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Random soups, carpets and fractal dimensions

Şerban Nacua Wendelin Werner∗ b

C.N.R.Sa, Ecole Normale Supérieurea,b and Université Paris-Sud 11b

Abstract

We study some properties of a class of random connected planar fractal sets induced by a
Poissonian scale-invariant and translation-invariant point process. Using the second-moment
method, we show that their Hausdorff dimensions are deterministic and equal to their expecta-
tion dimension. We also estimate their low-intensity limiting behavior. This applies in particular
to the “conformal loop ensembles” defined via Poissonian clouds of Brownian loops for which
the expectation dimension has been computed by Schramm, Sheffield and Wilson.

MSC Classification: 28A80, 82B43, 28A78

1 Introduction

In this paper, we study certain random planar fractals that are close in spirit to random Cantor
sets constructed via independent iterations. Before describing the class of sets that we will focus
on, let us first recall some features of the “classical” planar random Cantor sets, sometimes known
as Mandelbrot percolation or fractal percolation:

Mandelbrot percolation. Define a set F by removing independently each dyadic square
inside the unit square [0, 1]2 with probability p. This self-similar iterative procedure defines a
random fractal that has been studied extensively [14, 15, 5, 6, 3]. In the case where one replaces
dyadic by triadic, one gets a natural “random Sierpinski carpet”. Clearly, one can interpret the set
F as the limit of a Galton-Watson tree. This implies immediately that when p ≥ 3/4, then F is
almost surely empty, and that when p < 3/4, then P (F 6= ∅) > 0. It is then possible and easy to
compute the Hausdorff dimension of F as a function of p (see for instance [6]).

In fact, when p is small enough and the set F is non-empty, F has non-trivial connected
components. It seems clear that their dimensions must be a deterministic function of p, but in
general it appears not possible to compute it explicitely in terms of p.

The set F is statistically invariant under dyadic scaling in a rather obvious sense: for a dyadic
square S = [0, 2−n]2, the law of 2n(S ∩ F ) conditioned by the event that it is non-empty is equal
to the law of F itself conditioned not to be empty. A similar invariance under dyadic translations
can be stated. However, this invariance is restricted to “dyadic transformations” and it cannot be
extended to more general maps.
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Figure 1: Sketch of a Poisson square soup. The point at the end of the solid line can be connected
to the boundary by a path that does not cross the soup, and thus belongs to the carpet. The point
at the end of the dotted line is completely surrounded by the soup and thus is not in the carpet.

Poisson models. A natural way to obtain stronger scale and translation invariance is to
define the set F by removing from [0, 1]2 all squares of a statistically translation-invariant and
scale-invariant Poisson point process of squares. In fact, one could also replace these squares by
other planar shapes, such as line segments or disks. This gives rise to self-similar Poisson percolation
models, as studied for instance in [26, 27, 4]. In these papers, the focus is on the existence and the
nature of the phase transition for the connectivity property of F in terms of the intensity c of the
Poisson point process (that replaces the factor log(1/(1− p))): For small c (i.e. small p), the set F
can have non-trivial connected components, and one can define the “carpet” G that consists of all
points of (0, 1)2 that can be connected to the boundary of the unit square by a path that remains
in F (a typical point in F will in fact not satisfy this property; see Figure 1 for an example, and
section 4.1 for a more complete discussion).

A special case: Brownian loop soups. Recently, it has been pointed out that a special and
interesting case is to remove the interiors of Brownian loops instead of squares. In other words, one
removes the interiors of a Poisson collection of Brownian loops called the Brownian loop-soup and
introduced in [13]. Indeed, planar Brownian motion is conformally invariant, so that this collection
of loops is not only scale-invariant, but also conformally invariant in a rather strong sense (related
to the conformal restriction property described in [11, 25]). This allows [23, 20] to derive links
with other conformally invariant objects such as the Gaussian Free Field or the Stochastic Loewner
Evolutions (SLE), via the notion of Conformal Loop Ensembles (CLE) studied in [19, 20]. The link
with SLE enables the study of many properties of those random Cantor sets (see Sheffield-Werner
[20, 21]):

• We know the carpet is non-trivial if and only if 0 < c ≤ 1 (the value 1 depends of course on
the choice of normalization for the Brownian loop measure).
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Figure 2: Sketch of a Brownian loop soup in the unit square. Brownian loops are generated
according to a Poisson point process. Only loops above a certain diameter are drawn; the actual
loop soup is in fact dense in the square and no loop touches the boundary of the square. This is in
fact a random walk loop-soup approximation of the Brownian loop-soup, see [12].

• The complement of the carpet is made of disjoint “holes” whose boundaries are SLE(κ) loops
for some explicit κ = κ(c) and the dimension of these loops is known ([1, 9]).

• Schramm, Sheffield and Wilson [18] have computed (as a function of κ) the “expectation
dimension” of the carpet that measures the mean number of ǫ-balls needed to cover it.

This last result was our initial motivation for the present paper. We show here that the Hausdorff
dimension of the carpet is deterministic and equals the expectation dimension. In combination
with the connection between CLEs and Brownian loop soups derived in [20, 21] and the explicit
formula for the expectation dimension in [18], this completes the determination of the almost sure
Hausdorff dimensions of CLE carpets.

More generally, our paper illustrates the fact that the “Brownian loop-soup” approach to CLE
and SLE can be helpful in the derivation of second-moment estimates that are used to determine
Hausdorff dimensions (these second-moment estimates can turn out to be difficult to handle directly
in the SLE setting, see for instance [1] for the dimension of the SLE curve itself).

The contribution of the present paper. We study the dimension of the random carpet
obtained from a Poisson Point process corresponding to a self-similar and translation invariant
measure µ. In particular, we show that the carpet’s Hausdorff dimension d(c) is non-random, that
it is equal to its “expectation dimension”, and we interpret the first terms of the expansion of
d(c) as c → 0+ in terms of µ. The techniques that we use are rather classical, and are based on
second-moment estimates (see e.g. [16]).
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One can also note that in the Brownian loop-soup case, the first term in the expansion 2− d(c)
when c → 0+ is related to the expected area of the filled Brownian loop computed by [7].

The paper is organized as follows. In Section 2, we define a class of invariant Poisson point
processes on planar curves and prove some of their elementary properties. In Section 3 we show
that the Hausdorff dimensions of random carpets defined by a random soup are deterministic, and
that first moment computations are enough to determine these dimensions. In Section 4, we study
the dimension of the carpet when c → 0+ using an approximation of the carpet by a simpler set.

2 Setup

2.1 The measures

We are interested in measures µ on the set of compact planar curves U (a curve γ is defined here
as the image of a continuous function from [0, 1] into the complex plane). We will not need to use
a strong topology on this set, so we can just view these curves as compact subsets of the plane and
simply use the Hausdorff topology.

We say that the measure µ is scale-invariant (resp. translation-invariant) if it is invariant under
the transformations γ 7→ ργ for all ρ > 0 (resp. γ 7→ z + γ for all z ∈ C).

We will focus on the case where the measure µ is “locally finite” in the sense that the µ-mass
of the set of curves γ with diameter greater than 1 that are included in a 2×2 square is finite (note
that we could replace 2 × 2 by r × r for any given r > 1). Local finiteness is in fact necessary in
our setup, otherwise the carpets that we define are almost surely empty.

We define M to be the set of all translation-invariant, scale-invariant and locally finite measures
µ that are not “one-dimensional”. More precisely, we require that for any real θ,

µ({γ : ∃x, y ∈ γ : (x− y) /∈ eiθR}) 6= 0

(note that if this quantity is not 0, then it is infinite because of translation-invariance). We need
this condition to exclude degenerate cases such as µ being supported on line segments parallel to
the x-axis.

