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ABSTRACT

We provide an estimation procedure of the two-parameter Gamma distribution based

on the Algorithmic Inference approach. As a key feature of this approach, we compute the

joint probability distribution of these parameters without assuming any prior. To this end we

propose a numerical algorithm which is often beneficial of a highly efficient speed up based on

an approximate analytical expression of the probability distribution. We contrast our interval

and point estimates with those recently obtained in Son and Oh (2006) for the same problem.

From this benchmark we realize that our estimates are both unbiased and more accurate,

albeit more dispersed, in some cases, than the competitor methods’, where the dispersion

drawback is notably mitigated w.r.t. Bayesian methods by a greater estimate decorrelation.

We also briefly discuss the theoretical novelty of the adopted inference paradigm which

actually represents a brush up on a Fisher perspective dating to almost a century, made

feasible today by the available computational tools.

1. INTRODUCTION

The Gamma distribution is a formidable touchstone for any inference framework. On
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the one hand it is widely employed in many application fields, ranging from reliability (Ju-

ran and Godfrey, 1999; Corp., 2009) to telecommunications (Titus and Wheatley, 1996),

insurance (Ammeter, 1970) and so on. On the other, the estimation of its parameters still

poses a challenging problem. Adopting an analogous notation as in Son and Oh (2006), we

introduce the Gamma distribution through its probability density function (PDF) applied

to the random variable X as follows 1:

fX(x) =
xα−1e−x/β

Γ(α)βα
, x > 0, α, β > 0, (1)

where α and β are respectively a shape and scale parameter. Of the conventional point

estimators, the one based on the method of moments (MM) is very simple but inefficient

as well – with some exceptions in asymptotic conditions (Wiens et al., 2003). Maximum

likelihood (ML) estimators may rely on a pair of joint sufficient statistics, but they are

penalized by the absence of a closed analytical expression. To overcome this drawback, we

find in the literature either approximate expressions (Thom, 1958; Greenwood and D., 1960)

or recursive procedures to get a numerical solution (Bowman and Shenton, 1988). With the

latter we work with a sequence of parameter values converging with some dynamics to the

planned estimators. With a dual perspective, other researchers adopt the Bayes approach to

collect a population of parameter estimators – possibly generated through a Gibbs sampler

(Ripley, 1988) or more sophisticated techniques (Gilks and P., 1992) – and deduce point

estimators as central values of this population.

Our work goes in the same direction, but without requiring to set any a priori distri-

bution of the parameters. We have implemented this kind of procedure in many inference

problems, mainly within the machine learning framework (Apolloni et al., 2008a) and in

specific operational fields such as survival analysis (Apolloni et al., 2007b), human mobility

modeling (Apolloni et al., 2007a) and statistical tests of hypotheses (Apolloni and Bassis,

2007). The goal of this paper is twofold: on the one hand we want to efficiently solve the

1By default, capital letters (such as U , X) will denote random variables and small letters (u, x) their

corresponding realizations; vectorial versions of the above variables will be denoted through bold symbols

(X,U ,x,u).

2
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questioned estimation problem as a distinguished inference task. To this aim, we show our

procedures to quickly compute accurate and unbiased estimators based on independent ap-

proximations of the unknown parameters. On the other hand, we would use this solution as

a business card to introduce our inference framework, which we call Algorithmic Inference,

to a more probability methodologically oriented audience and invite the reader to read more

widely about it in a couple of books we have published on the subject (Apolloni et al., 2008c,

2006). Therefore the paper is organized as follows. In Section 2 we introduce our method

from a strictly operational perspective, through definitions and a few logical links, having

the questioned inference problem as lead example. In Section 3 we apply the proposed

procedure to the same benchmark as Son and Oh (2006), contrasting our results with the

competitor methods considered therein. We devote Section 4 to a discussion of the benefits

of our approach and its connections to some inference strategies animating the debate since

the early 20th century, to conclude the paper.

2. COMPATIBLE PARAMETERS

Given a distribution law, think of its unknown parameters as random parameters. But,

in place of a specific prior distribution, they inherit probabilities from a standard source

of random seeds that are also at the basis of the random variables they are deputed to

characterize. Like with a barrel with two interlocking taps, through the former you get,

from the source, samples of the random variable for given parameters; while from the latter

you get samples of the parameters for given observed variables. You measure what happens

with the former and compute what would happen with the latter. The basic steps of this

twisting task are the following:

1. Sampling mechanism MX . It consists of a pair 〈Z, gθ〉, where the seed Z is a random

variable without unknown parameters, while the explaining function gθ is a function

mapping from samples {z1, . . . , zm} of Z to samples {x1, . . . , xm} of the random variable

X we are interested in. This function is indexed in θ which represents the not yet set

parameters of the random variable, i.e either a scalar value or a vector of values we want

to investigate. Thanks to the probability integral transformation theorem (Rosenblatt,

3
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1952) we have that, by using the uniform variable U in [0, 1] as a seed, the explaining

function gθ for X distributed according to (1) computes the following mapping:

xi = F−1
X (ui) (2)

where F−1
X is the inverse hα,β of the Gamma cumulative distribution function (CDF).

