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Abstract

In this paper we propose a very flexible estimator in the context of truncated
regression that does not require parametric assumptions. To do this, we adapt the
theory of local maximum likelihood estimation. We provide the asymptotic results
and illustrate the performance of our estimator on simulated and real data sets. Our
estimator performs as good as the fully parametric estimator when the assumptions
for the latter hold, but as expected, much better when they do not (provided that the
curse of dimensionality problem is not the issue). Overall, our estimator exhibits a fair
degree of robustness to various deviations from linearity in the regression equation and
also to deviations from the specification of the error term. So the approach shall prove
to be very useful in practical applications, where the parametric form of the regression
or of the distribution is rarely known.
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1 Introduction

In this paper we consider the problem of estimating a regression model where the support

of the continuous dependent variable is bounded at a known constant at one end and when

many of the observations are observed near this bound. This is a common case when the

dependent variable is an economic index measured within some range. One example in the

recent econometric literature of such context is the analysis of how some economic variables

determine the level of the Debreu (1951)-Farrell (1957) type efficiency score (bounded be-

tween 0 and 1 or, taking its inverse, between 1 and infinity, with many values concentrated

near unity). A similar example can be drawn for the applied consumer analysis, where the

so-called Luenberger (1994)-Chambers et al. (1996) shortage/benefit or directional distance

function (bounded between zero and infinity, with most values being close to zero) can be

used to analyze consumer benefits. An appropriate way of handling such problems is to use

the truncated regression approach (see Simar and Wilson, 2007, for a parametric case).

The traditional truncated regression approach is based on using fully specified parametric

model, where both the functional form of the relationship between the dependent and ex-

planatory variables and the functional form of the distribution of the error term is specified.

A natural estimator therefore is based on the maximum likelihood principle. An obvious

drawback of such approach is the questionable reliability of parametric assumptions and

vulnerability to deviations from them. Indeed, a mistake in specifying a parametric form of

the regression equation or of the distribution of the error may lead to inconsistent estimation.

The goal of our study is to propose a more flexible estimator for the context of truncated

regression that does not require such parametric assumptions.

In particular, we adapt the theory of local maximum likelihood estimation (e.g., see

Tibshirani and Hastie, 1987, Fan and Gijbels, 1996, Fan et al., 1996, and Kumbhakar et al.,

2007) to the truncated regression case. Non-parametric approach to truncated regression

was already investigated by Lewbel and Linton (2000), who used local least squares theory

to address the problem. As defined, e.g. in Maddala (2001, p336), in truncated regression

models, the dependent variable is either unobserved beyond some known threshold, or not

defined beyond that threshold. In some cases, most of the observations tend towards this

threshold, e.g., as firms tend to be perfect and achieve the 100% efficiency level, but cannot

be “over-perfect-efficient” by definition. In the regression context, ignoring the boundary or

treating it as censoring threshold may result in serious bias and inconsistency of the estimates

of the fitted values and of the marginal effects (see Simar and Wilson, 2007 for extensive

discussions on this in a parametric setup). On the other hand, mis-specifying the regression

equation or/and the error (e.g., wrong guess about heteroskedasticity) may also lead to
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biased and inconsistent estimation. The flexibility offered by the local likelihood methods

help circumventing these problems substantially, as we demonstrate with some simulated

examples.

The theoretical foundation for our paper is based on a recent paper of Kumbhakar et

al. (2007) who extended and generalized the approach suggested by Fan et al. (1996). In

our work we make further extension. First, we adapt the theory to the truncated regression

case. Second, and most importantly, we provide asymptotic results for the derivatives of

regression function, which is the main focus of our paper, because many economic studies

are concerned with the marginal effects of some variables on others. Third, our treatment

includes both the cases where the shape parameter of the error distribution is an unknown

constant, and where it is an unknown smooth function. In the former case, our estimator

of the shape parameter achieves root-n consistency, and so does not suffer from the curse of

dimensionality. Fourth, we show that fitting a lower order polynomial for the shape param-

eter may jeopardize the estimator of the regression function. This justifies consideration of

higher-order local polynomial fit for the shape parameter even if one is mainly interested in

estimating the regression function and its derivatives.

Our paper is structured as follows. In Section 2, we describe the local likelihood trun-

cated regression methods. In Section 3, we present the asymptotic theory of local likelihood

adapted to the truncated regression case of our type. In Section 4, we illustrate the perfor-

mance of our estimator on several simulated data sets, considering different scenarios about

regression equation and the error. In Section 5, we illustrate our estimator for a real data set.