Throughout this paper, |S| will denote the diameter of a bounded set S. We denote by B(z, r)
the ball centered at z with radius r, and by ∂B(z, r) its boundary circle. We define A(S) to
be the area of the set “surrounded” by S, that is, of the complement of the unbounded connected
component of the complement of S (if S is a circle, then A(S) is the area of the corresponding disc).
For a non-empty compact set K, we define Z(K) as the point in K with the smallest x-coordinate
(if there are several of them, choose the one among them with smallest y-coordinate).

Our first result states that any measure in M can be constructed as the product of three
components that describe location, scale, and shape.

Lemma 1. • Suppose that π is a measure on the set of compact planar curves such that
π(|γ|2) < ∞. Then, consider the following product measure on R

2 × (0,∞) × U :

d2z ⊗ dρ

ρ
⊗ π(dγ).

If we define γ′ = ρ(z + γ), the previous measure induces a measure µ′ on the set of compact
planar curves defined by:

∫

F (γ′)µ′(dγ′) =
∫

F (ρ(z + γ))d2z
dρ

ρ
π(dγ) (1)
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for all measurable bounded positive F . Then, the measure µ′ is translation-invariant, scale-
invariant and locally finite.

• Conversely, any measure µ in M can be constructed in this way. In fact, it is always possible
to construct µ via (1) starting from a finite measure π that is supported on the set of curves
with diameter |γ| = 1 that are included in the square [−1, 1]2.

• Finally, if a measure µ ∈ M can be defined starting from two different finite measures π and
π′ as before then π(|γ|2) = π′(|γ|2) and π(A(γ)) = π′(A(γ)) < ∞. We will denote this last
quantity by β(µ) = β(π).

Note that defining γ′ = ρ(z + γ) as above, or γ′′ = z′′ + ργ under d2z′′ ⊗ (dρ/ρ3)⊗ π(dγ) is the
same (via the change of variable z′′ = ρz). That is, we can either translate first or scale first, but
the distribution of the scaling factor differs in the two cases.

Proof. • Let us suppose that π is a measure on the set of compact planar curves such that
π(|γ|2) < ∞. Then, the measure µ′ defined via (1) is clearly scale-invariant and translation
invariant. We have to check that it is locally finite. Let us compute the µ′-mass of curves
that fall in the square [−1, 1]2 and have diameter greater than 1. Note first that

∫

1|ργ|≥1
dρ

ρ3
π(dγ) = π

(

∫ ∞

1/|γ|

dρ

ρ3

)

= π(|γ|2)/2.

But for each given γ, the Lebesgue measure of {z : Z(z + γ) ∈ [−1, 1]2} is 4. Hence,
integrating the previous identity over z, it follows that the µ′ mass of the set of curves that
have diameter greater than 1 and are subsets of [−1, 1]2 is bounded by 4π(|γ|2)/2. This
ensures that µ′ ∈ M.

• Conversely, suppose that µ̃ ∈ M. We would like to find a corresponding measure π. Intuitively
π should be the “projection” of µ̃ on the set K of curves γ that have diameter 1 and such that
the point Z(γ) is at the origin. We can write any curve γ = |γ| ·γ0+Z(γ) where γ0 ∈ K, and
this induces a representation of the measurable space U as a product R2×K ×R. Therefore,
if we define, for all translation-invariant and scale-invariant functions F on planar curves,

π(F ) =
2

3
µ̃(F (γ)1|γ|∈[1,2]1Z(γ)∈[−1,1]),

this induces a measure π on K. Since µ̃ is locally finite, the measure π has finite mass (take
F = 1 in the previous expression). We then define µ from π as in (1). For F translation-
invariant and scale-invariant, we have

µ(F (γ)1|γ|∈[1,2]1Z(γ)∈[−1,1]) =

∫

F (z + ργ) 1|z+ργ|∈[1,2] 1Z(z+ργ)∈[−1,1] d
2z × dρ

ρ3
× π(dγ)

=

∫

F (γ) 1ρ∈[1,2] 4×
dρ

ρ3
× π(dγ)

=
3

2
π(F )

= µ̃
(

F (γ)1|γ|∈[1,2]1Z(γ)∈[−1,1]

)

.
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Clearly, the measure µ is also scale-invariant and translation-invariant. It follows that for any
f and g,

µ(F (γ)f(|γ|)g(Z(γ))) = µ̃(F (γ)f(|γ|)g(Z(γ)))

and finally, using the product representation of U , we get µ = µ̃.

• To check the final statement, compute the µ-mass of the set of curves γ such that Z(γ) ∈ [0, 1]2

and A(γ) ≥ 1 in terms of π. This equals

∫

[0,1]2
d2z ×

∫ ∞

0

∫

U

dρ

ρ3
dπ(γ)1A(ργ)≥1 = π

(

∫ ∞

1/
√

A(γ)

dρ

ρ3

)

= π(A(γ))/2.

This last quantity is therefore the same for π and π′. Exactly the same argument implies
that π(|γ|2) = π′(|γ|2) and in fact works for any function of γ that scales with |γ|2. Since
any locally finite µ can be constructed from a measure π supported on curves of diameter 1,
it follows that π(|γ|2) is finite.

It is worth emphasizing that the scale-invariance of the measures µ ∈ M is with respect to the
transformations γ 7→ λγ that move the point Z(γ) away from the origin when λ is large. One could
also study how µ behaves under the transformations

Tλ : γ 7→ Z(γ) + λ(γ − Z(γ))

that magnify γ without changing its lowest-left-most point. The lemma in fact implies that the
image of µ under Tλ is λ2µ.

2.2 Soups

Recall that a Poisson point process with intensity µ where µ ∈ M is a random countable collection
of curves Γ = (γj, j ∈ J) in the plane such that for any disjoint (measurable) sets of curves
A1, . . . , An, the numbers N(A1), . . . , N(An) of curves in Γ that are respectively in A1, . . . , An are
independent Poisson random variables with respective mean µ(A1), . . . , µ(An) (when µ(Aj) = ∞,
then N(Aj) = ∞ almost surely). We call this a random soup in the plane with intensity µ.

For any domain D ⊂ C, we define the random soup in D as the set of all curves in the soup
Γ that are contained in D. In other words, if JD = {j ∈ J : γj ⊂ D}, then the soup in D is
ΓD = (γj , j ∈ JD). Note that ΓD is itself a Poisson point process with intensity µD = µ1γ⊂D.

The properties of µ ensure that Γ is translation-invariant and scale-invariant. The fact that µ
is locally finite implies that almost surely for each bounded domain D and each r > 0, ΓD contains
only a finite number of curves of diameter greater than r.

A few examples of natural measures π and their corresponding random soups are the following:

• The measure π is a constant times the law of a Brownian loop of time-length 1: this defines
the Brownian loop soups introduced in [13]. It is immediate to check that the measure µ
is locally finite in our sense (i.e. just check that π(|γ|2) < ∞).

• We can also look at the law of the outer boundary of the Brownian loop of time-length 1.
This is in fact a SLE(8/3) loop that also corresponds to scaling limits of critical percolation
cluster outer boundaries [25]. It defines a soup of “outer boundaries of Brownian loops”.
Local finiteness is a consequence of that of the Brownian loop measure.
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• The measure π is a constant times the Dirac mass supported on the unit circle (so µ is also
supported on circles): this is the circle soup.

• The measure π is a constant times the law of the segment with endpoints u and −u, where
u is chosen uniformly at random on the unit circle (so µ is supported on segments): this is
the stick soup. A variant of this is the discrete stick soup, where u is a uniformly chosen
random vertex of a regular n-gon.

