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The literature on statistical process control (SPC) describes the negative effects of autocorrelation in terms of false alarms. This has been treated by the individual modelling of each series or the application of VAR models. In the former case, the analysis of the cross correlation structure between the variables is altered. In the latter, the filtering process can modify the weakest relations. In order to improve these aspects, state-space models have been introduced in MSPC. This paper presents a proposal for building a innovations control chart, estimating its average run length to highlight its advantages over the VAR approach.

INTRODUCTION

The main aims of statistical process control methods is to minimise the frequency of false alarms and quickly detect special sources of variation. Shewhart control charts are designed for the first purpose, but under the condition that the observations analysed are independent. However, in practice this is not a general condition, as there are a wide range of autocorrelated processes. This phenomenon limits its use and has led to the development of statistical models adapted to this phenomenon.

Traditionally, the treatment of autocorrelation focused on the use of empirical control limits or on the filtering of information using univariate time series models [START_REF] Harris | Statistical Process Control Procedures for Correlated Observations[END_REF][START_REF] Montgomery | Some Statistical Process Control Methods for Autocorrelated Data[END_REF][START_REF] Maragah | The effect of Autocorrelation on the Retrospective X-Chart[END_REF][START_REF] Box | Statistical Control by Monitoring and Feedback Adjustement[END_REF][START_REF] Lu | Control Charts for Monitoring the Mean and Variance of Autocorrelated Processes[END_REF][START_REF] Jiang | Average Run Length Computation of ARMA Charts for Stationary Processes[END_REF][START_REF] Wardell | Run-length distribution of special-cause control charts for correlated processes[END_REF]. The earliest multivariate developments for treating autocorrelation consisted of the individual modelling of each series or the application of VAR modelling (Dyer et al., 2003;[START_REF] Jiang | Multivariate control charts for monitoring autocorrelated processes[END_REF][START_REF] Kalgonda | Multivariate quality control chart for autocorrelated processes[END_REF][START_REF] Noorossana | Effect of autocorrelation on performance of the MCUSUM control chart[END_REF]Jarrett and Pan, 2007a, b;[START_REF] Pan | Using vector autoregressive residuals to monitor multivariate processes in the presence of serial correlation[END_REF] In the former case, the analysis of the structure of cross correlation between the variables, the great contribution of the multivariate approach, is altered. In the latter case, if the original cross correlation is not strong, the filtering process may modify the weakest relations. Moreover, the autocorrelation may reflect the existence of some "latent factor" or "inertia" in the process. In such a case, analysis of the residuals will reveal the "filtered" behaviour of the process, i.e., the behaviour of the non-foreseeable or innovational part, without going into an analysis of the "inertia factor". subspaces have also been developed in several papers. For a complete reviewed of these see [START_REF] Vargas | Modelización de series temporales múltiples en espacio de estados. Análisis de procesos no estacionarios y cointegración[END_REF], [START_REF] García | Identificación de Modelos para Series Temporales mediante Métodos de Subespacios[END_REF] and the cited references.

In statistical process control, the basic motivation for using state-space modelling lies in the double reasons for sample autocorrelation. On the one hand, when the sample procedure causes autocorrelation in the data, it is appropriated to apply a filter to eliminate this, preserving the greatest possible amount of information and building a control chart on the residuals. However, if the autocorrelation reflects the existence of a "latent factor" or "inertia" inherent to the process, which provides basic information on it, the residuals of a filtering operation are not statistically optimal, because of a fundamental part of the process is omitted. This case requires an efficient estimation of the "inertia factor", as well as the building of a chart to control it. In this paper, we focus on the control chart for innovations, comparing its ARL to that of charts obtained on the basis of residuals obtained from VAR models.

Given the estimation of a state-space model, the resulting innovations (ε t ) are comparable to the residuals from VAR modelling. They describe the innovational or non-foreseeable behaviour of the process, controlling the existence of special causes whose effects are of great magnitude and short duration in time. The state-space methodology allows to preserve the multivariate approach along with a more parsimonious representation, an ideal situation in quality control.

