
HAL Id: hal-00520906
https://hal.science/hal-00520906

Submitted on 24 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Databases to Graph Visualization
Frédéric Gilbert, David Auber

To cite this version:
Frédéric Gilbert, David Auber. From Databases to Graph Visualization. 2010 14th International
Conference Information Visualisation, Jul 2010, London, United Kingdom. pp.128. �hal-00520906�

https://hal.science/hal-00520906
https://hal.archives-ouvertes.fr

From Databases to Graph Visualization

Frédéric GILBERT

LaBRI Université de Bordeaux

Gravité Inria Bordeaux Sud-Ouest

Bordeaux, France

frederic.gilbert@labri.fr

David AUBER

LaBRI Université de Bordeaux

Gravité Inria Bordeaux Sud-Ouest

Bordeaux, France

david.auber@labri.fr

Abstract—The first step of any information visualization
system is to enable end user to import their dataset into the
system. However, non expert user are faced to the difficult
task of choosing how their data should/could be transform to
be used in these Infovis systems. In that paper we address the
case where end users want to use dataset in tabular format. We
propose a novel method for automatic graph generation from
these datasets. That method consists in first building taxonomy
of dimensions. Then, that taxonomy is used to provide to user
a system that enables to interactively navigate into the set of
possible data transformation.

Keywords-Database visualization, database analysis, auto-
matic presentation, graph generation.

I. INTRODUCTION

Nowadays, it is extremely easy to collect data from dif-

ferent sources. There are a lot of methods for collecting and

storing data. Concerning the storage, databases are the most

used way and contain basic data as words, numbers, date,

time . . . They are stored, in order to keep some informations

as: who/what, when, where, how many time and so on . . . But

as the collect and the storage of data is easier, companies and

research project are producing large databases. For instances,

genome researchers collect data in order to understand how

genes interact and commercials companies collect data in

order to find customer behaviours (patterns) or outliers.

As the amount of data grows rapidly graphical visual-

ization becomes necessary to understand results of users

queries on databases. Projects as DEVise [1], Polaris [2]

and Tableau [3] propose user interface for these tasks.

They propose to follow the well known exploratory analysis

process defined by: first an hypothesis, second an experiment

and finally a discovery. But, with massive databases the

number of possible experiment for a given hypothesis grows

with the number of dimension contain in the database. Thus,

end users are faced to the problem of the exploration of all

these possibilities.

Let consider a geographer which have spent several years

collecting information about air-plane traffic. For each fly

the details collected are: the date of departure, the time of

departure, the starting airport name, city and country, the fly

company name , the aircraft type, the number of passenger in

the fly, the day of arrival, the time of arrival and the ending

airport name, city and country. in that case. The geographer

may be able to find that some companies have got fly only

between two airports or that between the airport A and B

there is only fly in the morning. However, if the number of

fly is huge, even these simple tasks will become difficult.

Furthermore, finding more complex patterns in this dataset

will become time consuming or completely impossible.

Using as input data table extracted from database, in that

paper we propose to generate automatically the weighted

graphs (set of entities and relations with attributes) one can

find in these tables. We also provide a system that enable end

user to visually explore that set of graphs. The contribution

of that paper is a method that simplify database and highlight

relations between entities. We assume that the proposed

method make the exploration process more efficient and thus

ease the user task. Our simplification method is based on the

building of a taxonomy of the database dimensions which

highlight nested dimensions in the dataset. Then using this

taxonomy, we are able to highlight relations between entities

and to generate simplified visualizations of the dataset.

This paper is structured as follow. First we present pre-

vious works. Then we describe our simplification method,

and give an overview of our interactive system. We conclude

with a case study applied on a manually generated dataset.

II. PREVIOUS WORK

According to user center of interest, we aim at providing

simplified visualization of automatically generated graphs.

In the following, we present previous work on data sim-

plification and user interaction for automatic generation of

visualization.