We now define a condition on µ that will roughly prevents the soups from being too “dense”.

Lemma 2. Let LR be the set of curves that intersect the unit disk and have diameter at least R.
Suppose that µ ∈ M. Then the following statements are equivalent:

• For some R > 0, µ(LR) < ∞.

• For all R > 0, µ(LR) < ∞.

• The measure µ is constructed as in Lemma 1 via (1) from a finite measure π such that
π(|γ|2) < ∞ holds and that satisfies

∫ 1

0

dr

r
× π(

∫

d2z 1d(z,γ)≤r) < ∞.

When the statements hold, we say that the corresponding soup is thin.

Note in particular that if a soup is thin, then the (two-dimensional) Lebesgue measure of γ is
π-almost surely (and therefore µ-almost surely) equal to zero (otherwise the third statement would
not hold) so that a given point in the plane belongs almost surely to no curve of the corresponding
soup.

Proof. Suppose that µ ∈ M is defined via (1) from a measure π supported on the set of curves γ
with π(|γ|2) < ∞ and Z(γ) = 0. The curve z+ ργ has diameter ρ|γ|, and it intersects the unit disk
if and only if −z/ρ is at a distance less than 1/ρ from γ. Hence, for all R, we have

µ(LR) =

∫

d2z

∫ ∞

R

dρ

ρ3

∫

π(dγ)1d(0,z+ργ)≤1

=

∫

d2z

∫ ∞

R

dρ

ρ3

∫

π(dγ)1d(z,ργ)≤1

=

∫ ∞

R

dρ

ρ3

∫

π(dγ)

∫

ρ2 d2z′ 1d(z′,γ)<1/ρ

=

∫ 1/R

0

dr

r
π(

∫

d2z 1d(z,γ)≤r)

The equivalence between the three statements follows readily (note that this integral in r can
diverge only near r = 0).

Corollary 3. (i) If a soup is thin, then limR→∞ µ(LR) = 0.

(ii) A random soup is thin if and only if almost surely, for every ring in the plane, only a finite
number of curves in Γ do intersect both the inner circle and the outer circle.
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Proof. The first statement follows from the dominated convergence theorem.
For the second part, let Sa,b be the set of curves that intersect both circles of radius a and b. It

follows easily that for R > 1, LR+1 ⊂ S1,R ⊂ LR−1. If S1,R is finite, then so is LR+1, and Lemma 2
implies that the soup is thin. Conversely, if the soup is thin, then LR−1 is finite, so all S1,R are
finite, and by scale invariance so are all Sa,b. The rings with rational radii form a countable dense
set among all rings, and this completes the proof.

The circle soups, the square soups and the stick soups are obviously thin. The third condition
in the lemma shows that as soon as the mean area of the r-neighborhood of γ (defined under
π/|π|) decays for instance faster than 1/ log(1/r)2 as r → 0, the corresponding µ-soup is thin. For
instance, if π is supported on curves with Hausdorff dimension d < 2, the size of the neighborhood
decays like O(r2−d) and the soup should be thin, assuming the bound holds in expectation.

The Brownian loop-soup is not thin, but we now show that the soup of its outer boundaries is
thin (and this will be enough for our purposes since they will define the same carpets).

Lemma 4. The soup of outer boundaries of Brownian loops is thin.

Proof. Since outer boundaries γ of Brownian loops have dimension 4/3 (see [10]), the area of their
r-neighborhoods decays typically at least like r2/3+o(1) when r → 0. However, Lemma 2 requires
looking at expectations, rather than at “typical” behavior, so additional arguments are needed.
Here is a short self-contained proof that does not rely on [10].

Consider the Brownian loop-measure, defined on Brownian loops (Zt, t ∈ [0, 1]) of time-length
1 that start and end at the origin. A point z is in the r-neighborhood of the outer boundary of the
loop iff it lies at distance at most r of the loop, and the disc B(z, r) is not disconnected from ∞ by
the loop.

Using circular re-rooting of the loop, the mean area of the r-neighborhood of the outer boundary
is clearly bounded by four times the mean area of the set of points z that lie at distance at most r
from Z[0, 1/4] and such that B(z, r) is not disconnected from infinity by Z[0, 1/2].

It is easy to check that the law of Z[0, 1/2] is absolutely continuous with respect to that of
B[0, 1/2], where B is a standard Brownian motion, and that its Radon-Nikodym derivative is
bounded. Hence, it is sufficient to bound the expected area of the set of points z that lie at
distance less than r of B[0, 1/4] and such that B(z, r) is not disconnected from infinity by B[0, 1/2].
Using the strong Markov property of B, it follows immediately that this quantity is bounded by
the mean area m of the r-neighborhood of B[0, 1/4] times the probability that a planar Brownian
motion started at distance r from the origin does not disconnect B(0, r) before time 1/4. This
last probability is bounded by r to some positive power when r → 0+ (see any introductory paper
on disconnection exponents – this is due to the fact that one the one hand the probability that it
stays in B(0,√r) during the time-interval [0, 1/4] is very small, and on the other hand that the
probability that it does not disconnect B(0, r) before reaching the circle of radius

√
r decays at

least like a positive power of r when r → 0+), and the former mean area m is bounded. Hence,
the thinness of the soup of outer boundaries of Brownian loops follows.

2.3 Carpets and loop clusters

We will be interested in the fractal carpets defined using random soups. To simplify the discussion,
we assume in this section that the measure π (and therefore also µ) is supported on simple loops,
that is, injective continuous maps from the unit circle into the plane. This will exclude the discrete
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stick soups (discussed briefly at the end of this section) and the Brownian loop soup (but we can
define and recover the carpet for the latter via soups of outer boundaries of Brownian loops).

The carpet corresponds to a connected component of the random Cantor set obtained by re-
moving the interiors of all the loops. There are a priori various ways to define it.

Consider a random soup ΓD in a simply connected domain D (such that D 6= C), consisting of
loops (γj , j ∈ J). Each γj defines an interior Oj (the bounded connected component of R2 \ γj).
The set F = D \ ∪jOj is then a random closed subset of D that we shall sometimes refer to as the
“remaining set”. Our interest is in its connected components:

Definition 1. The carpet G is the set of points z in D such that there exists a continuous path
from any neighborhood of z to ∂D that stays in F .

Loosely speaking, the carpet is the connected (by arcs) component of F that has ∂D as part of
its boundary. Note that, for technical reasons, we allow the connecting paths to intersect the loops
in the soup (but not their interiors). We will comment in a moment on whether this definition is
equivalent to saying that there exists a continuous path from z itself to ∂D that stays in F .

Another almost equivalent approach is to look at clusters of loops. We say that two loops γ
and γ′ of a random soup are connected if one can find a finite sequence γ0 = γ, γ1, . . . , γn = γ′n in
the soup such that for all j ≤ n− 1,

γj ∩ γj−1 6= ∅ and Oj ∩Oj−1 6= ∅.

Clearly, connection between loops forms an equivalence relation, and one can then define the
clusters of the soup as the union of all γj ’s for the loops in the same equivalence class. Note that
for technical reasons, we require here not only that the two curves γj and γj−1 intersect but also
that their interiors do. In many cases, this definition can be relaxed, as translation invariance can
be easily be used to show that almost surely (for a sample of the soup), if two curves intersect then
so do their interiors. The clusters may be nested, this may occur for example when one loop lies
inside another one.