What is interesting is that β plays the role of a scale factor, such that hα,β = βh′α,

with h′α = hα,1. In turn h′α has an analytical, though complex, expression that may be

managed by widespread tools of symbolic computation. For instance in Mathematica

(Wolfram Research Inc., 2008) it is computed by the routine InverseGammaRegular-

ized[α, 0, u] where u is the argument of F−1
X . Not always U is the most appropriate

seed. For instance one prefers using the standard Gaussian variable Ψ as a seed of a

Gaussian variable X with mean µ and standard deviation σ through the explaining

function xi = (µ+ ψiσ), as F−1
X is unavailable in its exact form for this X.

All this falls in the common practice of random variable simulation. The benefit of

formalizing it in terms of sampling mechanism 〈Z, gθ〉 lies firstly in a clear partition of

what is out of our handling and what may be the object of our inference. We can say

nothing new about seeds {z1, . . . , zm}, since they are randomly tossed from a perfectly

known distribution; hence they are completely unquestionable as for the single value,

and completely known as for their ensemble properties. On the contrary, the explaining

function groups into θ the free parameters that we want to infer from the sample. As

for a second benefit, they are exactly the seeds that state links between observations

and parameters of a given X. We cannot say which value has θ, since we do not know

the seeds of the observations. Rather, we may transfer the probability mass of the

seeds from the sample to the parameters realizing the sample, as we will see in the

next point.

2. Master equations. The actual connection between the model and the observed data is

tossed in terms of a set of relations between statistics on the data and unknown parame-

ters that come as a corollary of the sampling mechanism. We call these relations master

4
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equations. Pivoting around the statistic s = h(x1, . . . , xm) = h(gθ(z1), . . . , gθ(zm)),

where s and h are vectors in their general instantiation, the general form of a system

of master equations is:

s = ρ(θ; z1, . . . , zm). (3)

With this relation we may inspect the values of the parameter θ that could have

generated a sample with the observed statistic s from a particular setting of the seeds

{z1, . . . , zm}. Hence, if we draw seeds according to their known distribution – uniform

in our case – we get a sample of parameters in response (Apolloni et al., 2006). In

order to ensure this sample clean properties, we involve sufficient statistics w.r.t. the

parameters (Stigler, 1973) in the master equations. In greater detail, with Gamma

distributions we refer to the jointly sufficient statistics s1 =
∑m

i=1 xi and s2 =
∏m

i=1 xi,

which we prefer to represent through s1 and s3 = s2/s
m
1 so that the master equation

on s3 depends only on α. Namely, we will use the following set of master equations:

s1 = β
m∑

i=1

h′α(ui) (4)

s3 =

∏m
i=1 h

′
α(ui)

(
∑m

i=1 h
′
α(ui))

m (5)

3. Parameters population. Having fixed a set of master equations, you may draw seeds in

an infinitely large number so as to map from a population of seeds into a population

that is representative of the random parameter Θ. The specific features of the mapping

translate the uniform distribution of the former into a properly shaped distribution

of the latter. In this way we obtain the graph in Figure 1 which reports the joint

empirical distribution law of the random parameters A and B on the basis of the male

mice dataset of Gross and Clark (1975) (G&C dataset henceforth), consisting of the 20

randomly selected survival times of male mice exposed to 240 rads of gamma radiation

as listed in Table 1.

On the one hand we have no problem realizing that the mentioned probability distribution

transform may occur, provided that some properties are owned by the involved statistics,

5
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152 152 115 109 137 88 94 77 160 165

125 40 128 123 136 101 62 153 83 69

Table 1: Male mice dataset of Gross and Clark (1975).

20

40

60

10

20

30

0.

0.01

0.02

0.03

β

α
fA,B

Figure 1: Empirical joint density function of the A and B parameters of Gamma distribution

laws that are compatible with G&C dataset, on the basis of 10, 000 bootstrap replicas.

such as the univocal invertibility of (3) w.r.t. θ or the feasibility of the inversion solution. We

formally denoted a statistic with these properties as well behaving in Apolloni et al. (2008c)

and realized that a statistic whose components are jointly sufficient is well behaving. On the

other hand, the value of the new distribution stands in measuring a compatibility feature

of the found parameters with the observed statistic that we formalize through the following

definition.

Definition 1. For a random variable X and a sample drawn from it, a compatible distri-

bution is a distribution having the same sampling mechanism MX = 〈Z, g
θ̆
〉 of X with a

value θ̆ of the parameter Θ derived from a system of master equations (3) rooted on a well

behaving statistic s. In turn, θ̆ is a Θ value compatible with the sample.

As for the algorithms implementing the above procedure, we distinguish a numerical

implementation from an analytical counterpart, leaving room for any intermediate specifica-

tion. The lead example developed till now is an instance of the following Algorithm 1 that

we call p-bootstrap in order to both evoking the original idea of Efron and Tibshirani (1993)

6

Page 7 of 49

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

and highlighting the fact that we bootstrap population parameters and not samples.