A. Data simplification

Data simplification is often associated to Principal Com-

ponent Analysis [4]. But these methods which try to aggre-

gate several dimensions to only one, works on quantitative

values. In our work, we are looking for relations between

entities and this kind of relations are hidden in nominal val-

ues. So we have to look also to Latent Semantic Analysis [5]

which summarizes equivalent methods for nominal data.

B. User interaction in automatically generated visualization

As described in [6], [3], [7], automatic generation of a

visualization according to datasets is one of the information

visualization community’s problematic. One can distinguish

three kinds of approaches. The first one consist in asking

users to build what they want to visualize, the second asks

experts to build the visualization, the third one simplify

the user interaction and propose automatic generation of

visualization and the last one propose a notation for easily

describe and manipulate hierarchical visualization.

For Smith’s nodeXl software [6], the idea is to work with

spreadsheet. In this case users will be able to compute things

using formulas as usual with spreadsheet. And then use

the computed values as attributes for entities and also for

relations. They propose a tool which allow users to build

a graph from a spreadsheet. The graph must be described

by an edge list. The spreadsheet must contain at least two

columns, and each line will describe the two entities that are

in relation. So this tool provide an automatic method that

avoids the use of a programming language and by the way

allows no expert user to produce visual analysis of relational

data. In that method due to the manual creation of the edges

list, one cannot assume that an non-expert user will be able

to construct an valid graph.

Now, according to ManyEyes [8], it is important to have

multiple people who can work on the same data and discuss

the visualization generated from this data set. They explain

that it is difficult to give the good way to visualize a kind

of data set. Maybe for two datasets differing from only

one dimension, the way to visualize them will be totally

different. That is why they have developed ”Many Eyes”, a

web service that allows users to access to datasets, upload

their own datasets and create visualizations. But this is only

the first part of the process, the second one consists in

proposing the visualizations generated in a discussion form

in order to take profit of expert opinion. So instead of trying

to build the ”good” visualization for a data set, they prefer

offer the opportunity to have a visualization build by several

experts.

In Mackinlay’s Tableau Software [3], one can load easily

data, manipulate them and create visualization combining

data’s dimensions. The power of this tool is that it can

choose for the user how to visualize efficiently the result

of the dimensions’ combination. An interesting part of this

tool is the fact that by combinatorial test(called ”Affinity”),

dimensions will be automatically sorted in order to simplify

the result. This is important because sometimes users cannot

see that in huge databases. However, the ”Affinity” combi-

natorial test is not described.

In [7], Slingsby et al. define a notation for describe

hierarchical visualizations. With this notation user can easily

encode layout themselves. Modifying the order of layout

or the levels of the hierarchy allow users to produce eas-

ily visualizations. But nothing guide the user in order to

construct correct and significant hierarchy. Furthermore the

author only work on tree map [9] visualization for hierarchy

and do not discuss about how to use their method on other

dataset.

III. DATA ANALYSIS

We work on nominal database. We consider each value

stored in the database as a nominal one. However our goal

is to highlight relations between entities and not relations

between dimensions. To simplify the data, we have con-

sidered using Latent Semantic Analysis [5]. These methods

cause a loss of information that makes it unusable for the

purpose of our work. In fact these methods try to reduce

the number of dimension contained in the database. Our

goal is to simplify the data without having to merge or push

aside dimensions. So, instead of trying to find similarities

between dimensions, we try to find relations between the

dimensions and more precisely hierarchical relations. We

already know that data contain three types of data as define

in [10]: entities, relations and attributes. Entities are the

studied objects, relations give information between entities

and each one can have a lot of other information called

attributes. Here, we consider that databases are tables where

a row describes an entity and each value of this row is an

attribute of this entity. We try to highlight relations in this

table, finding significant matching between attributes of a

same dimension (column) of the table. Then in order to

visualize these relations, we decide to work with graphs

visualized as node-link diagrams. In the graph, a vertex

(node) represents an entity (row) of the table, and if two

entities are in relation we add an edge (link) between them

in order to materialize the fact that they are in relation. Our

data analysis has two steps. First, we build a taxonomy of

the table’s dimension, then we look for relations between

entities.