Given a loop-soup in the entire plane, one can wonder whether there exist clusters of infinite
diameter. Kolmogorov’s 0−1 law implies in the standard way that this event has probability either
0 or 1, depending on the law of the soup. Furthermore, if the measure µ is supported on loops
with positive inner area, it follows immediately that any disk B(0, R) is almost surely contained in
the interior of some loop γj . Since this holds for arbitrarily large R, it follows that if there exists
a cluster of infinite diameter, then it is unique. In this case, let X denote the distance between
the unbounded cluster and the origin. Clearly, X is a scale-invariant finite real random variable,
so that X = 0 almost surely. It follows that for a loop soup in the entire plane:

• Either all clusters are bounded almost surely

• Or there almost surely exists exactly one cluster, and this cluster is dense and unbounded.

Since our main interest in the present paper is the geometry of the clusters rather then the
phase transition, we will focus on the case when all clusters are bounded almost surely and the
carpets are not empty. More precisely, our assumption on µ goes as follows:

Subcriticality assumption 1. All clusters in the full-plane loop soup are almost surely bounded.

In fact, we will assume an a priori slightly stronger condition:
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Subcriticality assumption 2. With positive probability, there exists a (random) closed loop ℓ
in the plane that surrounds the origin and does not “cross” any loop of the loop-soup.

In this definition, and throughout the rest of this paper, we say that two loops “cross” if each
one of the two does intersect the interior of the other one. Let us stress that the loop ℓ is not a
loop of the loop-soup.

Note that a simple 0−1 argument then implies that any given point is almost surely surrounded
by infinitely many such loops (of arbitrarily small or large diameter) that cross no loop in the loop-
soup. Let us now consider a domain D as before and choose a given point z on its boundary. The
fact that there almost surely exist such small loops ℓ around z that cross no loop of the full-plane
loop-soup implies immediately that the carpet in D is not empty (because the intersection of this
small loop with D is in the carpet). Hence, subcriticality implies that the carpets are almost surely
non-empty. Note also that subcriticality clearly implies that the measure µ is thin.

It could be interesting to study the converse i.e. whether non-triviality of the carpet and thinness
imply our subcriticality assumption. This is for instance not difficult if one assumes invariance of
µ under certain rotations. In that case, subcriticality can be proven using FKG-type arguments,
but this is not the purpose of the present paper. In section 4.2 we review a coupling argument that
shows that most soups of interest are subcritical as long as their intensity parameter lies below a
certain value.

Furthermore, note that the arguments presented in [21] in order to prove that in the “subcritical
phase,” outer boundaries of clusters of Brownian loops are indeed loops (this is essentially only
based on an FKG argument) can be easily generalized to the present setting. This implies that
the subcriticality assumption 1 implies the subcriticality assumption 2 in most cases of interest
(because the outer boundary ℓ of a loop-soup cluster that surrounds the origin is one closed loop
that satisfies the conditions of the second assumption). It also indicates that in most cases, the
carpet is indeed the set of points that are connected to ∂D by a continuous path in F .

Finally, let us mention that our definition of the carpet can in fact be easily adapted to the
case of the stick soups. One just needs to define the set G as the set of points z such that there
exists a continuous path from any neighborhood of z to ∂D that does not “cross” any stick (in
an appropriate sense) and to modify the definition of loop-clusters similarly. The results of the
present paper would still apply. Other possible variants could include the possibilities that γj ’s are
discontinuous etc.

3 Dimensions

3.1 Preliminaries

In this section we will consider a thin translation- and scale- invariant random soup on a bounded
simply connected domain D and we will suppose furthermore that the subcriticality assumption
holds. We will show that the Hausdorff dimension dim(G) of the carpet is deterministic, and that
it is described by “first moment estimates”.

We will use the standard second-moment method to evaluate the dimension of a random fractal
set C that is closely related to the carpet G. The idea is to define a sequence of sets Cǫ that converge
to C, to obtain probability estimates for these sets and to show that these yield the dimension of
C. We will use the following standard fact about first and second moments (see [2] for this precise
statement, or [16] for almost equivalent ones):
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Lemma 5. Let D be a bounded domain and (Cǫ, ǫ > 0) a family of random Borel subsets of D, so
that Cǫ ⊂ Cǫ′ if ǫ < ǫ′. Define C = ∩ǫ>0Cǫ. Suppose that α > 0 and define the following three
conditions:

1. There exist positive constants k1 and k2 such that for any small ǫ > 0 and x ∈ D, k1ǫ
α ≤

P (x ∈ Cǫ) ≤ k2ǫ
α.

2. There exists a positive constant k3 such that for any ǫ > 0 and x, y ∈ D, P (x, y ∈ Cǫ) ≤
k3ǫ

2α|x− y|−α.

3. There exists a positive constant k4 such that for all ǫ > 0 and x ∈ D, the expected area of
Cǫ ∩ B(x, ǫ), conditional on the event that x ∈ Cǫ, is at least k4ǫ

2.

Then:

• If α ≤ 2 and both 1. and 3. hold, then dim(C) ≤ 2− α almost surely.

• If α ≤ 2 and both 1. and 2. hold, then dim(C) ≥ 2− α with positive probability.

• If α > 2 and both 1. and 3. hold, then C is almost surely empty.

In other words, if we have first and second moments estimates for the area of Cǫ with the correct
asymptotics, then we can control the dimension of C.

We will obtain such estimates for a random set C related to the carpet, and then use a 0-1
law to argue that the dimension is deterministic, and therefore is almost surely equal to 2 − α.
One natural choice for Cǫ would be the set of all points within ǫ of the carpet; however, a slightly
different definition is better suited in our setting:

Definition 2. Let Cǫ be the set of points x ∈ D with the property that there exists a path connecting
x to ∂D that does not cross any interior of a curve of the soup ΓD\B(x,ǫ). In other words, we take
all curves in the soup, we ignore the ones that get within distance ǫ of x, and we look if there exists
a path connecting x to the boundary that does not hit the interior of any of the remaining curves.
We define the approximate carpet C = ∩ǫCǫ.

Lemma 6. Let K = ∪γ∈ΓD
γ be the union of all curves in ΓD. Then we have

C \K ⊂ G ⊂ C

Proof. Clearly, if a point z is in the carpet G, then it is in C. Conversely, if a point is in C and is
not on any curve γj , then it necessarily is in the carpet. Indeed, take z in D but not on any curve,
and let ǫ > 0. Because the soup is thin, only finitely many curves γ1, . . . , γn in the soup intersect
both circles of radii ǫ/2 and ǫ centered at z (Corollary 3). Hence for

δ = (ǫ/2) ∧ min
1≤i≤n

d(z, γi),

no curve in the soup that intersects the circle ∂B(z, ǫ) comes δ-close to z. If z is in C, then by
looking at Cδ, we conclude there exists a path joining ∂B(z, ǫ) to ∂D that crosses no curve in the
soup. Since this is valid for all ǫ, we conclude that z is in the carpet.
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3.2 First moment estimates for the disk

We first restrict ourselves to the case where D is the unit disk U. Let Γ be the random soup in
the unit disk. For any ǫ ∈ (0, 1), let Γǫ be the set of curves in Γ that are contained inside the ring
{ǫ < |z| < 1} (including curves that wind around the inner circle without touching it). Let Aǫ be
the event that {0 ∈ Cǫ} i.e. there exists a path that connects the origin to the unit circle and does
not cross any curve in Γǫ. We first show that P (Aǫ) behaves asymptotically like some power of ǫ.

