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Abstract. The von Mises-Fisher distribution is widely used for modeling directional
data. In this paper we derive the discriminant rules based on this distribution to assign
objects into pre-existing classes. We determine a distance between two von Mises-Fisher
populations and we calculate estimates of the misclassification probabilities. We also analyse
the behavior of the distance between two von Mises-Fisher populations and of the estimates
of the misclassification probabilities when we modify the parameters of the populations or
the samples size or the dimension of the sphere. Finally, we present an example with real

spherical data available in the literature.
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1 Introduction

Directional statistics has been developed by many authors, for instance by Watson (1983),
Mardia and Jupp (2000), Fisher, Lewis and Embleton (1987), Fisher (1993), Stephens (1982,
1992) and Jammalamadaka and SenGupta (2001). Discriminant Analysis for directional
data was treated in the literature by Morris and Laycock (1974) and by El Khattabbi and
Streit (1996) for circular data and spherical data. Figueiredo and Gomes (2006) considered
discriminant analysis based on the Watson distribution defined on the hypersphere. The
aim of this paper is to give discriminant rules based on the von Mises-Fisher distribution.
We also determine a distance between two von Mises-Fisher populations with the same con-
centration parameter or distinct concentration parameters. As the misclassification proba-
bilities cannot be obtained in closed form in the case of von Mises-Fisher populations, we
determine estimates of these probabilities for several dimensions of the sphere, by genera-
ting samples from the von Mises-Fisher populations. For the particular case of the Fisher
distribution, Morris and Laycock (1974) determined some expressions for the misclassifica-
tion probabilities. We also analyse the behavior of the distance between the populations
and of the misclassification probabilities estimates when we modify the parameters of the
populations or the samples size or the dimension of the sphere.

In Sec. 2 we recall the von Mises-Fisher distribution; in Sec. 3 we consider discriminant
analysis for the von Mises-Fisher distribution; in Sec. 4 we determine the distance between
two von Mises-Fisher populations and the estimates of the misclassification probabilities
for several values of the parameters of the populations, several samples sizes and several

dimensions of the spheres; and finally in Sec. 5 we give an example with real spherical data.

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca
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2 von Mises-Fisher distribution

The von Mises-Fisher distribution on the unit sphere in RP, S, ; = {x € R? : x'x =1} is

usually denoted by M, (p, ) and has probability density function given by
f(xp,6) =c¢p(k)exp (kx'p) x€Sp_1, pES,_1, >0, (2.1)

where the normalising constant is given by

(NS

-1

¢p (k) = f— 2.2
= et 1 (0 2

with I, denoting the modified Bessel function of the first kind and order v defined by
1 2w
I, (k) = —/ cos e %40, (2.3)
2 0

The parameter p is the mean direction and the parameter x specifies the concentration
around p. The parameter p is also the mode and —p is the antimode (provided that
k > 0). The distribution is rotationally symmetric about g (Mardia and Jupp, 2000, p.
179).

The distribution M, (p, k) for the particular case of p = 3 is called the Fisher distribution
and for the particular case of p = 2 is called the von Mises distribution.

If x comes from M, (p, ) and U is a non-random orthogonal matrix, then Ux comes from
M, (U, k).

If x comes from M, (u, k) then for large x:

26 (1—x'p) ~ x2_ 1. (2.4)

(See Mardia and Jupp, 2000, p. 172).
Let (x1, X2, ...,X,) be a random sample of size n from the von Mises-Fisher distribution

M, (p, k) . Let R be the mean resultant length of the sample defined by R = ||%|| = (x'x)"2,

3
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n
where X is the sample vector mean of (x1,x9,...,x,) defined by x = )" x; /n.
i=1

The maximum likelihood estimator of p is the sample mean direction, that is g = X /||X||

and the maximum likelihood estimator of x is the solution of the equation A, (k) = ||X||,

where the function A, (k) is defined by

¢ (k) 1z ()
; cp (K) B Ig—1 (8)

(2.5)

(See Mardia and Jupp, 2000, p. 198).