In this framework, it is crucial to estimate "correctly" the state variables which are sufficient statistics for the dynamics of the process and they determine the statistical properties of the residuals. To estimate state-space models in statistical process control, a number of approaches exist [START_REF] Negiz | Statistical monitoring of multivariate dynamic processes with state-space models[END_REF][START_REF] Dorsey | Building Inferential Prediction Models of Batch Processes Using Subspace Identification[END_REF] [START_REF] Lee | Monitoring of batch processes through state-space models[END_REF]Pan and Jarrett, 2004;[START_REF] Triantafyllopoulos | Multivariate Control Charts Based on Bayesian State Space Models[END_REF][START_REF] Xie | Investigation of Dynamic Multivariate Chemical Process Monitoring[END_REF]Jarrett and Pan, 2007a;[START_REF] Zantek | Detecting multiple special causes from multivariate data with applications to fault detection in manufacturing[END_REF], with different algorithms that provide different statistical behaviour.
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Therefore, given a p-dimensional autocorrelated process, Y t , its state-space representation:
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allows to estimate the innovations in the process, as explained in the appendix. Given the properties of the algorithm used, the innovations (ε t ) are asymptotically normal and uncorrelated, with zero mean and variance Ψ. In these conditions, we can build a T 2 Hotelling control chart using the estimation of the matrix Ψ provided by the state-space filtering process, by means of the expression:

(2) When the innovations are uncorrelated, the T 2 statistics follows the Beta distribution in the Phase I (and F distribution in the Phase II) and we can get the control limit as:

(3) But, when we use the estimation ψˆ, the innovations are uncorrelated only asymptotically. In this case, the corresponding control limit is:

(4) which is similar to the one obtained for the original series, as the number of variables is equal to the number of innovations and no observations are lost as a consequence of the filtering. This control chart allows us to detect the special causes for variation that present an effect of relative magnitude and short duration in time. This chart is similar to the residuals control chart developed in [START_REF] Jarrett | The quality control chart for monitoring multivariate autocorrelated processes[END_REF] and [START_REF] Pan | Using vector autoregressive residuals to monitor multivariate processes in the presence of serial correlation[END_REF], although there are some aspects that are different due to the statistical methodology used in estimation. The algorithm for estimating the matrices in the model guarantees the minimality of the state vector, by balancing the grammians of the observability and controllability matrices, lending these characteristics to the estimated system (guaranteeing minimality). Also, the use of the Kalman filter ensures that the states constitute the optimal linear estimation (in the minimum quadratic sense of the expression) of the process dynamic. This all comes together in obtaining innovations that contain all of the complementary information, thereby allowing for thorough analysis.

As show [START_REF] Xie | Investigation of Dynamic Multivariate Chemical Process Monitoring[END_REF], the use of ARMA filters ensures the efficient elimination of autocorrelations, but the cross correlations still exist and the residuals are not independent. In contrast to this filter, the state-space model is enough to remove the auto and cross correlation. With the algorithm proposed, the statistical properties of the state variables ensures the "minimum" correlation in the residuals.

To compare the statistical properties of the control charts, it is usual to examine their performance in terms of the ARL [START_REF] Wardell | Run-length distribution of special-cause control charts for correlated processes[END_REF]Javaheri and Houshmand, 2001;[START_REF] Jiang | Average Run Length Computation of ARMA Charts for Stationary Processes[END_REF][START_REF] Loredo | Model-based control chart for autoregressive and correlated data[END_REF][START_REF] Shu | Run-Length Performance of Regression Control Charts with Estimated Parameters[END_REF][START_REF] Snoussi | On SPC for short run autocorrelated data[END_REF][START_REF] Tsung | Improved Design of Proportional Integral Derivative Charts[END_REF][START_REF] Snoussi | The Change Point Model: SPC Method for Short Run Autocorrelated Data[END_REF]. Based on the ARL as criteria of control charts performance, we compare the proposed alternative control chart with the obtained by means of VAR modelling. We analyse the possible effect of cross and autocorrelation through the simulation under different levels of both. To simplify, without losing generality, we opted to simulate three-dimension processes with the same level of correlation between the variables. We generated, under a normal multivariate distribution of parameters µ 0 and Σ 0 , 150 in-control observations. Then, we generated five out-of-control observations (µ= µ 1 ≠ µ 0 ), with changes in the mean vector of 0, 1, 2 and 3 standard deviations, changes usually considered in statistical process control. Finally, we generated another sequence of 5000 in-control observations to determine the run length.