Lemma 7. There exist k > 0 and R > 2 such that for any ǫ, ǫ′ ∈ (0, 1/R),

kP (Aǫ)P (Aǫ′/R) ≤ P (Aǫǫ′) ≤ P (Aǫ)P (Aǫ′) (2)

Proof. The upper bound is trivial: Let Γ′ be the set of curves in Γ that are contained inside the
ring {ǫǫ′ < |z| < ǫ}. Let E be the event that there is a path that connects the circles ∂B(0, ǫǫ′)
and ∂B(0, ǫ) and does not cross any curve in Γ′. By scale invariance of the soup, P (E) = P (Aǫ′).
Clearly Aǫǫ′ ⊂ E ∩ Aǫ. Since Γ′ and Γǫ are disjoint, E and Aǫ are independent. Hence P (Aǫǫ′) ≤
P (E)P (Aǫ) = P (Aǫ)P (Aǫ′).

Note that either P (Aǫ) > 0 for all ǫ < 1, or P (Aǫ) = 0 for all ǫ smaller than some ǫ0. It is easy
to verify that in this second case, the carpet is almost surely empty. We can therefore assume we
are in the first case. Note also that if almost all loops for µ have nonempty interiors, then with
positive probability, one loop of the loop-soup will surround the origin, so P (Aǫ) < 1 for ǫ small
enough.

Let us define the event BR(r) that in the ring {z : r < |z| < Rr}, there exists a closed loop that
surrounds the origin and that crosses no curve in the soup (we consider here the entire soup in the
plane). Note that because of scale-invariance, the probability b(R) = P (BR(r)) does not depend on
r. Furthermore, because soup clusters are bounded, the subcriticality assumption implies that for
sufficiently small r and large R, P (BR(r)) > 0 (consider, for example, the boundary of the cluster
containing the origin). Hence, b(R) is positive for large enough R.

Let us now fix R > 2 such that b(R/2) > 0, and choose ǫ and ǫ′ in (0, 1/(2R)). Consider the
following four events:

• E1 is the event that for the soup in the ring {z : ǫ < |z| < 1}, there exists a path joining the
inner boundary to the outer boundary of the ring, that does not cross any loop of this soup.
The probability of this event is P (Aǫ).

• E2 is the event that for the soup in the ring {z : ǫǫ′ < |z| < Rǫ}, there exists a path joining
the inner and outer boundary of the ring, that does not cross any loop of this soup. By
scale-invariance, the probability of this event is P (Aǫ′/R).

• E3 is the event that in the ring {z : (4/3)ǫ < |z| < (3/4)Rǫ}, there exists a closed loop
surrounding the origin that does not cross any curve in the entire soup ΓC. Because of scale-
invariance, the probability of this event does not depend on ǫ and is equal to b = b(9R/16).
Note that because

ǫǫ′ < ǫ < (4/3)ǫ < (3/4)Rǫ < Rǫ < 1,

this closed loop must intersect the paths described in the definitions of E1 and E2.

• E4 is the event that no curve in the soup ΓC that intersects the ring {z : ǫ < |z| < Rǫ} has
diameter greater than ǫ/4. Because of scale-invariance, its probability b′ does not depend on
ǫ. It is positive because the soup is thin.
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Recall that an event A depending on the realization of a soup is said to be decreasing if Γ /∈ A
and Γ ⊂ Γ′ implies Γ′ 6⊂ A. It is standard that decreasing events are positively correlated
(this is the FKG-Harris inequality, see e.g. [8]). Here, the events E1, E2, E3 and E4 are all
decreasing. Therefore,

P (E1 ∩ E2 ∩E3 ∩ E4) ≥
4
∏

j=1

P (Ej) = bb′P (Aǫ)P (Aǫ′/R).

On the other hand, E1 ∩ E2 ∩ E3 ∩ E4 ⊂ Aǫǫ′. Indeed, if all events occur, then we can
concatenate a part η2 of the crossing defined by E2 to a part η3 of the loop defined by E3 to a
part η1 of the crossing defined by E1 to construct a crossing η of the ring {z : ǫǫ′ < |z| < 1}.
Then E4 implies that η does not cross any curve in Γǫǫ′ .

The lower bound follows.

Such a lemma implies classically up-to-constants estimates:

Corollary 8. For some positive constants α and k′, we have

ǫα ≤ P (Aǫ) ≤ k′ǫα. (3)

Proof. Let f(ǫ) = P (Aǫ). Since f(ǫǫ′) ≤ f(ǫ)f(ǫ′), it follows readily from standard subadditivity
that

lim
ǫ→0

(log f(ǫ)/ log ǫ) = inf
ǫ<1/R

(log f(ǫ)/ log ǫ) < ∞.

On the other hand, if we define g(ǫ) = kf(ǫ/R), we get that

g(ǫǫ′) = kP (Aǫǫ′/R) ≥ k2P (Aǫ/R)P (Aǫ′/R) ≥ g(ǫ)g(ǫ′)

so that
lim
ǫ→0

(log g(ǫ)/ log ǫ) = sup
ǫ<1/R

(log g(ǫ)/ log ǫ) > 0.

But
lim
ǫ→0

(log g(ǫ)/ log ǫ) = lim
ǫ→0

(log f(ǫ)/ log ǫ).

If we define this limit to be α, it follows that 0 < α < ∞ and that for all ǫ,

ǫα ≤ f(ǫ) ≤ g(Rǫ)/k ≤ (Rǫ)α/k.

3.3 Second moment estimates for the disk

We still assume that D is the unit disk U. To avoid boundary effects, it is natural to define, for any
δ ∈ (0, 1), the set Dδ of points in D that are at distance greater than δ from ∂D i.e. Dδ = (1− δ)U.

Lemma 9. For all small δ:

• There exist positive k1 = k1(δ) and k2 = k2(δ) such that for all x ∈ Dδ and for all ǫ < δ/4,

k1ǫ
α ≤ P (x ∈ Cǫ) ≤ k2ǫ

α. (4)
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• There exists k3 = k3(δ) > 0 such that for any two points x, y ∈ Dδ, and all ǫ < δ/4,

P (x ∈ Cǫ and y ∈ Cǫ) ≤ k3
ǫ2α

|x− y|α . (5)

• There exists k4 = k4(δ) such that for all x ∈ Dδ and ǫ < δ/4, the expected area of Cǫ∩B(x, ǫ),
given that x ∈ Cǫ, is at least k4ǫ

2.

Proof. We first estimate P (x ∈ Cǫ). Assume that ǫ < δ/2. For any r define Γr
ǫ(x) to be the set of

all curves in Γ contained in the ring B(x, r) \ B(x, ǫ). We have

B(x, ǫ) ⊂ B(x, δ) ⊂ D ⊂ B(x, 2).
Hence if x ∈ Cǫ, then there exists a path from ∂B(x, ǫ) to ∂B(x, δ) that does not cross any curve

in Γδ
ǫ(x). Conversely, if there exists a path from ∂B(x, ǫ) to ∂B(x, 2) that does not cross any curve

in Γ2
ǫ(x), then x ∈ Cǫ. Hence both the upper and lower bounds follow from Corollary 8 and scale

invariance.
We now estimate the second moment. We can assume without loss of generality that ǫ <

|x − y|/2 (otherwise the result follows from the first moment estimate). Consider first the case
when |x− y| ≥ δ/2. Define the events

• E1: there is a path from x to ∂B(x, δ/4) that does not cross any curve in Γ contained in
B(x, δ/4) \ B(x, ǫ)

• E2: there is a path from y to ∂B(y, δ/4) that does not cross any curve in Γ contained in
B(y, δ/4) \ B(y, ǫ)

The balls B(x, δ/4) and B(y, δ/4) do not intersect, so E1 and E2 are independent. Clearly {x, y ∈
Cǫ} ⊂ E1 ∩ E2, so by scale invariance