Algorithm 1 Generating parameter populations through bootstrap.

1. Identify a well behaving statistic S for the parameter θ and the related system of

master equations;

2. compute a realization sΘ of S from a sample of size m;

3. repeat for a satisfactory number n of iterations:

(a) draw a sample z̆i of size m from the seed deputed random variable;

(b) get θ̆i = Inv(sΘ, z̆i) as a solution of (3) in θ̆ with s = sΘ and (z1, . . . , zm) = z̆i;

(c) add θ̆i to Θ population.

Since we have no limits to the number of seed replicas – apart from the computational

time we are allowed to spend – we may approximate with any accuracy probabilities of

events related to the parameters through the companion frequencies. We just highlight the

different role of the sample size decreeing the shallowness of the parameter distribution, from

the number of replicas determining the accuracy with which this distribution is computed.

Figure 1 was obtained exactly with this procedure, where we numerically realize that in-

version of (5) is univocal since s3 results to be a monotonically increasing function of α for

whatever seeds {u1, . . . , um} we checked.

Things go better, as for computational loads, if we may identify the analytical form

of the above distribution. In our case, the two master equations together with the well

behaving-ness of s1 and s3 guarantee that for both distributions we may state the following

relationships:

s1 ≤ s̃1 ↔ β ≤ β̃ ∀α (6)

s3 ≤ s̃3 ↔ α ≤ α̃ (7)

where s̃1 is the value of the statistic we would have observed if the parameter had moved to β̃

in the master equation (3) for the same specifications {z1, . . . , zm} of Z and the same α, and

7
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similarly for s̃3 but independently of β. Summing up these implications over all seeds and

maintaining fixed s1, s3, α̃, β̃, we have analogous relationships between events (see Apolloni

et al. (2006) for a wider discussion):

(s1 ≤ S̃1) = (B ≤ β̃) ∀α (8)

(s3 ≤ S̃3) = (A ≤ α̃) (9)

Hence, moving to probability we have:

FB|A=α(β) = 1 − FS1
(s1) = Q(αm, s1/β) (10)

FA(α) = 1 − FS3
(s3) ∼ Q(φ1(α), s3φ2(α)) (11)

where Q(a, z) denotes the regularized incomplete Gamma function (Chaudhry and Zubair,

2001) and φ1, φ2 are suitable functions we are going to introduce. Namely, while S1 follows

a Gamma distribution with parameters mα and β, the distribution of S3 has no immediate

analytical closed form. If we read it in terms of the product of Dirichlet components, its

distribution – while treatable for m = 2 (Nadarajah and Kotz, 2004) – becomes computa-

tionally costly with higher sample sizes, mainly due to its characterization in terms of the

Fox’s H-function (Garg et al., 2002) or its derivatives (Coelho and Mexia, 2007). Thus,

abandoning the search for an exact analytical form, we find again in the Gamma distribu-

tion a good candidate function for approximating FS3
. Then, with the mentioned limits of

MM estimators for this distribution, we exploit the relative ease of computing the first and

second S3 moments (Nadarajah and Kotz, 2004), and obtain an approximate distribution of

A by plugging in the above approximating function the MM estimators, say (t1, t2), of its

parameters:

t1 = φ1(α) =

(
Γ(α)m−1Γ(α+ 1)2−2mΓ(α+ 2)m−1Γ(αm+m− 1)2

Γ(αm)Γ((α+ 2)m− 2)
− 1

)−1

(12)

t2 = φ2(α) =

(
Γ(α+ 1)1−mΓ(α+ 2)m−1Γ(αm+m− 1)

Γ((α+ 2)m− 2)
−

Γ(α)1−mΓ(α+ 1)m−1Γ(αm)

Γ(αm+m− 1)

)−1

(13)

Does it make sense to use MM to approximate the A distribution law in order to overcome

the drawbacks of the A MM estimator? In Figure 2 we show that this FS3
approximation

8
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1.´10-44 2.´10-44 3.´10-44 4.´10-44

0.2

0.4

0.6

0.8

1.0

s3

FS3

Figure 2: Comparison between CDFs of the S3 statistic computed through a random sample

with size 30 of a Gamma distribution with parameters α = 4 and β = 1. Gray curve:

empirical approximation computed on 1, 000 sample realizations; black curve: analytical

approximation.

may be very tight. On the one hand the shape of the Gamma CDF is well suited to the

approximating purpose for α ≥ 2. On the other hand, however, we suffer from the bias of

the MM estimators; therefore we must introduce some multiplicative coefficients γ1 and γ2 as

tuning terms in (12) and (13). Since the ultimate goal is the approximation of A distribution,

we get them directly from the interpolation of the A distribution function. Namely, denoting

with F−1
A (r) the r-th quantile of A distribution computed via p-bootstrap method and with