3 Discriminant Analysis

We suppose without loss of generality, two von Mises-Fisher populations, P; : M, (p, k1)
and P : My, (po, k2). Let (Xi1, ..., Xin;) be the sample from the population 4, i = 1,2. Next,
we suppose that the parameters of the populations (p;, %;) , ¢ = 1,2 are known. When these
parameters are unknown, it is usual to replace them by their maximum likelihood estimates
obtained from the respective samples.

The density function of the ith population is given by
fi (X) =Cp (Ki)eXp (K"L'IJ’;'X) , X€ Sp—la Ki > Oa JI7RS Sp—la (31)

where the normalising constant ¢, (x;) is defined by (2.2).

Our aim is to define a discriminant rule to assign a new object into one of the po-
pulations, that is, we want to divide the discriminant space into mutually exclusive and
exhaustive regions R; and Ry, in order that any given object is classified into the popula-
tion into whose region it falls.

Let m; (1 = 1,2) be the prior probability associated with the ith population; C (i|j) is the

cost of classifying incorrectly an object from the jth population into the ith population (i,

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca
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j=1,2, 1 # j); P(i|lj) is the probability of misclassifying an object from the jth population

into the ith population (7, j = 1,2, i # j) defined by

P(il) = P(xe RixeP) = [ f(xax (3.2)

and C be the total cost of misclassification.
The Bayes rule that minimises the expected cost of misclassification E(C') defined by
E(C)=C(2]1)P(2|1)m + C(1|2)P(1]|2)7, is the following:

Assign x to population 1 if
C)f (x)m = C(1]2) f2 (x) 2 (3.3)

and to population 2, otherwise (see for instance, Johnson and Wichern, 1992, p. 557).
Substituting for fi (x) and fo (x) in (3.3), the Bayes rule is given by

Assign x to My, (p, k1) if

C (1|2) Uy
_ 'x+1n 2 (k1) 1 3.4
(K‘ll“l'l HQ/“LQ) x+1In c (HQ) n C (2|1) T ( )
and to M, (po, k2) otherwise.
Denoting the discriminant function by Wis, i.e.
¢y (k1) C (2]1) m
Wiz = = 'x +In-> 3.5
12 = (K1p—Kapo) X + ncp (r2) C (112) 7’ (3.5)

the discriminant regions R; and Ry are given as

R, = {XE Sp_l : Wis 20}

Ry = {XESp_l:W12<0}.

A measure of the distance between two populations, referred in Morris and Laycock

(1974) and used by El Khattabi and Streit (1996), which is equivalent to Mahalonobis’s D?
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in the multivariate normal case, is defined by

D=FE(Wp|xe€P)—-E(Wp|xe D). (3.6)
If x comes from the von Mises-Fisher distribution M, (i, k), then

E (x) = pp,

where p = A, (k) with the function A, (k) defined by (2.5) (Mardia and Jupp, 2000, p.
169). Note that for p = 3, the function A, (k) may be calculated as A, (k) = cothx — <

(Mardia and Jupp, 2000, p. 169).

Then,
¢y (k1) C (2]1) mp ,
= In-2 A —
E (Wialx € 1) nc,, (1) C (112) 72 + Ay (K1) (K1pey — Kapeo) py
¢y (k1) C (2]1) m ,
E(W P) = In-2 A —
(Wiz|x € P») Dcp (h2) C (112) 7 + Ay (K2) (K1py — Kapg)' py

and consequently, the distance D is given by

D = (ki — Kaps) (Ap (k1) py — Ap (k2) pa) - (3.7)

If the two populations have the same concentration parameter, i.e., kK1 = k3 = kK, the

distance D simplifies to
D = rAp (k) (11 — o) (g — o) - (3.8)
The probabilities of misclassification are defined by

P(12) = P (Wi > 0x € P)

P(2|1) = P(W12 < 0|X € Pl) .