P (x, y ∈ Cǫ) ≤ P (E1)P (E2) ≤ (4ǫ/δ)2α(k′)2 (6)

and since |x− y| is bounded below, (5) follows.
When β = |x− y| ≤ δ/2, let z = (x+ y)/2 and consider the events

• E1: there is a path π1 from x to ∂B(x, β/2) that does not cross any curve in Γ contained in
B(x, β/2) \ B(x, ǫ)

• E2: there is a path π2 from y to ∂B(y, β/2) that does not cross any curve in Γ contained in
B(y, β/2) \ B(y, ǫ)

• E3: there is a path π3 from ∂B(z, 2β) to ∂B(z, δ) that does not cross any curve in Γ contained
in B(z, δ) \ B(z, 2β)

The three events involve curves contained in disjoint sets, so they are independent. Clearly {x, y ∈
Cǫ} ⊂ E1 ∩ E2 ∩E3, and by Corollary 8,

P (E1)P (E2)P (E3) ≤ (k′)3(2ǫ/β)α(2ǫ/β)α(2β/δ)α

and (5) follows.
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It now remains to check the final statement. We show first that if x ∈ Cǫ/2, then B(x, ǫ/2) ⊂ Cǫ.
Indeed, if |y − x| < ǫ/2, then the soup obtained by removing all curves that are at distance less
than ǫ from y is contained in the soup obtained by removing all curves that are at distance less
than ǫ/2 of x. Hence y ∈ Cǫ. Note also that since D and Dδ are disks, we have that for any x ∈ Dδ

and ǫ < δ/4, the area of the intersection B(x, ǫ/2) ∩Dδ is at least ǫ2/8. Hence,

E(1x∈CǫA(Cǫ ∩Dδ ∩ B(x, ǫ))) ≥ E(1x∈Cǫ/2
A(Cǫ ∩Dδ ∩ B(x, ǫ/2)))

≥ E(1x∈Cǫ/2
ǫ2/8)

≥ P (x ∈ Cǫ/2)ǫ
2/8

≥ k1ǫ
α+2/2α+3

≥ (k1/k22
α+3)ǫ2P (x ∈ Cǫ).

This is precisely the last statement of the lemma.

We can now apply Lemma 5: it shows that for any small δ, the dimension of C ∩Dδ is almost
surely not larger than 2 − α, and is equal to 2 − α with nonzero probability. We conclude that
almost surely,

dim(C) = dim (∪δ(C ∩Dδ)) = sup
δ

(dim(C ∩Dδ)) ≤ 2− α

and that P (dim(C) = 2− α) > 0.

3.4 A 0-1 law for general domains D

We now assume that D is a bounded non-empty open domain.
The proof of the upper bound readily follows for the previous case. Indeed, if z belongs to the

carpet defined by the soup in D, and B is any small disk with z ∈ B ⊂ D, then z also belongs to
the approximate carpet defined by the soup in B. Hence if we write D = ∪Bi as a countable union
of open disks, the approximate carpet C defined by the soup in D will be a subset of the union
∪Ci of the approximate carpets defined inside each ball.

For the lower bound on the dimension, consider a sequence zn of points in D such that

• The sequence un = d(zn, ∂D) converges to 0 as n → ∞.

• The disks B(zn,
√
un), n ≥ 0 are disjoint.

It is easy to find such a sequence: Consider a for instance a sequence of points xn on ∂D and a
positive sequence (for instance vn = c2−n) in such a way that all the balls B(x1, v1), . . .B(xn, vn)
etc. are disjoint. Then, one just has to choose for each n, a point zn in B(xn, v2n/4) ∩D.

Fix any R > 1. Let Fn be the event that there exist curves in ΓC that intersect both ∂B(zn, Run)
and ∂B(zn,

√
un). From Corollary 3 and scale invariance, P (Fn) → 0 as n → ∞, so by passing to a

subsequence we can assume (using a standard Borel-Cantelli argument) that almost surely, no Fn

occurs for large enough n.
Now for each n, define the soups Γn = ΓB(zn,2Run) and Γ′

n = ΓB(zn,
√
un), and consider the

following events:

• E1(n) is the event that for the approximate carpet Cn defined by the soup Γn, the intersection
Cn ∩ B(zn, un) has dimension at least 2− α. We have showed in the previous section that it
has probability bounded below by some positive constant.
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• E2(n) is the event that there exists a closed loop η2 in the ring {z : un < |z − zn| < Run}
that does not cross any curve in Γn.

• E3(n) is the event that there exists no curve in Γ′
n that intersects both ∂B(zn, Run) and

∂B(zn, 2Run).

Since the soup is thin and subcritical, E2(n) and E3(n) also have probabilities bounded from below.
The three events are decreasing and therefore positively correlated. Hence, the probability of their
intersection is bounded below independently from n. Since the disks B(zn,

√
un) are disjoint, it

follows that the corresponding soups are independent. By Borel-Cantelli, there almost surely exist
an infinite set of n’s such E1(n) ∩ E2(n) ∩E3(n) occurs.

Hence there exists n such that all Ei(n) occur and Fn does not. Let z ∈ Cn ∩ B(zn, un), so
there is a path η1 from z to ∂B(zn, 2Run) that does not cross Γn. The loop η2 cannot lie entirely
inside D, so we can concatenate parts of η1 and η2 to construct a path η that connects z to ∂D,
lies inside B(zn, Run), and crosses no curve in Γn. Then E3(n) guarantees η crosses no curve in
Γ′
n, and finally, since Fn does not occur, η crosses no curve in Γ. Hence z ∈ C, so the approximate

carpet has almost surely dimension at least 2− α.
We have therefore completed the proof of the following fact:

Proposition 10. Under our subcriticality assumption, the dimension of the approximate carpet C
defined by ΓD is almost surely equal to 2− α.

Finally, we consider the dimension of the carpet G itself:

Proposition 11. Under our subcriticality assumption, the dimension of the carpet G defined by
ΓD is almost surely equal to 2− α.

Proof. Recall that C \K ⊂ G ⊂ C, where K is the union of all the loops in the loop-soup. Recall
also that subcriticality implies that the soup is thin, which ensures that for any given point z,
P (z ∈ K) = 0.

For each ǫ > 0, we can define the set C ′
ǫ = Cǫ \K. Note that C \K = ∩ǫ>0(Cǫ \K) = ∩ǫ>0C

′
ǫ.

Furthermore, for any given z, P (z ∈ Cǫ) = P (z ∈ C ′
ǫ). It follows easily that all first and second

moment estimates that we derived for Cǫ also hold for C ′
ǫ, so that dim(C \K) = 2−α with positive

probability. The proof of the 0-1 law also holds essentially unchanged and we conclude that the
Hausdorff dimension of G is almost surely equal to 2− α.

4 Approximating low-density carpets

4.1 The “remaining set”

Consider a subcritical thin loop-soup in a bounded domain D as before with intensity µ. Recall Oj

are the interiors of the loops in the soup, and define F = D \ ∪jOj . F is what we informally call
“the remaining set”. We emphasize that a priori (and in reality) its dimension should be larger
than that of the approximate carpet. Indeed, a typical point in F will be surrounded by infinitely
many chains of loops, and therefore not in the approximate carpet.

Lemma 12. [22] Recall the definition β = β(µ) = β(π) = π(A(γ)), the “expected” area surrounded
by γ. Then dim(F ) = max(0, 2 − β).
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This result was proved in John Thacker’s Ph.D. thesis [22] in the context of the Brownian loop-
soup. Since the general proof is essentially identical, we only give an outline. The proof is a direct
application of the second moment method, in the same spirit as before. Things are in fact simpler
here, since the loops do not interact, i.e. a point x is in the remaining set if and only no loop in
the Poisson point process belongs to the set of loops R(x) that do not surround x.