A. Taxonomy of dimensions

We describe here the way we simplify the data without

loosing information. Our idea is to detect dimensions which

have more importance than other in order to afterwards find

relations between entities. That’s why we decide to look for

hierarchical relation between dimensions.

Notation: Let T be a table with m rows and n dimen-

sions. We note by Ti the ith dimension of the table and by

Σi the alphabet associated to that dimension. Ti,j is the jth

value of the ith dimension of the table and Σi,j is the jth

value of the ith alphabet.

Definition: Consider Ti and Tj two dimensions of

the table and their alphabet Σi, Σj . ∀k ∈ [1, |Σj |] if all

elements of Tj which have for value Σj,k have in Ti the

same value Σi,x then Ti is ranked over Tj and we note

Ti ≥ Tj .

Continent Country City Street Name

Europe France Paris Louis Pasteur Dupont

Europe France Paris Champs-Elysée Durand

Europe France Bordeaux Louis Pasteur Martin

Europe Germany Berlin Max Planck Muller

Europe Germany Munich Max Planck Fischer

Europe Spain Madrid Louis Pasteur Fernandez

North America USA New York Grand Smith

North America USA Boston Beacon Do

North America Canada Calgary Grand Wilson

Table I
EXAMPLE OF AN ADDRESS TABLE

Figure 1. The taxonomy obtained from Table I. There are two
branches: ”Continent”, ”Country”, ”City”, ”Name” and ”Continent”,
”Street”, ”Name”. If there is an edge from node A to node B means that
A is ranked over B. B give more precise information than A.

Exemple: Consider the Table I, where each row contains

information about peoples’ address. The dimensions are:

Continent, Country, City, Street, Name. Our method give

us that ”Continent” ≥ ”Country” ≥ ”City” ≥ ”Name” and

also that ”Continent” ≥ ”Street” ≥ ”Name”. We can”t have

a hierarchy of the five dimensions because Louis Pasteur

street and Grand Street deny relations between ”City” and

”Street” and between ”Country” and ”Street”.

Property: Let consider two dimensions Ti and Tj . If we

have Ti ≥ Tj and Tj ≥ Ti, that means that Ti and Tj are

equivalent.

According to the previous Property, if we have two

equivalent dimensions, then we can consider only one of

these dimensions for the rest of the task. And we assure

that considering only one of the dimensions don’t remove

information.

Comparing dimensions, we are able to simplify the data

without loosing information, we can order them and con-

struct hierarchies of dimensions. These hierarchies can be

merged into a single taxonomy of dimensions. In this taxon-

omy, top level dimensions are the more global ones and the

bottom level dimensions are the more specific ones. But as

we compare each dimension with the others, the taxonomy

have non necessary edges. In our example: ”Continent” ≥
”Country” ≥ ”City”. But as we compare all the possible

pairs of dimensions we also have that ”Continent” ≥ ”City”.

And this edge will not give us much information in the

taxonomy, so we have to clean the taxonomy removing all

Figure 2. The left part represents the graph obtained using the Continent
dimension. People who live in the same continent are connected. There
are two connected component: the top one for Europe, the bottom one
for North America. The right part represents the graph obtained using the
Country dimension. People who live in the same Country are connected.
There are five connected component, one for each country. As ”Country”
dimension is ranked under ”Continent” dimension in the taxonomy, each
connected component in the right part graph is an induced subgraph of the
corresponding connected component in the left part.

this kind of edges.

Property: Let consider a taxonomy of dimensions build

using the above Definition. This taxonomy can’t hold strong

connected components.

In fact, if we have T1 ≥ T2 ≥ T3 ≥ T1 that mean that

we have a cycle in the taxonomy. This cycle is a strong

connected component. Considering T1 ≥ T2 ≥ T3, we have

T1 ≥ T3 and as we also have T3 ≥ T1, we have that T1 is

equivalent to T3. By extension we have T1 ≥ T2 ≥ T1, so

T1 is equivalent to T2. So finally we have T1 is equivalent to

T2 which is equivalent to T3. With a proof by recurrence, it’s

easy to generalise the result to strong connected component.