To analyse the detection capability of the innovations control chart we have considered different scenarios by varying the levels of cross correlation and autocorrelation. In the first case, we focused on positive correlation, given it's the most usual in the production processes. Therefore, correlations of 0, 0.3, 0.5, 0.7 and 0.9 were considered, in order to detect if the level of correlation affects the detection capacity of control charts. These information are introduced in the Hotelling's T 2 statistic via the covariance matrix. to coefficients of 0.3, 0.5, 0.7 and 0.9, given its greater impact on the properties of control charts in terms of false alarms. For each combination, the simulation was repeated 1000 times, which allows to obtain the ARL for the control charts exposed.

Once the series had been simulated, we have adjusted and estimated two models:

a VAR model by least square by means of the estVARXls function in the dse package in R, following the methodology used in [START_REF] Jarrett | The quality control chart for monitoring multivariate autocorrelated processes[END_REF] and [START_REF] Pan | Using vector autoregressive residuals to monitor multivariate processes in the presence of serial correlation[END_REF]; and a state-space model using the proposed methodology, implemented in R.

The control limits were estimated to attain a value of 280 for the in-control average run length (ARL 0 ) and the run length was calculated for each series. The averages in each case are shown in tables 1 to 4, which depict the improvement, in terms of ARL, in the control chart proposed compared to the traditional one based on the VAR methodology.

INSERT TABLE 1

The table 1 shows that if the process is in-control, both the VAR and the statespace approaches present similar behaviour, with non-significant differences in ARL 0 .

In this case, the greatest differences appear with high levels of correlation and autocorrelation and that the behaviour of the innovations control chart proposed is better.

INSERT TABLE 2

The table 2 shows that when the change in the means are smaller, the differences between the two methods are not statistically significant. The ARL takes values around 140 in the both methods. The tables 3 and 4 show that when changes occur in the mean of the process, the state-space chart improves its behaviour, with an increase in relative efficiency as the magnitude of the change increases. Obviously, if we express these changes by means of the non-centrality parameter, affected by the existence of cross correlation between the variables, then we can not directly compare the values for the ARL. This fact manifests itself in tables 2, 3 and 4, where the run length of the models increases as the cross correlation increases, with the consequent reduction in the non-centrality parameter.

INSERT TABLES 3 and 4

Simulation results show that the state-space model formulation provides better ARL behaviour than residual charts based on VAR methodology (see figure 1). In general, the ARL 0 is similar for the two control charts, as they originate from the innovations in two equivalent methodologies for modelling statistical processes. When a change occurs in the mean of the process, the behaviour of the control charts starts to diverge, whereas the ARL of the chart proposed is lower than the one that is built under the VAR approach. This difference is further accentuated as the non-centrality parameter increases, which is dependent on the distance between the real mean and the in-control mean.

Although the existence of autocorrelation alters the ARL of both charts, the results obtained with the methodology proposed are more homogeneous and stable, reflecting greater resistance to this problem. On the other hand, the existence of cross correlation presents no other effect than the reduction in the non-centrality parameter, with both charts equally affected.