Proof. We define Fǫ to be the set obtained by removing from D only the interior of the set of
loops of diameter greater than ǫ in the soup, and we apply the second moment method (note that
F = ∩ǫFǫ). For a given z at positive distance from the boundary of D, the probability that z ∈ Fǫ

is equal to the probability that no loop with diameter greater than ǫ in the loop-soup has z in its
interior i.e. to

exp(−µD({γ : z ∈ O(γ), |γ| > ǫ})).
Using Lemma 1, it follows easily that, up to multiplicative constants that depend on |D| and on
the distance between z and ∂D, the probability that z ∈ Fǫ is comparable to ǫβ. This is the
first-moment estimate.

To bound the second moment, we take two points x and y, we define r = d(x, y)/2 and decom-
pose the loop-soup into three pieces: those loops that remain at distance less than r of x, those
loops that remain at distance less than r of y, and those loops that never come closer to 2r of the
midpoint between x and y. We then use the previous argument to deduce that the probability that
both x and y are in Fǫ is no larger than a constant times (ǫ/r)β × (ǫ/r)β × rβ.

A 0−1 type argument analogous to the one that we used for the approximate carpet completes
the proof.

4.2 Varying the intensity of a random soup

Suppose that µ is fixed measure as before, defined from a finite measure π as in Lemma 1. We are
now going to introduce a positive real parameter c, and consider for each value of c a soup with
intensity cµ (and its approximate carpet if it is a subcritical soup).

We can couple realizations of the soups for all c in an increasing manner, with richer soups for
larger c. To see this, one can for instance first define a Poisson point process ((γj , tj), j ∈ J) with
intensity µ⊗ dt on U × [0, t], and then for each c, define

Γc = (γj , j ∈ Jc) where Jc = {j ∈ J : tj ≤ c}

and note that Γc is a Poisson point process with intensity cµ.
For each value of c such that the approximate carpet C(c) is non-empty, its fractal dimension

d(c) is almost surely constant (the function d of course depends on the actual choice of µ). It is
easy to see (this follows for instance from our estimates on the remaining set) that when c is large,
then the approximate carpet is almost surely empty.

On the other hand, comparing the soup with a deterministic well-studied fractal percolation
model (see e.g. [23, 24]), one can show that when c is very small, the approximate carpet is almost
surely not empty. Hence, there exists a finite positive critical value c0 that separates these two
regimes (this is the origin of the “subcritical” terminology). It is in fact not difficult (at least when
the measure π is invariant under some rotations) to adapt the arguments developed for fractal
percolation to prove that the approximate carpet is not empty when c = c0 [24].

The goal of this section is to derive first-order estimates for the exponent d(c) when c →
0+. Intuitively, in this limit a loop in the soup will typically not intersect any other loop of
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comparable size. Therefore, the holes in the approximate carpet will look like the interiors of the
loops themselves, and this will lead to an approximation of its dimension in terms of the mean area
of the interior of loops under the measure π. The approximate carpet will be rather close to the
remaining set. We will prove:

Proposition 13. Let δ(c) be the dimension of the remaining set. When c → 0+, d(c) = δ(c) +
o(c) = 2− cβ(π) + o(c).

Note that clearly d(c) ≤ δ(c) because the approximate carpet is a subset of the remaining set.

4.3 Discovering the clusters one by one

We now describe different ways to “progressively” discover loops and clusters in a loop-soup.
Consider the soup in some bounded domain D. It contains countably many curves γi, which can

be ordered in decreasing order of their diameter, so |γ1| > |γ2| > . . . (it is trivial to check that no
two loops can have exactly the same diameter). This induces an ordering of the clusters of curves
in the soup. We start with γ1 and consider its cluster K1 = C(γ1,Γ), as defined in section 2.3. Then
we take the smallest i such that γi is not contained in K1 and consider its cluster K2 = C(γi,Γ),
and so on. This yields an ordering of the loop-clusters. Again, it is possible to discover γ1, γ2, . . .
progressively using the properties of Poisson point processes. In particular, the conditional law of
γn, γn+1, . . . given γ1, . . . , γn−1 is simply that of a Poisson point process of loops (ordered according
to their diameter) with intensity µD(dγ)1|γ|<|γn−1|. In fact, we are now going to make a variation
of this exploration procedure, where K1, K2 etc are discovered one by one.

Conditionally on γ1 and K1, the law of all other curves in the soup (not contained in K1) is
the same as the law of a standard soup with components required (i) to have size smaller than γ1
and (ii) not to cross K1. Hence the soup clusters admit the following equivalent description (all
the soups involved have intensity shape measure cπ):

• Generate the soup Γ′, let γ1 be the largest diameter curve in Γ′.

• Generate the soup Γ1 (independent of Γ′), let Γ′
1 be the subset of curves in Γ1 that have

diameter smaller than γ1, and let K1 = C(γ1,Γ′
1) be the cluster of γ1 inside Γ′

1 ∪ {γ1}.

• Let γ2 be the largest diameter curve in Γ′ that does not meet K1

• Generate the soup Γ2 (independent of Γ′, Γ1), let Γ
′
2 be the subset of curves in Γ2 that have

diameter smaller than γ2 and do not intersect K1, and let K2 = C(γ2,Γ′
2) be the cluster of

γ2 inside Γ′
2 ∪ {γ2}

• and continue inductively.

This construction may seem unwieldy, as it requires countably many new soups to construct one,
but it will soon prove to be useful. To summarize our exploration procedure:

Proposition 14. Let Γ′,Γ1,Γ2, . . . be independent loop soups with intensity cµD on a bounded
domain D. For each n ≥ 1, we define recursively a curve γn, a set of curves Γ′

n, and a cluster Kn

as follows:

• γn is the largest diameter curve in Γ′ that does not intersect ∪n−1
i=1 Ki
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• Γ′
n is the set of curves in Γn that have diameter smaller than γn and do not intersect ∪n−1

i=1 Ki

• Kn = C(γn,Γ′
n) is the cluster of γn inside Γ′

n ∪ {γn}

Then the sequence (Kn)n≥1 has the same law as the clusters of a soup of intensity cµD (ordered in
decreasing order of the largest curve they contain).

Hence we can generate soup clusters of a soup by starting with a soup Γ, selecting a subset of
its curves, and “attaching” to each certain subsets of independent soups Γi. If we attach instead a
larger subset or even the whole soup Γi, then this can only decrease the size of the corresponding
carpet. This is what we will do in the next subsection.

4.4 Coupling with a “soup of overlapping clusters”

To formalize this idea, let us first consider the product measure π⊗ Pc, on pairs (γ,Γ) of one loop
(“sampled” from π) and one loop-soup with intensity cµ in the entire plane. We have seen that
we can choose the finite measure π in such a way that it is supported on the set of loops of diameter
1 contained in the square [−1, 1]2. Let Γ′ be the set of all curves in Γ that have diameter smaller
than 1 and let γ∗ be the “filling” of the cluster of γ ∪ Γ′ that contains γ (i.e. the closure of the
complement of the unbounded connected component of the complement of the cluster). We denote
by π∗

c the measure under which γ∗ is defined.

Lemma 15. • When c is small enough, then π∗
c (A(γ∗)) < ∞. We denote this quantity β∗(c).

• When c → 0+, β∗(c) converges to β(π).

• There exist c1 and k such that for all c < c1 and all x > 4, the probability that there exists a
cluster in Γ′ that crosses the ring {z : 4 < |z| < x} is bounded by kx−4.

Proof. Consider some c0 > 0 so that the loop-soup Γ(c0) with intensity c0µ is subcritical. We know
there exists some R > 4 such that the probability p that no cluster in Γ(c0) traverses the ring
{z : 4 < |z| < R} is strictly positive.