As we can not obtain any closed expressions for these misclassification probabilities in the

case of the von Mises-Fisher distribution, we estimate them in some cases in the next

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca
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section. These probabilities can also be represented, as an integral, which can be calculated
numerically. Morris and Laycock (1974) expressed these misclassification probabilities in
terms of an integral in the cases of p = 2 and p = 3. In the next section we determine the
misclassification probabilities for p = 2. For the calculation of the integrals we have used
the algorithm proposed in Hill (1977) or alternatively, we could have used the tables of the
distribution function for the von Mises distribution given for instance, in Mardia and Jupp
(2000), Appendix 2.

For k von Mises-Fisher populations, the discriminant functions are given by

¢, (ki) C (i|7) 7;
Wj':(mjﬂj_ﬁiﬂi)lx-i-lncp( 3) € (ilj) m;

4 7 (3

and the discriminant regions are defined by
R; ={X€Sp_1 Wi >0, i=1,..,k, i£j}.

It is enough to use £ — 1 functions for defining the discriminant regions, provided that
k —1 < p; we may use for instance, the discriminant functions Wy;, j = 2,..., k.
We have not presented the previous results for the particular cases of p = 2 and p = 3

because they were already considered in Morris and Laycock (1974).

4 Estimates of the misclassification probabilities

and distance between the two populations

We have investigated the above procedures by a large Monte Carlo study. We have con-
sidered two von Mises-Fisher populations Py : M), (py,k1) and Py @ My (p9, K2), with
known parameters. We have supposed the two populations with equal prior probabilities:

m1 = ma = 0.5 and equal costs of misclassification: C'(1|2) = C(2|1). We have considered the

7
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following dimensions of the sphere: p = 2, 3,4, 10, and for each p, we have taken the mean
!
directions: p, = (0,...,0,1)" and p, = (0,0, ey (1 — cos? 9) 1/2 , COS 0) , supposing that the

angle 0 between these directions is equal to 0°(30°)180°. The results only depend on g,

©CoO~NOUTA,WNPE

10 and py through their angular separation 6 = acos(p).p9). We have supposed the following

two cases:
e Populations with equal concentration parameters: k1 = k9 = K, with k = (3), 5, 10, 15(20).

19 e Populations with different concentration parameters: k1 # ko, k1 = 5, ko = 10,15,20(25).
21 (We have considered only k1 < kg, because if kK1 > kg, the distance D and the esti-

23 mates of the misclassification probabilities are identical).

29 For both cases, we have estimated the misclassification probabilities P (2|1) and P (1]2)
31 by the misclassification proportions in 10 000 observations generated from P; and P, popu-
33 lations, respectively, and then we have calculated the average of these proportions to obtain
36 an estimate of the total misclassification probability. When the two populations have the
38 same concentration parameter k1 = kg, then the misclassification probabilities P (2|1) and
40 P (1]2) are equal (or approximately equal, if these are estimated), but when k; # ko, the
43 misclassification probabilities are not equal because in this case, the probability of assigning
45 an observation to the population with greater concentration parameter is the larger (see
a7 the expression (4.2)).

For generating observations from the von Mises-Fisher distribution, we have used the

52 method given in Wood (1994).

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca
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4.1 Populations with equal concentration parameters

In this case the discriminant function defined by (3.5) reduces to

Wiz = K (1 —po)' x. (4.1)

The values obtained for the distance D defined by (3.8) and for the estimates of the
misclassification probabilities for some values of the angle 6(°) = 30,60, (90)120, (180) and
k= (3),5,10, 15, (20) are indicated for p = 2, 3,4 in Tables 1-3. See also figure 1.

As expected, for each p and fixed 8, when k increases, the estimated misclassification
probabilities decrease, tending very quickly to 0 and the distance D between the populations
increases.

For each p and fixed x when the angle 6 increases, the estimates of the misclassification
probabilities decrease and the distance D between the populations increases.
For fixed k and 6, as the dimension of the sphere p increases, the estimated misclassification
probabilities increase and the distance D between the populations decreases.
We have also observed that in the case of p = 2, for each 0, k, the estimated misclassification

probabilities are close from the theorical misclassification probabilities.