So each time that we have a strong connected component in

the taxonomy, that means that all the dimension of the strong

connected component are equivalent. And the taxonomy can

be simplify this way.

B. Relation between entities

In order to know if two entities are in relation, we check

if they have the same value in, at least, one dimension. For

example, let consider a table of planes, for each plane we

have the name of the company controlling it. If two or more

planes have the same value of controlling company, we have

detect that these planes belong to the same company. This

way we are able to define a belonging relation.

In order to avoid all pairwise comparisons, we will look

for relations according to the taxonomy. We only search

relation in the bottom (more specific) dimensions of the

taxonomy. Because, if there is a relation according to a

dimension, due to the taxonomy of dimension we are sure

that these elements will be in relation in upper level of the

taxonomy. But doing things this way, we will have a lot of

edge in the graph.

Figure 3. The ”Table View” window display the data. The first line holds the name of the dimension, then each line will be considered as an entity
(node). The bottom left window displays the computed taxonomy of dimensions. Orange coloured nodes represent dimensions that can be used as id for
entities. The bottom right window displays the hierarchy of dimension obtained by stretching out the taxonomy.

If we consider the address example in Table I. We obtain

the following ranking (hierarchy): ”Continent” ≥ ”Country”

≥ ”City” ≥ ”Name”. So if two people (rows) in the table

live in the same city, for example Paris, obviously they live

in the same country, France and the same continent, Europe.

So in the graph there will be three edges, one for the city

matching, one for the country matching, and one for the

continent matching. This illustrates that there will be a lot

of edges in the graph. So in order to limit this number

of edges, we decide to add edges according to the bottom

level dimensions in the taxonomy, and add information on

these edges. For example, instead of having three edges in

the previous example, there will be one edge having three

attributes. One signalling that this edge can be consider for

relations according to ”Continent”, one signalling that this

edge can be consider for relations according to ”Country”

and one last for signalling that this edge can be consider

for relations according to ”City”. So the number of edges

will strongly decrease. But as each edge can define relations

through several dimension, it will be difficult to understand

according to which dimension entities are in relation. So we

set a filtering system which will be describe in Section IV.

C. Complexity

Our method enable users to find a taxonomy of dimen-

sions and build a graph according to this taxonomy. But

explore the entire space of dimensions combinations in order

to highlight patterns between them is not conceivable in term

of complexity. In fact, if we have a table of n rows and

m dimensions, compare two dimensions is an operation in

O(n2). And if we do that for all the possible couple of

dimensions we have finally a complexity of O(m2 × n2) if

we try to compute the entire taxonomy. This complexity can

be seen as O(min(n, m)4).
So we have to limit the number of compared dimensions.

The more efficient way is to ask the user for selecting

dimensions he would like to know something about. We

describe now how we solicit the user.

D. User/expert selection

Due to the size of the considered tables and due to time

complexity of the algorithm one needs to apply, asking to

the end user to manually select the set of dimension he/she

wants to consider is necessary. We have shown that the

”limiting” factor of the complexity is the minimum between

the number of rows and the number of dimensions in the

table. In most cases the number of dimensions is lower

than the number of rows. So decreasing the number of

dimensions to treat, decrease significantly the complexity

of the taxonomy’s computation. So taking advantage of the

user experience increase the performances of our method.

In order to collect information about which dimensions the

user want to analysis, we propose him a spreadsheet view

of the entire table. In this view, it is possible to check or

uncheck dimensions. Only checked dimensions will be kept

for the computation. Discarding dimensions can cause to

reduce also the number of rows in the table. If two rows

only differ on one dimension and that dimension is discard

by user, keeping the two rows will not give more information

to the user.