INSERT FIGURE 1
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SUMMARY

The traditional proposals to eliminate the negative effect of autocorrelation in statistical quality control present problems related to the loss of the multivariate approach, the parsimony of adjusted models and the poor behaviour in the presence of positive autocorrelation. State-space modelling constitutes an alternative that allows to maintain the multivariate perspective, requiring the estimation of less parameters and with better behaviour in terms of ARL.

We developed a simulation to analyse the behaviour of the control chart proposed in the event of changes in the mean of the process, enabling comparison with the VAR control chart and the study of the effect of the non-independence between the observations.

The results of this indicate that the behaviour of the state-space innovations control chart is more adequate than the residuals control chart obtained by means of VAR modelling. To be specific, the innovations control chart presents better behaviour in terms of out-of-control ARL and greater resistance to the existence of positive autocorrelation. These advantages are accentuated the greater the importance of the change in the mean of the process, situations in which the methodology proposed in this paper is a significant improvement on the traditional VAR modelling.

This paper is a first approach to the behaviour of control chart based on innovations of a state-space model. As such, it has not approached the effect of changes on the correlation structure of the variables or on their variability. Similarly, future researches should analyse the sensitivity of the results of the simulation to changes in (A-1) where H t , F t , G t are the real matrices of dimensions (pxn), (nxn) and (nxp) respectively, p is the number of variables, n the number of observations and we assume, for simplicity, that E[Y t ]=0. In this model, ε t is the innovational process of Y t that does not present autocorrelation and X t is the state vector, a sufficient statistic for the dynamics of the system.

The specification for this model consists of three stages: determining the dimension of the system, estimating the matrices and finally, estimating the state vector.

In statistical quality control, determining the dimension of the system is fundamental and therefore different algorithms based on canonical correlation coefficients or information criteria have been used. In this paper, we opted to use the block Hankel matrix, which in practice is usually composed of sample estimations of auto-
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of dimension (pN f x pN p ), and prefixed values N p and N f , and 
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and use as the estimation for its range the number of significantly positive singular values in the matrix Σ ˆ, which will coincide with the dimension of the state vector. In this regard, it is possible to use an approximation of the statistical distribution of the canonical correlation coefficients proposed in [START_REF] Bartlett | A note on tests of significance in multivariate analysis[END_REF] by means of the statistic:
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where γ j are the canonical correlation coefficients.

On the basis of this statistic, a sequential contrast is established for n ˆ=1,2, … until the H 0 is not refused, which establishes that there are only n strictly positive coefficients, in a value n ˆ that is considered to be the dimension of the state-space model.

In order to obtain an estimation of the matrices in the system, [START_REF] Bauer | Estimating cointegrated systems using subspace algorithms[END_REF] propose another approach based on the prior estimation of a regression equation. This algorithm presents the disadvantage that it tends to reduce the variability in series and may alter the determination of points out of control. This situation led us to use a modified version of the algorithm started in [START_REF] Aoki | State-space modelling of time series[END_REF], which may be consulted in its complete form in [START_REF] Vargas | Modelización de series temporales múltiples en espacio de estados. Análisis de procesos no estacionarios y cointegración[END_REF] or [START_REF] Mondéjar | Análisis de tendencias comunes y cointegración en espacio de estados[END_REF].

As the states are not observable, they may be rotated without changing the algebraic validity of the model. between the developed algorithm and other procedures. This property guarantees that a size that is smaller than the correct size is specified for the state vector, the estimations for F, H and Ω would be an approximation of a lower order than the real matrices of the system. In this case, this lower dimension model includes the most important effects and estimates them on a consistent basis. On the other hand, if the dimension of the estimated model is higher than the correct dimension, some of the system matrices are redundant. The rest remain valid and thus it is not necessary to recalculate them.