Q−1
(a,z)(r) the analogous quantile using (11), we use the 0.25 and 0.75 quantiles to obtain the

tuning coefficients γ̃is, i.e.:

Q−1
(γ̃1t1,s3γ̃2t2)(0.25) = F−1

A (0.25) (14)

Q−1
(γ̃1t1,s3γ̃2t2)(0.75) = F−1

A (0.75) (15)

We compute coefficients on a thousand of samples of a Gamma distribution with different

sample size and distribution parameters. By interpolating these data, we obtain the general

expression of γ1 as a quadratic function of log s3 and m which works well for all our purposes

in this paper:

log γ1 = 0.6476− 0.1235m− 0.0077m2 − 0.0548 log s3 − 0.0021m log s3 − 0.0001 log2 s3 (16)

9
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Since we did not achieve a similar success with γ2, we decided to compute this coefficient di-

rectly in the single inference instances by fitting the empirical CDF obtained from a small set

of α p-bootstrap replicas. With this strategy, the method we propose is a hybrid numerical-

analytical procedure where the injection of the analytical knowledge, in terms of expressions

(11) to (13), constitutes a speed up of the pure numerical solution allowing a notably reduc-

tion of the number of p-bootstrap replicas. Within the benchmarks used in this paper the

narrowing rate ranges from 25 to 250. This entails an almost identical reduction in running

times – since the time required to compute the above expression is negligible in comparison

to the replicas’ generation time. Thus the hybrid algorithm represents a relatively quick

procedure attaining a good compromise between fastness and accuracy of the estimation

algorithms, as will be shown in the next section. Focusing on the single components of the

parameter vector and related scalar statistic, we may standardize the analytical computa-

tion with the following Algorithm 2. The discretization granule ∆ > 0 therein accounts for

Algorithm 2 Generating parameter populations through analytical arguments.

1. Identify a well behaving statistic S for the parameter θ and its discretization granule

∆ (if any);

2. decide the monotony versus;

3. compute FΘ|S=s(θ) ∈
(
q1(FS|Θ=θ(s)), q2(FS|Θ=θ(s))

)
where:





q1 = q2 if S continuous

q1(FS(s)) = q2(FS(s− ∆) if S discrete

qi(FS) =





1 − FS if s does not decrease with θ

FS if s does not increase with θ

for i = 1, 2.

the S value jumps in the case of discrete random variables. In this case, the confluence of

10
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multiple seeds to the same sampling mechanism outputs induces an indeterminacy in the Θ

distribution law reckoned by the pair (q1, q2) (see Apolloni et al. (2006) for wider discussion

on the algorithm).

3. NUMERICAL EXPERIMENTS

Like dwarfs on the shoulders of giants, we decide to use the same benchmarks as in Son

and Oh (2006). In principle we add a pair of new rows on the tables therein to contrast and

compare our results with those of competitors, having the adaptive method proposed by the

authors of the referred paper as the favorite benchmark.

Table 2 represents a set of reconstruction experiments. Starting with a set of Gamma

variables with the same β = 1 and α spanning in the set {0.5, 1, 2, 3, 4, 5}, we generate

a sample of 30 elements of each variable, on the basis of which we estimate the above

parameters. Our competitors’ methods are: i) two moment method implementations, one in

the basic version (MM), and the other in the variant proposed in Wiens et al. (2003) and with

a special selection of free parameters (WCB); ii) three maximum likelihood implementations,

respectively with the approximations proposed in Thom (1958) (MLThom)), in Greenwood

and D. (1960) (MLGD), and with the recursive procedure introduced in Bowman and Shenton

(1988) (MLBS); and iii) two Bayesian methods based on the prior:

fA,B(α, β) ∝ 1/β (17)

and Gibbs sampling of parameters α and β from the full conditional distributions. Namely,

to achieve samples, a rejection method (Ripley, 1988) is used having a proposal distribu-

tion either normal (RS) (Tsionas, 2001) or adaptive (ARS) (Gilks and P., 1992). Bayesian

methods generate samples of 1, 000 realizations of the random parameters’ posterior distri-

bution – after a burn-in period of 100 iterations – and assume their mean as an estimate

of the original parameters. The statistical behavior of the estimators is assessed over 1, 000

samples of the Gamma variable for each parameter setting. The mean and the standard

deviation are computed over the corresponding parameter estimates. Son and Oh focus only

on α estimates, having the β estimation as a minor task. Indeed, with MM and ML methods

11
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α Method Central value Dispersion α Method Central value Dispersion