Section 6 concludes and Section 7 gives the regularity conditions for obtaining our results

and outlines the proof of the theorems.

2 Local Polynomial Estimation

2.1 Constant Shape Parameter Case

We observe a set of i.i.d. random variables (Xi, Yi) for i = 1, . . . , n with Xi ∈ IRd and

Yi ∈ IR, where

Yi = f(Xi) + εi ≥ c

for some unknown function f and a known positive constant c. In this model, ε, conditionally

on X = x, has a continuous distribution G(·, τ) truncated below c − f(x), where τ is an

unknown shape parameter that is assumed to be a constant. In other words, the conditional

density of Y given X = x equals

ϕ(y, f(x), τ) ≡ gε (y − f(x), τ)

1 −G (c− f(x), τ)
I(y ≥ c),

2
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where gε(ε, τ) = ∂G(ε, τ)/∂ε. We assume that G is known. For instance, if G is the normal

distribution, and if we impose some parametric (e.g. linear) model for the regression function,

we have the classical truncated regression models as in Maddala (2001, p337). Our main

interest here is estimation of the function f and its derivatives. Below we describe local

polynomial estimation of f in a general setting of multivariate X.

Note that all the results obtained in this paper could be easily adapted to the case where

the dependent variable is truncated at both sides : c1 ≤ Yi ≤ c2. This would only change

the definition of ϕ(y, f(x), τ), the conditional density of Y given X = x.

Define ℓ = logϕ. Then, the conditional log-likelihood equals
∑n

i=1 ℓ(Yi, f(Xi), τ). Let x

be a point at which one wants to estimate the values of the function f and its derivatives.

A local conditional log-likelihood is obtained by replacing f in the conditional log-likelihood

by its pth order polynomial approximation in a neighborhood of x and putting the weight

Kh(Xi−x) for each observation (Xi, Yi), where Kh(u) = h−dK(h−1u), K is a d-variate kernel

function, typically a symmetric density function defined on IRd, and h is a positive scalar,

called the bandwidth. Precisely, it is given by

Ln(θ0, θ1, . . . , θr(p)−1, τ ; x)

=
n
∑

i=1

ℓ
(

Yi, θ0 + θ1(Xi1 − x1) + · · ·+ θr(p)−1(Xid − xd)
p, τ
)

Kh(Xi − x),

where r(p)−1 is the total number of partial derivatives up to order p, i.e., r(p) =
∑p

j=0

(

j+d−1
d−1

)

.

Here and below, Xi ≡ (Xi1, . . . , Xid)
T and x ≡ (x1, . . . , xd)

T . The pth order local polynomial

estimators of f and its derivatives at x are obtained by maximizing Ln(θ0, θ1, . . . , θr(p)−1, τ ; x).

For example, f̂(x) = θ̂0(x) and the estimator of f ′(x) ≡ [∂f(x)/∂x1, . . . , ∂f(x)/∂xd]
T is given

by f̂ ′(x) = [θ̂1(x), . . . , θ̂d(x)]
T , where

(

θ̂0(x), θ̂1(x), . . . , θ̂r(p)−1(x), τ̃(x)
)

= arg max
θ0,...,θr(p)−1,τ

Ln(θ0, θ1, . . . , θr(p)−1, τ ; x). (2.1)

The estimator τ̃ is obtained locally in the above local polynomial estimation procedure,

and thus it depends on x. It can be improved by maximizing the full likelihood with f being

replaced by its estimator f̂ , i.e, a better estimator is given by

τ̂ = arg max
τ

n
∑

i=1

ℓ(Yi, f̂(Xi), τ). (2.2)

One may further update the estimators θ̂j(x) by maximizing Ln(θ0, θ1, . . . , θr(p)−1, τ̂ ; x) where

τ on the right hand side of (2.1) is replaced by τ̂ , now with respect to θ0, θ1, . . . , θr(p)−1 only.

3
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2.2 Functional Shape Parameter Case

In this subsection we discuss the local likelihood truncated regression when the shape pa-

rameter τ is also a smooth function. A preliminary experiment showed that when the shape

parameter is not a constant, fitting a local constant for τ as in the previous subsection pro-

duced poor estimates of f and its derivatives. This motivated us to consider fitting a higher

order local polynomial for the function τ . As illustrated in the simulation study reported in

Section 4 below, fitting a local linear for τ worked particularly well.

