence
from the upper half-plane C onto its image. Let F−1

α be the reciprocal function of
Fα, then ([1],[2])

F−1
α (z) = φα(z) + z

where z belongs to the domain ℑ(z+φα(z)) > 0 and ℑ(z) is positive and sufficiently
large. The function φα is known as the Voiculescu transform of the positive free
stable distribution. But since Stieltjes inversion formula involves the imaginary
part of Gα when z ∈ C+ approaches the real line, one rather focuses on the domain

Ωα := {z, ℑ(1/z + φα(1/z) > 0}
for z ∈ C− near the origin of the complex plane. This is a Jordan domain, that is
delimited by a Jordan curve, whose boundary ∂Ωα is obviously

∂Ωα =

{

reiθ, θ ∈ [−π, 0], r =

[

sin(π + θ)

sin((1 − α)(π + θ))

]1/α
}

=

{

−reiθ, θ ∈ [0, π], r =

[

sin θ

sin((1 − α)θ))

]1/α
}

.

This is the image of C1−α under the inversion map z 7→ 1/z. By Caratheodory’s
extension Theorem, Gα extends to a homeomorphism from the real line onto ∂Ωα

so that every x lying in the support of the free positive stable variable is given by

x = G−1
α (z), z ∈ ∂Ωα

= ℜ(1/z + φα(1/z)).

The same computations performed in the classical setting lead to the function a1−α.
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