0.5 WCBk=0 0.5282 0.1145 3.0 WCBk=0 3.2364 0.7576

MM 0.6091 0.1984 MM 3.2867 0.9018

MLThom 0.5600 0.1105 MLThom 3.3624 0.7726

MLGD 0.5411 0.1139 MLGD 3.3604 0.7731

MLBS 0.5411 0.1139 MLBS 3.3609 0.7731

RS 0.5569 0.1104 RS 3.3569 0.7675

ARS 0.5400 0.1021 ARS 3.0451 0.3179

AIp−boot 0.4977 0.0766 AIp−boot 3.0145 0.5518

AIhybrid 3.0210 0.5429

1.0 WCBk=0 1.0241 0.2412 4.0 WCBk=0 4.2421 1.1319

MM 1.0826 0.3224 MM 4.4578 1.2427

MLThom 1.0670 0.2414 MLThom 4.3448 1.1676

MLGD 1.0580 0.2439 MLGD 4.3433 1.1680

MLBS 1.0579 0.2439 MLBS 4.3439 1.1680

RS 1.0665 0.2419 RS 4.3456 1.1650

ARS 1.0324 0.1514 ARS 4.0313 0.3718

AIp−boot 1.0044 0.1629 AIp−boot 3.9231 0.7393

AIhybrid 3.8942 0.7405

2.0 WCBk=0 2.1185 0.5333 5.0 WCBk=0 5.1577 1.3892

MM 2.1857 0.6264 MM 5.1838 1.4469

MLThom 2.1940 0.5497 MLThom 5.3459 1.4439

MLGD 2.1907 0.5506 MLGD 5.3537 1.4443

MLBS 2.1909 0.5508 MLBS 5.3542 1.4442

RS 2.1920 0.5520 RS 5.3491 1.4477

ARS 2.0757 0.2467 ARS 5.0503 0.4317

AIp−boot 2.0264 0.3459 AIp−boot 4.9982 0.9631

AIhybrid 2.0073 0.3389 AIhybrid 4.9864 1.0151

Table 2: First and second order statistics for a set of reconstruction experiments for different

values of α and β = 1. Central value and Dispersion columns refer respectively to sample

mean and standard deviation, with the exception of the AI approach, where median and

median deviation are used.
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this estimation descends straightforwardly from the following relation between α̂ and β̂, as

estimators of the corresponding parameters:

β̂ = s1/(mα̂) (18)

As to the Bayesian methods, for α given, sampling β from its conditional posterior distri-

bution looks trivial. The whole experimental campaign was repeated with samples of size

100. On our part, since we are working with interpreted languages, namely Mathematica

(Wolfram Research Inc., 2008), we preferred to avoid bearing the heavy computational effort

coming from the second set of simulations, in favor of specific experiments aimed at identi-

fying the different features of our approach w.r.t. the other ones. Hence, in the mentioned

table and with reference to the sole sample size 30, we add rows concerning central value

and dispersion of estimators from our approach (AI) using both p-bootstrap method and its

hybrid version.

On each sample we compute 1, 000 bootstrap replicas (ᾰ, β̆) of the parameters, as a

counterpart of analogous values obtained with the Bayesian methods. The hybrid version

uses subsamples of size 40 (just picking the first 40 of the above replicas) to compute γ2.

Unlike the Bayesian methods, we opt for the sample median in place of sample mean to

identify a central value. Analogously, we use the median of the medians coming from the

1, 000 samples as indicator of their central value. Indeed, we assume this statistic to be

more suitable within the Algorithmic Inference approach. The problem is that, on the one

hand with this approach we refer to the parameter distribution laws compatible with the

observed sample. On the other, we generate a set of samples with exactly the same parameter

α. Hence, to adapt our method to the reconstruction problem we must use a statistic

that is substantially independent of the (either compatible or actual) parameter distribution

law. This occurs with the median, since, in the mechanism generating parameter replicas

from a sample {x1, . . . , xm}, the median of ᾰ depends only on the median of
∑m

i=1 log(1 −

ui) and on no other detail of the distribution of this parameter. The same consideration

holds for the median of the medians coming from the samples. Thus, this statistic is not

biased by the actual parameter distribution law used to generate the sample, which is the

13
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degenerate distribution with the support coinciding with one of the constant values of α.

On the contrary, the adopted constant value coincides with the median of the degenerate

distribution, in turn converging in probability with the median of medians (Zhu and Wang,

2005), which we use therefore as a resuming central value statistic.

As a result, we obtain in Table 2 central values that in 5 cases out of 6 with p-bootstrap

and 3 cases out of 4 with the hybrid version are closer to the original parameter than

those provided by ARS, and even better w.r.t. other competitors’ methods. Above all, our

estimates are unbiased in the sense that some are under the original parameter, others over

it, while ARS and all other methods denote exclusively positive shifts of the estimate versus

the original parameter (see Figure 3).

The worse results of p-bootstrap with α = 4 may be related to unfavorable features of

the superset of 1, 000 samples we used. Despite this large number, indeed, in Table 3 we

realize the anomaly of this set by considering the mean of sample means and the value ξ

of the quantile level to which it corresponds. Namely, from the table we read this value for

α 0.5 1 2 3 4 5

ξ 0.064 0.371 0.416 0.829 0.125 0.599

Table 3: Quantile level ξ of the mean of the sample means observed on the 1, 000 samples

used to compute statistics in Table 2 for the different values of α.

each α; for instance, with α = 2 and β = 1 the probability that the mean of 1, 000 Gamma

sample means is less than or equal to the actual value observed on the samples used in our

experiment is 0.416. Through these data, we realize that the supersets used with α = 0.5

and α = 4 are somehow anomalous in that they correspond to very low quantile levels with

respect to the others. The higher dispersion in the second case enhances this drawback.