4.2 Populations with different concentration parameters

In this case the discriminant function defined by (3.5) reduces to

Cp \K
Wio = (Iﬂ?l/.tl—KQ/.LQ)IX—F IHM. (4.2)

¢p (K2)
The values obtained for the distance D defined by (3.7) and for the estimates of the mis-
classification probabilities for for some values of the angle 6(°) = 30,60, (90)120, (180) and

k1 =5, ko = 10,15,20(25), are indicated for p = 2, 3,4 in Tables 4-6. See also figure 2.

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca
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Table 1: Misclassification probabilities and distance D between the two populations

©CoO~NOUTA,WNPE

for p =2

10 — —

11 0(°) ~ P(12)=P2[1) P(1)2)=P(2)1) D

13 3 0.384 0.334 0.036
16 30 5 0.278 0.285 0.317
18 10 0.156 0.208 1.309

21 15 0.099 0.158 2.374

23 3 0.187 0.197 1.299
26 60 5 0.094 0.131 3.017
28 10 0.026 0.053 7.431

31 15 0.009 0.023 11.947

33 3 0.098 0.104 3.556
6 90 5 0.032 0.049 7.192
38 10 0.003 0.009 16.480

15 0 0.002 25.914

43 3 0.056 0.049 6.392

120 5 0.012 0.015 12.252

48 10 0 0.001 26.722

15 0 0 41.263

55 For each dimension of the sphere p, for fixed k1 and 0, when k9 increases, the mis-

57 classification probabilities estimates decrease and the distance D between the populations

60 10

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca



©CoO~NOUTA,WNPE

Communications in Statistics - Simulation and Computation

Table 2: Estimates of the misclassification probabilities and distance D between the

two populations for p = 3

o —

8°) k P(1]2) P(2]1) Average D
5 0.298 0.298 0.298 1.072
30 10 0.216 0.215 0.216 2.411
15 0.162 0.161 0.162 3.751
20 0.126 0.126 0.126 5.091
5 0.149 0.145 0.147 4.000
60 10 0.060 0.059 0.060 9.000
15 0.026 0.026 0.026 13.999
20 0.012 0.012 0.012 18.999
5 0.024 0.023 0.024 12.001
120 10 0.001 0.001 0.001 27.000
15 0 0 0 41.999
20 0 0 0 56.999
5 0.007 0.007 0.007 16.002
180 10 0 0 0 36.000
15 0 0 0 56.000
20 0 0 0 76.000

increases.

For each p, for fixed k1 and ks, as the angle 0 increases, the estimated misclassification

probabilities decrease and the distance D between the populations increases.

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca
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Table 3: Estimates of the misclassification probabilities and distance D between the

two populations for p = 4

——

0(°) k P(1]2) P(2[1) Average D

©CoO~NOUTA,WNPE

11 o 0.308 0.308 0.308 0.963
13 30 10 0.219 0.223 0.221 2.288
16 15 0.165 0.167 0.166 3.625

18 20 0.129 0.130 0.130 4.963

21 5 0.158 0.160 0.159 3.595
23 60 10 0.062 0.065 0.064 8.549
15 0.027 0.028 0.028 13.529

28 20 0.013 0.014 0.014 18.519

) 0.032 0.033 0.033 10.785

33 120 10 0.002 0.002 0.002 25.620

15 0 0 0 40.589

38 20 0 0 0 55.559

5 0012 0012  0.012 14.380
43 180 10 0 0 0 34.160
45 15 0 0 0 54.120

48 20 0 0 0 74.080

For fixed k1, k9,0, when p increases, the estimates of the misclassification probabilities in-
55 crease and the distance D between the populations decreases.