For any k, Γ(c0) can also be constructed as the union of k independent soups of intensity
c1 = c0/k. Hence we can find a sufficiently large k so that the probability that the loop-soup Γ(c1)
with intensity c1µ contains a cluster that crosses the ring is smaller than 1− p1/k ≤ R−4.

Using scale-invariance, it follows that for all l ≥ 1, the probability that Γ(c1) contains a cluster
that crosses the ring Al = {z : 4Rl < |z| < Rl+1} is smaller than R−4. Clearly, the same is true
if one looks only at the loop-soup Γ′ consisting only of the loops in Γ of diameter smaller than
1. But the events that Γ′ contains a cluster that crosses the ring Al for l = 0, 1, 2, . . . are in fact
independent: they depend only on those loops that intersect each of the rings, and these sets of
loops are disjoint since all loops have diameter smaller than 1. We conclude that the probability
that a cluster of Γ′ crosses the ring {z : 4 < |z| < Rl} is bounded by R−4l. This immediately
implies the last item of the lemma.

Since π is supported on loops of diameter 1 in [−1, 1]2, for c ≤ c1 and all l ≥ 1, we have

π∗
c ({|γ∗| > Rl}) ≤ ‖π‖ ×R−4l

and therefore π∗
c (A(γ∗)) ≤ 4π∗

c (|γ∗|2) < ∞.
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Finally, observe that if we couple the realizations of Γ′(c) for all c, then almost surely γ∗(c)
converges to the filling of the initial loop γ when c → 0+, as all other loops disappear. This follows,
for instance, from the fact (proved using the same argument as above) that for any given ring
{z : 4u < |z − z0| < Ru}, the probability that a loop-soup cluster of Γ(c) crosses the ring goes to
zero as c goes to 0. We conclude, using monotone convergence, that

lim
c→0+

π∗
c (A(γ∗)) = π(A(γ)) = β(π).

We now construct the measure µ∗
c from µ similarly to the way π∗

c was constructed from π:
Consider the product measure cµ ⊗ Pc, on pairs (γ,Γ) of one loop (“sampled” from cµ) and one
loop-soup with intensity cµ in the entire plane. Let Γ′(γ) be the set of all curves in Γ that have
diameter smaller than γ and let γ∗ be the “filling” of the cluster of γ ∪ Γ′(γ) that contains γ. We
denote by µ∗

c the measure under which γ∗ is defined. Clearly, scale-invariance and translation-
invariance of µ (and of the loop-soup) imply that µ∗

c is also scale-invariant, translation-invariant,
and that it can be constructed (as in section 2) from π∗

c (note that the previous lemma ensures
that π∗

c (|γ∗|2) < ∞).
In fact, this definition makes it possible to define a Poisson point process of pairs (γj , γ

∗
j ) i.e.

to couple a loop-soup with intensity cµ with a loop-soup with intensity µ∗
c in such a way that for

each j, γj ⊂ γ∗j (basically, each loop γj is extended by an independent soup of loops of smaller
diameter in the whole plane). If we keep those γj that are in a domain D, we get a loop-soup ΓD

with intensity cµD. But mind that the corresponding γ∗j ’s do not necessarily stay in D. However,
they are not likely to be very large, as we now show. To keep things simple, we assume for the rest
of this section that D is the unit disk; we can do this without loss of generality, since the dimension
of the carpet does not depend on the domain.

Lemma 16. Let c0 and R be defined as in the proof of Lemma 15, and consider the coupling
(γj , γ

∗
j ) defined above. If c is small enough, then the probability that for all j such that γj ⊂ D, the

diameter of γ∗j does not exceed 2R is strictly positive.

Proof. This is in fact a simple consequence of the last statement of Lemma 15. It suffices to show
that the set

{(γ, γ∗) : |γ∗| > 2R, γ ⊂ D}
has finite mass. Note that because of scale-invariance, the µ-mass of the set of loops in D with
diameter between 2−l−1 and 2−l grows slower than O(22l) as l → ∞. But as

∑

l 4
l × (2−l/2R)−4

converges, the lemma follows readily.

We are now ready to prove the following lemma that will enable us to conclude the proof of
Proposition 13.

Lemma 17. Let ΓD be a subcritical soup with intensity cµ in the unit disk, and let Cǫ defined as
before. For c small enough, there exists a constant k such that for all small ǫ, P (0 ∈ Cǫ) ≥ kǫcβ

∗(c),
where β∗(c) = π∗

c (A(γ∗)).

Proof. Let us consider the construction of the loop soup clusters (Kn) in D described in Proposition
14. Clearly, if we compare it with the coupling that we have just described, we can choose our
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coupling (γj , γ
∗
j ) in such a way that each Kn is in fact a subset of one of the γ∗j ’s with γj ⊂ D. One

therefore has
P (0 ∈ Cǫ) ≥ P (E′)

where E′ denotes the event that none of the sets γ∗j with γj ⊂ D surround the disc of radius ǫ (this
is because each cluster in the initial loop-soup is contained in some γ∗j ). This last event depends
on the Poisson point process of pairs (γj , γ

∗
j ) only.

Let E′′ denote the event that that for all j such that γj ⊂ D, one has γ∗j ⊂ (4R) · D. Recall
from the previous lemma that this event has a positive probability (provided c is small enough).
Let E′′′ denote the event that none of the sets γ∗j that are subsets of 4RD and of diameter greater
than ǫ surround the origin. This event is independent of E′′, as they occur for disjoint set of pairs
(γ, γ∗). Note that E′′′ ∩ E′′ ⊂ E′ ∩ E′′. Hence,

P (E) ≥ P (E′ ∩E′′) ≥ P (E′′′ ∩ E′′) = P (E′′′)P (E′′).

It therefore remains to estimate P (E′′′). This is equivalent to an estimate concerning the remaining
set of the Poisson point process of sets (γ∗) in (4R) ·D, and is obtained just as for the first-moment
estimate in Lemma 12.

We can now conclude the proof of Proposition 13. Recall that d(c) ≤ δ(c) = 2− cβ(π) because
the remaining set contains the carpet. On the other hand, the previous lemma and the definition
of β(π) show that the α = 2 − d(c) corresponding to the loop-soup with intensity cπ is not larger
than cβ∗(c) = cβ(π) + o(c).

4.5 Consequences for the Brownian loop-soup

As we have already mentioned, in the case of the Brownian loop-soup, the connection between
the boundaries of clusters derived in [20, 21] (see also [23]) and the Schramm-Loewner Evolutions
make it possible to describe the carpet via branching SLE-type paths [19]. Schramm, Sheffield and
Wilson [18] computed in fact the “expected dimension” of the carpet, and our paper shows that
this “expected dimension” (the quantity that governs the first moment) is equal to the almost sure
Hausdorff dimension d(c). Combining all these results, the expression derived in [18] implies that
for c ≤ 1,

d(c) = 2− (3κ − 8)(8 − κ)

32κ

where c and κ are related by the “usual” relation c(κ) = ((3κ − 8)(6− κ))/(2κ). It follows that

d(c) = 2− c

16
− 1

96

(

5 + c−
√

25 + c2 − 26c
)

.

Note that d(c) = 2 − c/10 + o(c). As explained in [22] (in the context of the remaining set), the
coefficient of the first order term c/10 is closely related to the mean area of the Brownian loop
computed in [7].

Recall [1, 9] that the Hausdorff dimension of the SLEκ curve is almost surely equal to 1 + κ/8.
Hence, in the Brownian loop-soup case, we also know the dimension of the boundary of the carpet.
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