The analytic approximation strictly follows the pure numerical results, possibly with small

unfavorable drifts as a toll for the computational benefits we will discuss later on. We do

not report performances in the first two cases since we found the analytical approximation

working well only for α ≥ 2, as highlighted in Figure 4. It seems to be due to the unsuitability
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Figure 3: Estimators’ bias for different values of α.

of the Gamma shape per se, since, for instance, in the picture with α = 0.05 we left both γ1

and γ2 free in search of the best interpolation, which still proves unsuccessful.

As for estimates’ dispersion, we essentially lose w.r.t. ARS and some of the other methods

as well. Indeed, in line with the statistical meaning of median νX – namely it represents the

parameter minimizing the sum of the absolute shifts, i.e.

νX = min
c

{E [|X − c|]} (19)

where E denotes the expected value operator – we use the median absolute deviation (MAD)

as dispersion index which, with the above notation, reads:

MAD = ν|x−νX | = med [|x− νX |] (20)

where med denotes the median value operator. Now MAD is generally a lower dispersion

indicator than the standard deviation σ, where for a normal distribution we have in partic-

ular MAD =
√

2/πσ. Thus, in spite of the small MAD values we may read in the table, we

conclude that the population of our α estimates is more dispersed than the analogous popu-

lation obtained through ARS – while generally comparable with those of the other methods.

We interpret this spreading as the counterpart of the estimator unbiasedness. To obtain this

property, indeed, we do not rely on prior distributions, with a consequent broadening of the

compatible parameter set.
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Figure 4: Templates of A distributions computed within Algorithmic Inference approach.

Black curves: empirical CDFs drawn from a sample of p-bootstrap replicas; gray curves:

approximate analytical CDFs computed from a subsample of the p-bootstrap replicas. The

curve index α refers to the Gamma parameter with which the samples have been drawn.

As for computational loads, we compare p-bootstrap with the Bayesian procedures, since

both base their estimates on a population of replicas. If we assume equivalent the costs of

inverting either h′α in (5) or the conditional distributions of A given β and {x1, . . . , xm} in

Son and Oh (2006), the computational complexities of the procedures as a function of the

sample size and number of replicas are equal. On the contrary, the analytic solution (11) for

FA through the Gamma approximation with parameters (12) and (13) is two order faster.

Then, since the reduction ratio of the number of replicas is 25, we may say that the hybrid

procedure is one order faster.

In order to understand the influence of the prior in the parameter estimate, we delved

into one sample with size 200 and α = 4, causing performance differences in line with the

above overall statistics, as shown in Table 4. In this table we report both Bayesian methods

to contrast our results, where ARS is the direct competitor and RS helps identify a scaling of
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α β

Method Central value Dispersion Confidence Interval Central value Dispersion Confidence Interval

RS 4.0362 0.3917

0.99 [3.1038, 5.1351]

1.0496 0.1096

0.99 [0.8072, 1.3628]

0.95 [3.3081, 4.8123] 0.95 [0.8585, 1.2856]

0.90 [3.4149, 4.6828] 0.90 [0.8868, 1.2414]

ARS 4.038 0.3756

0.99 [3.0931, 5.032]

1.0483 0.1063

0.99 [0.8202, 1.3703]

0.95 [3.3059, 4.7859] 0.95 [0.8662, 1.2833]

0.90 [3.4272, 4.6672] 0.90 [0.8903, 1.2394]

AIp−boot 3.929 0.2661

0.99 [2.9899, 5.0393]

1.0694 0.0757

0.99 [0.8253, 1.4351]

0.95 [3.2206, 4.7472] 0.95 [0.8766, 1.319]

0.90 [3.3249, 4.5836] 0.90 [0.9052, 1.2743]

AIhybrid 3.923 0.3032

0.99 [3.0134, 4.8676]

1.0674 0.0894

0.99 [0.8462, 1.4175]

0.95 [3.1922, 4.6538] 0.95 [0.8891, 1.329]

0.90 [3.2972, 4.5411] 0.90 [0.9125, 1.2835]

Table 4: First and second order statistics, and confidence intervals of the parameters A

and B for a reconstruction experiment with m = 200, α = 4, and β = 1. Central value

and Dispersion columns as in Table 2. Confidence Interval format: confidence level [lower

bound, upper bound].

the results, and both Algorithmic Inference methods, referring to p-bootstrap as for statistic

templates and the hybrid version for a cheaper variant. With all methods the statistics are

collected from n = 5, 000 replicas. Confidence interval extremes are exactly the δ/2 and

1 − δ/2 quantiles, respectively, of the variously computed A and B distribution functions,

where 1 − δ is the confidence level. The comparison of the table values are as expected. In

particular, we remark that the γ2 coefficient of the analytical approximation is still based

on 40 bootstrap replicas, thus realizing a speed up factor around 250. Instead, the exam

of Figure 5 highlights a notably correlation between the replicas produced by ARS. Indeed,

although the overall standard deviation is greater with p-bootstrap, the graph of the replica

average by blocks of 100 consecutive replicas is more concentrated around the central value

with our method than with the Bayesian one. Focusing on replicas distributions, in Figures 6
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Figure 5: Courses of α replicas. (a) replicas generated by ARS; (b) replicas generated by p-

bootstrap; (c) their averages by blocks of 100 consecutive replicas. Gray lines: ARS method;

black lines: p-bootstrap method.