57 We have also observed that in the case of p = 2, for each 6, k1, k9 and unless § = 30°,

60 12
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Figure 1: Estimate of the total misclassification probability and distance D between

the two populations

the estimated misclassification probabilities are close from the theorical misclassification

probabilities.
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Table 4: Misclassification probabilities and distance D between the two populations

©CoO~NOUTA,WNPE

for p =2

10 —

11 0(°) k1 Ky P(1]2) P(2|1) Average P(1]2) P(2|1) Average D

13 10 0.114  0.144 0.129 0.253  0.321 0.287  1.141
16 30 5 15 0.069 0.084  0.077 0200 0312  0.256  1.794

18 20 0.049  0.050 0.050 0.153  0.298 0.225 2.414

21 10 0.034 0.012 0.023 0.041 0.113 0.077 5.710
23 60 5 15 0.019 0.002 0.011 0.011 0.098 0.055 8.144

26 20 0.012 0 0.007 0.003 0.088 0.045  10.538

28 10 0.012 0.001 0.007 0.004 0.031 0.017  12.360
31 90 5 15 0.007 0 0.004 0 0.023 0.011 17.276

33 20 0.005 0 0.003 0 0.018 0.009  22.146

36 10 0.002 0 0.001 0 0.007 0.004  20.097
38 120 5 15 0 0 0 0 0.004 0.002  27.579

41 20 0 0 0 0 0.003 0.001 34.989

45 5 Example

48 We use the spherical data given in Wood (1982) (Table 2 in Schmidt, 1976) consisting of a
51 set of 33 estimates of a previous magnetic pole position of the earth obtained using palaeo-
53 magnetic techniques. Each estimate is associated with a different site, the 33 sites being
35 spread over a large area of Tasmania. Schmidt says that “the data appear to fall into two

main groups which are derived from two distinct geographical regions” .

60 14
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Table 5: Estimates of the misclassification probabilities and distance D between the

two populations for p = 3

—

0(°) K1 Ko P(1]2) P(2[1) Average D
10 0.188 0.305 0.247 2.325
30 5 15 0.136 0.270 0.203 3.566
20 0.107 0.240 0.174 5.260
25 0.088 0.215 0.152 6.520
10 0.084 0.117 0.101 6.750
60 5 15 0.053 0.094 0.074 9.658
20 0.036 0.079 0.058 12.630
25 0.026 0.068 0.047 15.590
10 0.009 0.009 0.009 19.250
120 5 15 0.004 0.005 0.005 26.327
20 0.002 0.003 0.003 33.380
25 0.001 0.002 0.002 40.390
10 0.001 0.002 0.002 25.500
180 5 15 0 0.001 0.001 34.660
20 0 0 0 43.750
25 0 0 0 52.800

In discriminant analysis we need to know a priori the groups of observations. The EM
(Estimation-Maximisation) algorithm proposed by Dempster, Laird and Rubin (1977) can

be used in many contexts and in particular, to estimate the parameters of a mixture of

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca
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Table 6: Estimates of the misclassification probabilities and distance D between the

two populations for p = 4

——

0(°) K1 Ko P(1]2) P(2[1) Average D

©CoO~NOUTA,WNPE

11 10 0.204 0.287 0.246 1.066
13 30 5 15 0.147 0.238 0.193 3.878
16 20 0.112 0.199 0.156 6.483

18 25 0.088 0.171 0.130 7.486

21 10 0.100 0.120 0.110 6.408
23 60 S5 15 0.066 0.092 0.079 9.475
20 0.046 0.072 0.059 15.171

28 25 0.034 0.059 0.047 15.777

10 0.014 0.013 0.014 17.868

33 120 5 15 0.007 0.007 0.007 24.770

20 0.004 0.004 0.004 31.621

38 25 0.003 0.003 0.003 38.470

10 0.002  0.003  0.003 923.595
43 180 5 15 0.001  0.001  0.001 32.420
45 20 0 0.001  0.001 41.125

48 25 0 0 0 49.800

distributions, more precisely to solve the likelihood equations. This algorithm also enables
55 us to obtain a partition of data into groups, which are required in discriminant analysis. So,

57 we have used this algorithm in this example to obtain a partition of the data into two groups