When the shape parameter is a function, the conditional log-likelihood is given by
∑n

i=1 ℓ(Yi, f(Xi), τ(Xi)), where ℓ(y, ν, ω) = log [gε(y − ν, ω)I(y ≥ c)/ {1 −G (c− ν, ω)}]. We

fit a qth order local polynomial for the function τ , i.e., we take the following local conditional

log-likelihood:

Ln(θ0, . . . , θr(p)−1, τ0, . . . , τr(q)−1; x)

=

n
∑

i=1

ℓ
(

Yi, θ0 + θ1(Xi1 − x1) + · · · + θr(p)−1(Xid − xd)
p,

τ0 + τ1(Xi1 − x1) + · · · + τr(q)−1(Xid − xd)
q
)

Kh(Xi − x).

The local polynomial estimators of f, τ and their derivatives at x are obtained by maximizing

Ln(θ0, θ1, . . . , θr(p)−1, τ0, . . . , τr(q)−1; x), i.e.,

(

θ̂0(x), . . . , θ̂r(p)−1(x), τ̂0(x), . . . , τ̂r(q)−1(x)
)

(2.3)

= arg max
θ0,...,θr(p)−1,τ0,...,τr(q)−1

Ln(θ0, θ1, . . . , θr(p)−1, τ0, . . . , τr(q)−1; x).

3 Theoretical Properties

Here, we provide the asymptotic distributions of the estimators defined at (2.1)–(2.3). The

theory we present here does not rely on the assumption that the log-likelihood function

ℓ(y, ν, ω) as a function of (ν, ω) is globally concave for each y. The latter assumption is

usually imposed for methods based on the local likelihood approach, see Fan et al. (1995)

or Carroll et al. (1997), for example.

3.1 Constant Shape Parameter Case

The results we present below is closely related to those of Kumbhakar et al. (2007). However,

the latter treated only the local linear estimator for multivariate X in some different setting.

We give more general results for the local polynomial estimators defined at (2.1). Also, we

show that the estimator of τ defined at (2.2) is
√
n-consistent.

4
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For 0 ≤ i, j ≤ 2 with i+ j = 1, 2, let

ℓij(y, ν, ω) = ∂i+jℓ(y, ν, ω)/(∂νi∂ωj).

For a d-vector u, let zp(u) = (1, u1, . . . , u
p
d)

T , an r(p)-vector. For a vector a ≡
(

a0, . . . , ar(p)−1

)T

and a scalar b, define Q(a, b) = [Q1(a, b)
T , Q2(a, b)]

T where

Q1(a, b) =

∫

E
[

ℓ10
(

Y, f(x) + a0 + a1u1 + · · · + ar(p)−1u
p
d, τ + b

)

∣

∣

∣
X = x

]

zp(u)K(u) du,

Q2(a, b) =

∫

E
[

ℓ01
(

Y, f(x) + a0 + a1u1 + · · · + ar(p)−1u
p
d, τ + b

)

∣

∣

∣
X = x

]

K(u) du.

Our results require that the system of equations Q(a, b) = 0 has the unique solution a = 0 ∈
IRr(p) and b = 0 ∈ IR. As in Kumbhakar et al. (2007), the uniqueness of the solution plays

an important role for a stochastic expansion of the estimators.

To give a sufficient condition for the uniqueness of the solution, define for α = (α1, α2) ∈
IR2

ρij(x, α) = −E [ℓij(Y, f(x) + α1, τ + α2) | X = x] .

It can be shown that if

C1(x) ≡ inf
α∈IR2

ρ20(x, α) > 0, C2(x) ≡ inf
α∈IR2

{

ρ02(x, α) − ρ11(x, α)2

ρ20(x, α)

}

> 0, (3.1)

and K ≥ 0 is supported on a set which contains a d-dimensional open rectangle, then

Q(a, b) = 0 has the unique solution. To see this, observe that a Taylor expansion gives

Q(a, b) = −
∫
[

ρ20(x, α(u))zp(u)zp(u)
T ρ11(x, α(u))zp(u)

ρ11(x, α(u))zp(u)
T ρ02(x, α(u))

]

K(u) du

(

a
b

)

≡ −M
(

a
b

)