(a) and (b) we plot the 5, 000 parameter estimates obtained solely with the p-bootstrap and

ARS methods. We clearly recognize from the plots that distribution (17) inhibits high values

of β that, vice versa, are acknowledged to be compatible with our method. This results in

privileging high values of the α estimate (for instance in force of (18)) with the mentioned

bias on their mean as a consequence.

In these figures we also draw confidence regions for the pair (α, β) that follow the thread

of the parameter population (ARS regions narrower and shifted re p-bootstrap’s) and in any

case look more suitable than the cartesian product of the confidence intervals reported in

Table 4. To get these regions we use a standard peeling procedure (Liu et al., 1999; Apolloni

et al., 2007b) on the bundle of Gamma CDFs obtained by plugging the estimated parameters

in their general expression. Starting from the whole population of curves in Figures 6 (c)

and (d) we iteratively visited the upper and lower bounds of the region they span, circularly

removing the bordering curves in number of δn/2 lying below the envelope of the remaining

ones and δn/2 curves above it, having denoted with δ the preset confidence level.

Performing a similar analysis on the problem of fitting the Gross and Clark sample with a

Gamma distribution lets to draw the following conclusions. Table 5 denotes a great difference

between the estimates of the fitting parameters. The analysis of their scatterplots denotes

a definite unbalancing of ARS parameters that completely miss the left-uppermost region
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Figure 6: Distributions of Gamma parameters and related CDFs obtained with two infer-

ence approaches. Left column: Algorithmic Inference approach with p-bootstrap method;

right column: Bayesian approach with ARS method. First row: parameters’ scatterplot

contoured by 0.90 confidence regions; plain line: contouring through p-bootstrap; dashed

line: contouring through ARS. Second row: bundle of Gamma CDFs with the parameters

plotted in the first row. Gray filled areas: 0.90 confidence regions, with the column method,

corresponding to the companion regions in the first row.
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α β

Method Central value Dispersion Confidence Interval Central value Dispersion Confidence Interval

RS 9.2120 2.6430

0.99 [3.7912, 17.1581]

13.5246 4.4529

0.99 [6.4606, 30.5955]

0.95 [4.7248, 14.9754] 0.95 [7.4934, 24.8940]

0.90 [5.2521, 13.8601] 0.90 [8.0750, 22.0373]

ARS 9.3053 2.6796

0.99 [3.7041, 17.9137]

13.3868 4.5423

0.99 [6.2170, 32.3034]

0.95 [4.6920, 15.3352] 0.95 [7.3226, 24.2030]

0.90 [5.3633, 14.0487] 0.90 [7.9871, 21.6278]

AIp−boot 13.4671 4.5923

0.99 [3.7973, 43.6594]

8.4424 2.8444

0.99 [2.5882, 30.7639]

0.95 [4.8630, 34.1774] 0.95 [3.2778, 23.7440]

0.90 [5.6707, 29.4574] 0.90 [3.8453, 20.3299]

AIhybrid 12.6911 4.9257

0.99 [3.4563, 37.3762]

8.9295 3.6857

0.99 [3.0293, 35.0587]

0.95 [4.6995, 29.651] 0.95 [3.8254, 24.3354]

0.90 [5.4986, 26.188] 0.90 [4.2936, 20.6361]

Table 5: Same statistics as in Table 4 collected on G&C dataset.

of the parabolic-like distribution. This imbalance, which is opposite to the one studied

before, has another explanation. The histogram in Figure 7 clearly shows that the Gross

and Clark sample has a very low likelihood when it is attributed to a Gamma distribution.