Figure 4. The complete system. The ”Table View” window displays a table view of the data. The ”Node Link Diagram” window displays the stretched
taxonomy (as seen in Figure3). The ”Sub Graph View” window displays a subgraph pointed by the hierarchy. On the left, the table in the ”Element” tab
displays the properties of a node clicked in the ”Sub Graph View”. The row corresponding to the node is highlighted in the ”Table View”.

IV. VISUALIZATION: FILTERING EDGES THROUGH THE

TAXONOMY

As we add edges between all the entities that share a

value on one dimension, there will be a lot of complete

induced subgraphs (if we consider only few vertices V ′ of

the graph, each vertex of V ′ is connected to all other vertices

of V ′). And as one edge can be used for many relations, one

needs to be able to filter edges to only show up the relevant

ones. For that purpose, we build a hierarchy of subgraphs.

This hierarchy correspond to the taxonomy of the ranked

dimensions. Each branch of the hierarchy is a path in the

taxonomy so finally we have unfolded the taxonomy.

Each node of a hierarchy’s branch corresponds to a

dimension. This node is linked to a graph that represents

the subgraph obtained by filtering the edges according to the

dimensions placed above it in the hierarchy. For example, let

consider the branch ”Continent” ≥ ”Country” ≥ ”City” ≥
”Name”. The subgraph linked to ”City”, will contains all the

edge that satisfy a relation through ”City”, but also through

”Country” and ”Continent”.

V. CASE STUDY

The dataset which is used here describes products that

are stocked in sheds, it is composed of thirteen dimen-

sions. Some are used to localize the products, as: ”Shed”,

”Gate”, ”Lane”, ”Sign”, ”Level/Shelf”. Some are used to

describe the products: ”Type”, ”Sub-type”. There are also

information about people who manage the products: ”Shed

Headmaster”, ”Type Headmaster”, ”Sub-type Headmaster”.

And some other information such as ”Accessibility” which

defines how products can be extracted from the sheds, and

”Destination” which gives information about the shop that

owns the products. Each row of the dataset collects all these

attributes.

The method developed here has been implemented using

Tulip [11]. Tulip is a software providing tools and graphic

components for data visualization and more precisely graph

visualization.

The first step of the method consists in selecting dimen-

sions in the table that will be taken into count for the

taxonomy and graph generation. As we don’t know anything

about this dataset, we compute the taxonomy and the graph

using all the dimensions of the table. The taxonomy of

dimensions that we obtain is the taxonomy shown in the

Figure 3,and the stretch out taxonomy is the hierarchy of

dimensions shown in Figure 3 and also in Figure 4.

Then we look at the taxonomy and the hierarchy in order

to bring out information about which subgraphs will be

interesting to study. First, we can see that there are three

sub-hierarchy in that taxonomy, one rooted on ”Destination”,

one rooted on ”Accessibility” and one rooted on ”Shed

Headmaster”. We can see that ones rooted on ”Destination”

and ”Accessibility” are very similar. So subgraphs generated

from these two sub-hierarchy will be similar, and this fact

allows us to notice that we will not have to study all the

generated graphs but only the half of these graphs (one of

the two sub-hierarchy). On the other side, the third part of

the hierarchy hold a long branch, that tells us that these

dimensions are ranked. We also know that down dimensions

give more precise relation that the top ones, so ”Sub-

type” and ”Sign” dimensions give the precisest relation

between entities, whereas ”Shed Headmaster” dimension

give the more general relation. Graphs generated by ”Shed

Headmaster” will have a lot of edges and will not give so

much information, whereas graphs generated by ”Sign” or

”Sub-type” will as less edges.

The last thing we can say about the taxonomy/hierarchy

computation concern the orange coloured nodes. We know

that these orange coloured nodes represent dimensions that

can be used to identify identities. It is not useful to look

at the graphs generated by these dimensions. In fact, if a

dimension identifies entities, that means that entities have

different values according to that dimension. So, as we add

edges to a graph only if some entities have a same value,

the graphs generated will have no edge.