60 16
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Figure 2: Estimate of the total misclassification probability and distance D for k; = 5.

and also to estimate the parameters of the mixture of two Fisher distributions. This algo-
rithm was already applied to these data in Figueiredo (2008). The partition of data obtained
is the following: the group 1 contains the observations nos. 9,10,11,12,14,16,23,24,30 and

the group 2 contain the remaining observations. We note that these two groups obtained

17
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with the EM algorithm are the same groups suggested in Wood (1982).
Before applying discriminant analysis to these data, we check informally through chi-

-square Q-Q plots whether the two groups come from the Fisher distribution, because if an

©CoO~NOUTA,WNPE

10 observation comes from a Fisher distribution with large concentration parameter, then the
approximation (2.4) holds. We use in this approximation the maximum likelihood estimates
15 because the parameters of the populations are unknown. These estimates are given by
17 fi; = (—0.318,0.548,0.736) , ®; = 21.93 and fi, = (—0.623,0.104,0.775)", Ry = 33.97 and
19 were also obtained by the FM algorithm. The chi-square Q-Q plots obtained for these data
22 sets of size 9 and 24 are indicated in Fig.3. The fit to the Fisher distribution to each data
24 set seems reasonable, and so for illustrating discriminant analysis, we have used these two

samples.
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Figure 3: Chi-square Q-Q plots for the two samples

55 It is also important to check whether the two populations are distinct, before defining

the discriminant rule. So, we have used the two-sample Watson-Williams test (Mardia and
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Jupp, 2000, p. 219) which enables us to test the equality of the mean directions of the
two populations. The F-statistic test is equal to 21.579 and so, comparing with the 95%
percentage point of F5 gy distribution, which is equal to 3.145, we reject the null hypothesis
of equality of the two mean directions for the usual level of significance of 5%. As this test
assumes that the concentration parameters of the two populations are equal, we test this
hypothesis using the test given in Mardia and Jupp, 2000, p. 220-221. The F-statistic test is
equal to 0.8119 and comparing with the 97.5% percentage point of Fy¢ 46 distribution, which
is equal to 2.106, we do not reject the null hypothesis of equality of the two concentration
parameters for the usual level of significance of 5%.

In the discriminant rule defined by (3.4), we suppose equal costs of misclassification and
the parameters of the populations estimated by their maximum likelihood estimates. We
obtain the following discriminant function:

(K2) T2

C
Wio = //51/\ —752/\ 'x—i—ln P B~ 3
( 251 “2) o (Hl)ﬂ-l

where we consider the following estimates for the prior probabilities: 7 = 0.284 and
Ty = 0.716 also obtained through the EM algorithm in Figueiredo (2008).

First, for validating the discriminant rule, we calculate the apparent error rate, obtained as-
signing the two samples using this discriminant rule. The apparent error rate is 1/33 ~ 3%;
only the observation no. 1 was assigned wrongly. This error rate is biased, as the samples
used for obtaining the rule are assigned with the rule. So, next we determine the cross-
-validation error rate based on the “Leave-One-Out” (LOO) method proposed by Lachen-
bruch and Mickey (1968). The LOO method consists in the following: we remove one
observation from one of the samples and based on the remaining observations we obtain the
rule, which is used for assigning the removed observation; next, we remove another obser-

vation of the sample, and we determine the rule, which is used for assigning the removed

19
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observation and we repeat the process until all observations of the two samples have been
assigned. The error rate is the proportion of removed observations assigned incorrectly, and

we obtained for this error rate 1/33 ~ 3%. Again, the observation which is not assigned

©CoO~NOUTA,WNPE

10 correctly was the observation no. 1. The distance D given by (3.7) with the parameters
replaced by their maximum likelihood estimates is equal to 8.361. As the angle between the
15 estimates of the mean directions is approximately 34°, we can say that the value 8.361 is not
17 large, because based on the simulation study (Sec. 4.2), we know that the distance between
the two populations is not very large for a small angle (30°) and this distance increases as

22 the angle increases.
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