Actually, we do compute the ML estimate, for instance with the approximation proposed in

Thom (1958), of these parameters. However, if we generate new samples exactly with these

parameters and compute their likelihood, we realize that the likelihood of Gross & Clark

sample represents around the fifth quantile of the likelihood distribution, thus getting a far

location from the core in the histogram shown in the figure. In other words, as a sample

of a Gamma distribution, it is a rather anomalous sample. Thus the p-bootstrap method

gives rise to a broad parameter distribution that maintains, however, a due symmetry, as

shown in Figure 8 (a) and (b). The plots of the distribution bundle denote a wider sheaf and

confidence region with our method (see Figure 8 (c) and (d)). But, once again, we expect

this to be rewarded by the unbiasedness of estimates, which in this case are definitely far

from those obtained with conventional methods. As a final remark, the numerical results are

taken on the basis of 10, 000 parameter replicas, while hybrid method used only 200 replicas,
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Figure 7: Histogram of the negative log-likelihood of samples drawn from a Gamma dis-

tribution with parameters given by the MLThom estimates from G&C dataset. Thick bar:

likelihood of G&C dataset with this parameterization.

entailing a great saving of running time. Moreover, the γ1 expression (16) derives from data

interpolation when m uniformly ranges in [20, 300], α in [2, 6], and β = 1. Thus this case

highlights a great extendability of the interpolated function to a range not covered by the

training sample, even though closer results to full bootstrap method’s may be expected with

a more focused interpolation.

4. CONCLUSIONS

Facing the non trivial inference problem of estimating the two parameters of a Gamma

distribution, we propose an estimator exhibiting the distinguishing feature of being unbi-

ased, while a large set of reputed estimators does not enjoy the same property, with a

further drawback of proving less accurate in a set of reconstruction problems. To obtain this

result we adopted a different statistical framework showing the comparative benefit w.r.t.

the Bayesian approach of not needing a prior parameter distribution. Per se contrasting the

two approaches may appear no different from the Lilliputian contest described by Jonathan

Swift in Gulliver Travels re the way of breaking eggs: upon the larger or smaller end. In place

of the six rebellions raised on that account by Lilliputians, we just claim that missing prior

distributions may improve the statistical properties of the estimators. This reopens a ma-

jor dispute fought in the mid 20th century about the interpretation of parameter variability
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Figure 8: Same pictures and notation as in Figure 6 when the sample is G&C dataset.

(Zabell, 1992) in terms of fiducial distribution (Fisher, 1956), structural probabilities (Fraser,

1966), priors/posteriors (Ramsey, 1925), and so on. From an epistemologic viewpoint, this

entailed a companion dispute as to the way of modeling probability: as a physical feature

of the phenomena to be described through random variables or a tool for synthesizing data

about a phenomenon? For a long time, the former model won out for all practical purposes.

However the results we obtain in this way may prove narrow, in that almost harmless when

the candidate models to explain data cannot involve Gaussian probability distributions or

asymptotic limit theorems (Meeker and Escobar, 1995). Bayes approach offers a way to es-

cape this drawback, by considering a priori parameter distribution laws – sometimes linked

to the features of the subtending phenomena (Florens et al., 1990; Berger, 1999), other times

just as an analytical artifact (the uninformative priors (Jaynes, 1968)) – which are modified
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by the information content of the observed data. Very often this proves to be only the shift

of the hard part of the inference problem one step back, i.e. to the answer to the question:

Who tells us the priors?

We propose here and in some companion papers in the frame of computational learning

(Apolloni et al., 2007c, 2008b,a, 2007b; Apolloni and Bassis, 2008; Apolloni et al., 2006,

2008c) to return to the original thought of Fisher of considering the model parameters as

random variables in light of the observed data (Fisher, 1956). With this perspective, he

defines a fiducial distribution law of parameters of a given random variable that he deduces

from a sample of its realizations. Through this law he computes, for instance “the probability

that µ (mean of a Gaussian variable – our note) is less than any assigned value, or the

probability that it lies between any assigned values, or, in short, its probability distribution,

in the light of the sample observed” (Fisher, 1935). The Achilles heel of Fisher’s approach

lies in the joint distribution of more than one parameter (Zabell, 1992). In this paper

we show that this is not longer true with our revisitation, thanks to the wide availability

of computational power. Through (possibly heavy) numerical procedures indeed, we may

invert master equations like (5) to reverse the probability masses we jointly distribute on the

variable realizations for set parameters – a well assessed attitude – into the joint probability

distribution of the parameters compatible with the observed data. The compatibility notion

is very close to the fiducial probability or the structural probability proposed respectively by

Fisher (1956) and Fraser (1961). In this paper we both supply algorithmic procedures for

its computation and stress its properties on a severe reconstruction problem.
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Response to referee comments in the paper: 

ID LSSP-2009-0057, Algorithmic Inference of Two-Parameter Gamma Distribution 

*General 

We have revised the paper according to the suggestions of the referee, whom we thank 

sincerely for his consideration. 

Specifically, the changes we have made on the basis of the referee’s comments are as 

follows: 

C(omment). Different seeds than uniform variable; the rationale of “seed” notion. 

A(nswer). On page 4, line 10 and ff. we mention that the standard Gaussian variable is 

very often used as a seed in the practice of variable simulation. We also explain the 

benefit of introducing the notion of seed as a link between parameter and variable 

randomness. 

C. s_3 monotony. 

A. On page 7, line -11 we clarify that we numerically realized this property. Actually, we 

already remark on page 5, line 11, that (s_1,s_3) constitute a different representation of 

the jointly sufficient statistics (s_1,s_2), but we have no direct analytical proof of the s_3 

monotony with \alpha. 
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