Once the order and the matrices of the system have been determined, the Kalman filter is used to generate the series of values for the state vector. This is a fundamental element in statistical quality control as it allows to obtain the value of innovations on a recursive and efficient basis. 

  has been developed using R-Program. More specifically, the algorithm used for simulated a multivariate normal process are developed in the function rmvnorm in the mvtnorm package written by Alan Genz in R software. For adjusted and estimated a VAR model by least square, we have used the function estVARXls in the dse package written in R by Paul Gilbert. All these packages are available from the R project website (http://rprojects.org/). The state-space model estimation, developed in the appendix, is also implemented in R with a function developed by the authors (available upon request)

  analyse four possibilities of the level of autocorrelation, corresponding

  By estimating the above matrix by means of the sample auto-correlation matrices ∑

  To identify the coefficients by making the observability -controllability factorisation equal to the decomposition of the Hankel matrix in singular values means to implicitly select a system of coordinates for the state. This selection is called a balanced representation and it constitutes a major difference Page 21 of 21 URL: http://mc.manuscriptcentral.com/lssp E-mail: comstat@univmail.cis.mcmaster.
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Table 1 . In-control average run length (ARL 0 )

 1 

					Auto-correlation level	
				0.3	0.5	0.7	0.9
			VAR	267.774	274.172	277.545	286.145
		0					
			St-Sp	262.543	278.252	289.146	291.676
			VAR	271.775	267.401	274.946	279.617
	Correlation level	0.3 0.5	St-Sp VAR St-Sp	277.540 278.312 279.877	262.502 275.072 283.119	283.131 274.208 278.749	271.794 265.448 280.215
			VAR	264.815	280.609	267.846	270.358
		0.7					
			St-Sp	265.034	285.444	280.347	283.548
			VAR	280.033	279.645	285.984	267.749
		0.9					
			St-Sp	292.700	283.018	286.223	275.478

Table 2 . ARL with changes in the mean vector of one standard deviations

 2 

					Auto-correlation level	
				0.3	0.5	0.7	0.9
			VAR	116.962	124.928	120.474	125.021
		0					
			St-Sp	104.421	85.272	75.739	72.536
	Correlation level	0.3 0.5	VAR St-Sp VAR St-Sp	138.554 125.863 147.012 137.251	128.560 114.068 135.150 131.523	136.514 110.963 136.581 132.108	134.893 117.763 131.092 130.637
			VAR	138.834	137.614	145.510	147.812
		0.7					
			St-Sp	138.660	130.616	131.755	128.382
			VAR	137.131	143.609	147.686	141.313
		0.9					
			St-Sp	134.567	140.299	132.909	138.819

Table 3 . ARL with changes in the mean vector of two standard deviations

 3 

					Auto-correlation level	
				0.3	0.5	0.7	0.9
			VAR	28.425	24.549	29.251	25.981
		0					
			St-Sp	5.509	2.739	1.782	2.116
			VAR	64.202	66.294	65.677	65.091
	Correlation level	0.3 0.5	St-Sp VAR St-Sp	29.183 80.772 45.516	14.305 83.386 49.375	27.284 84.757 47.983	26.932 82.849 48.514
			VAR	96.023	97.646	93.438	92.584
		0.7					
			St-Sp	68.132	64.029	68.272	64.416
			VAR	103.403	104.682	105.035	105.314
		0.9					
			St-Sp	72.352	76.127	72.733	74.181

Table 4 . ARL with changes in the mean vector of three standard deviations

 4 

					Auto-correlation level	
				0.3	0.5	0.7	0.9
			VAR	1.779	2.622	1.603	1.316
		0					
			St-Sp	1.049	1.070	1.116	1.200
	Correlation level	0.3 0.5	VAR St-Sp VAR St-Sp	27.709 1.469 71.417 5.327	35.329 1.423 71.214 3.880	42.113 2.115 91.722 8.015	29.287 2.002 73.198 5.983
			VAR	122.107	126.480	98.197	101.212
		0.7					
			St-Sp	25.137	21.126	23.130	25.506
			VAR	144.310	148.512	168.222	139.027
		0.9					
			St-Sp	39.168	43.686	49.456	41.334

ARL for VAR and State-Space residuals control charts
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the magnitude of the correlation between variables or combinations of different levels of autocorrelation.
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