,

where α(u) lies on a line segment joining (0, 0) and (a0 + a1u1 + · · ·+ ar(p)−1u
p
d, b). Now, for

any vector c1 ∈ IRr(p) and any scalar c2 ∈ IR, it follows that

(cT1 , c2)M
(

c1
c2

)

=

∫

ρ20(x, α(u))

{

cT1 zp(u) + c2
ρ11(x, α(u))

ρ20(x, α(u))

}2

K(u) du

+

∫

c22

{

ρ02(x, α(u)) − ρ11(x, α(u))2

ρ20(x, α(u))

}

K(u) du

≡ I1 + I2 ≥ 0

since K ≥ 0. Thus, M is nonnegative definite. Suppose that

(cT1 , c2)M
(

c1
c2

)

= 0.

5
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Then, I1 = I2 = 0. Since

0 = I2 ≥ C2(x) c
2
2

∫

K(u) du

we obtain c2 = 0 from (3.1). Furthermore, the first integral with c2 = 0 reduces to
∫

ρ20(x, α(u))
{

cT1 zp(u)
}2
K(u) du ≥ C1(x)

∫

{

cT1 zp(u)
}2
K(u) du.

Thus, I1 = 0 implies that
∫

{

cT1 zp(u)
}2
K(u) du = 0.

This means that cT1 zp(u) = 0 for all u in the support of K. Since a polynomial of order

j has at most j roots, it implies that c1 = 0. This shows that the matrix M is positive

definite, from which we conclude that Q(a, b) = 0 has the unique solution a = 0 ∈ IRr(p) and

b = 0 ∈ IR.

Now, we present the asymptotic distributions of the estimators defined at (2.1) and (2.2).

The presentation needs some careful notations to treat the multivariate X and the higher

order approximating polynomial. First, for a d-tuple k ≡ (k1, . . . , kd) and a d-vector x, write

k! = k1! × · · · × kd! , |k| =
d
∑

i=1

ki , xk = xk1
1 × · · · × xkd

d .

For a function η defined on IRd, write

(

∇kη
)

(x) =
∂|k|η(x)

∂xk1
1 · · ·∂xkd

d

.

Let mj =
(

j+d−1
d−1

)

for j ≥ 0. Arrange mj number of d-tuples k with |k| = j in a counter-

lexicographical order: put (j, 0, . . . , 0) first and (0, 0, . . . , j) last. Let ξj denote the function

which maps an integer s for 1 ≤ s ≤ mj to the one located at the sth position in the ar-

rangement of the d-tuples of size j. For example, ξj(1) = (j, 0, . . . , 0). Let µk =
∫

ukK(u) du

for a d-tuple k. For j, l ≥ 0 denote by Njl the mj ×ml matrix whose (s, t)th entry equals

µξj(s)+ξl(t). Define r(p) × mj matrices N
(p)
j =

(

NT
0j , . . . , N

T
pj

)T
for j = 0, . . . , p + 1, and a

r(p) × r(p) matrix N (p,p) =
(

N
(p)
0 , . . . , N

(p)
p

)

. Likewise, define Mjl, M
(p)
j and a r(p) × r(p)

matrix M (p,p) by replacing µk in the definitions of Njl, N
(p)
j and N (p,p) by κk =

∫

ukK2(u) du.

Now we let ρij(x) = ρij(x, 0), and define [r(p) + 1] × [r(p) + 1] matrices

D(x) =

[

N (p,p)ρ20(x) N
(p)
0 ρ11(x)

N
(p)T
0 ρ11(x) N00ρ02(x)

]

, V (x) =

[

M (p,p)v20(x) M
(p)
0 v11(x)

M
(p)T
0 v11(x) M00v02(x)

]

,

where v20(x) = E [ℓ210(Y, f(x), τ) | X = x], v02(x) = E [ℓ201(Y, f(x), τ) | X = x], and v11(x) =

E [ℓ10(Y, f(x), τ)ℓ01(Y, f(x), τ) | X = x]. Note that if ρ20(x) > 0, ρ20(x)ρ02(x) − ρ11(x)
2 > 0

6
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and K ≥ 0 is supported on a set which contains a d-dimensional open rectangle, then D(x) is

positive definite. Under the latter condition on K, the matrix V (x) is also positive definite

unless there exists a nonzero constant c such that ℓ10(Y, f(x), τ) = c ℓ01(Y, f(x), τ) with

probability one, conditionally on X = x. Let D(p,p)(x) be the r(p)× r(p) upper-left block of

D(x) = D(x)−1.