In Figure 4, the ”Sub Graph View” window displays the

graphs obtains according to the ”Type” dimension. In this

graph we can see seven connected components. Each con-

nected component corresponds to one value of the ”Type”

dimension, so each connected component is a cluster of

the entities. So studying the connected component, we can

observe how dimensions cluster the entities. In the ”Type”

graph, we have a Furniture products cluster, a Domestic

Appliance cluster, a Hi-Fi cluster, a Computer cluster, a

Media cluster, a Do-It-Yourself cluster and a Clothes one.

Now if we want to have a look to all the attributes of an

entity, we just have to click the node in the graph. As we can

see in Figure 4, the row corresponding to the clicked node

is highlighted in the ”Table View” window. Attribute of a

node are also displayed in the ”Element” tab on the left of

the system. In Figure 4 the node identified by ”B-1-1-A-1”

has been clicked and the corresponding row is highlighted

in the ”Table View” and all its attributes are displayed in

the ”Element” tab on the left.

Using the hierarchy of dimensions, it is possible to visualise

how the ranking of the dimension is effective on the sub-

graphs generation. Clicking on successive nodes of a branch

of hierarchy starting from top, will display them one after

one. And as a graph associated to a dimension is a subgraph

of its father graph, iterating on graphs will display how

clusters evolve through the hierarchy of dimensions. As the

layout of the node don’t change, we will be able to easily

see edges disappearing for top to bottom exploration and

appearing for bottom to top exploration.

VI. CONCLUSION

We presented a method for automatically generate graphs

from a dataset in tabular format. That method enables to ease

the data transformation task necessary to use graph based

Infovis Systems. We described an algorithm that automat-

ically generates taxonomy of dimensions. Using both that

taxonomy and a hierarchical graph based exploration tool,

we are able to provide to end user a system that enable to

interactively explore the set of possible data transformation.

We demonstrated the usefulness of our solution with a

complete case study.

REFERENCES

[1] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Don-
jerkovic, S. Lawande, J. Myllymki, and K. Wenger, “Devise:
Integrated querying and visual exploration of large datasets,”
in In Proceedings of ACM SIGMOD, 1997, pp. 301–312.

[2] C. Stolte, D. Tang, and P. Hanrahan, “Polaris: a system
for query, analysis, and visualization of multidimensional
databases,” Commun. ACM, vol. 51, no. 11, pp. 75–84, 2008.

[3] J. D. Mackinlay, P. Hanrahan, and C. Stolte, “Show me:
Automatic presentation for visual analysis,” vol. 13, no. 6,
2007, pp. 1137–1144.

[4] I. Jolliffe, Principal Component Analysis. Springer Verlag,
1986.

[5] Landauer, Handbook of Latent Semantic Analysis. Lawrence
Erlbaum Associates, 2007.

[6] M. Smith, B. Shneiderman, N. Milic-Frayling, E. Mendes Ro-
drigues, V. Barash, C. Dunne, T. Capone, A. Perer, and
E. Gleave, “Analyzing (social media) networks with nodexl,”
in C&T ’09: Proceedings of the fourth international confer-
ence on Communities and technologies. New York, NY,
USA: ACM, 2009, pp. 255–264.

[7] A. Slingsby, J. Dykes, and J. Wood, “Configuring hierarchical
layouts to address research questions,” IEEE Trans. Vis.
Comput. Graph., vol. 15, no. 6, pp. 977–984, 2009.

[8] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and
M. McKeon, “Manyeyes: a site for visualization at internet
scale,” IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 6, pp. 1121–1128, November 2007.

[9] B. Johnson and B. Shneiderman, “Tree-maps: a space-filling
approach to the visualization of hierarchical information
structures,” in VIS ’91: Proceedings of the 2nd conference on
Visualization ’91. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1991, pp. 284–291.

[10] C. Ware, Information Visualization: Perception for Design.
Morgan Kaufmann Publishers, 2000.

[11] D. Auber, “Tulip : A huge graph visualisation framework,”
in Graph Drawing Softwares, ser. Mathematics and Visualiza-
tion, P. Mutzel and M. Jünger, Eds. Springer-Verlag, 2003,
pp. 105–126.