To translate each of θ̂i(x) defined at (2.1) to an estimator of f(x) or its derivatives, we

consider blocks of size mj , j = 0, . . . , p, in the vector of θ̂i(x). Write θ̂(0)(x) = θ̂0(x), and let

θ̂(j)(x) for j ≥ 1 be the jth block of size mj defined by

θ̂(j)(x) = [θ̂r(j−1)(x), . . . , θ̂r(j)−1(x)]
T .

Thus, θ̂(1)(x) =
[

θ̂1(x), . . . , θ̂d(x)
]T

, and so on. Furthermore,

θ̂(x) ≡ [θ̂0(x), . . . , θ̂r(p)−1(x)]
T = [θ̂(0)(x), θ̂(1)T (x), . . . , θ̂(p)T (x)]T .

Define E (p)
j by E (p)T

j =
[

Omj×r(j−1), Imj
, Omj×(r(p)−r(j))

]

, where Or×s denote the r × s zero

matrix, and Ir is the r-dimensional identity matrix. For j = 0, . . . , p, E (p)
j is a r(p) × mj

matrix which maps the whole θ̂(x) to θ̂(j)(x) by

θ̂(j)(x) = E (p)T
j θ̂(x).

Let θ(j)(x) be the mj-vector of all the jth partial derivatives of f(x) divided by the corre-

sponding factorials, arranged in the counter-lexicographical order, i.e.,

θ(j)(x) = [∇ξj(1)f(x)/ξj(1)!, . . . ,∇ξj(mj)f(x)/ξj(mj)!]
T . (3.2)

Then, θ̂(j)(x) is the local polynomial estimator of θ(j)(x).

Let g(x) denote the marginal density function ofX. Let U (p:0)
j,f be the [r(p)+1]×mj matrix

obtained by adding the row vector O1×mj
at the bottom of E (p)

j , i.e., U (p:0)T
j,f = (E (p)T

j , Omj×1).

Also, we define

ℓ∗(y, x) = ℓ01(y, f(x), τ) + ρ11(x)E (p)T
0 D(x)

[

N
(p)
0 ℓ10(y, f(x), τ)
N00ℓ01(y, f(x), τ)

]

.

We obtain the following theorem.

Theorem 3.1. Under the assumptions (A1)–(A9) given in Section 7, it follows that for each

j = 0, . . . , p

√
nh2j+d

[

θ̂(j)(x) − θ(j)(x) − hp−j+1ρ20(x)E (p)T
j D(p,p)(x)N

(p)
p+1θ

(p+1)(x) + o(hp−j+1)
]

d−→ Nmj

[

0,U (p:0)T
j,f D(x)V (x)D(x)U (p:0)

j,f /g(x)
]

,

7
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where Nr denotes an r-variate normal distribution. For the estimator τ̂ , we have under the

assumptions (B1)–(B9)

√
n (τ̂ − τ)

d−→ N1

[

0, {Eρ02(X)}−2Eℓ∗(Y,X)2
]

.

The theorem tells that the pth order local polynomial estimators of the jth partial deriva-

tives converge to the true values at the rate hp−j+1 + n−1/2h−d/2−j . In fact, if all the odd

order moments of K vanish, i.e.,
∫

ukK(u) du = 0 for all d-tuples k with |k| = 1, 3, . . . , and

p− j is even, then it can be shown that the leading bias term of order hp−j+1 is zero. In this

case, if θ(p+2)(x) as defined at (3.2) exists and is continuous, then the bias is of order hp−j+2.

We note that τ̂ is a two-stage estimator with f̂ at the first stage. To make negligible

the bias due to the first stage estimation, one needs undersmoothing for estimation of f

such that nh2(p+1) → 0, see the condition (B9) in Section 7.1. Recall that the optimal order

of the bandwidth h for estimating f equals n−1/{2(p+1)+d}. This kind of undersmoothing

is typically required for two stage estimation to achieve
√
n-consistency, see Carroll et al.

(1997), for example. It can be shown that the rate of convergence for τ̃ (x) as an estimator

of the constant τ equals n−1/2h−d/2, which is inferior to n−1/2 that is achieved by τ . This is

because τ̃(x) takes only a fraction of data of size nhd as is seen in the local fitting procedure

at (2.1). To the contrary, τ̂ uses the full likelihood with f being replaced by its estimator f̂ .

Theorem 3.1 is valid even when the error distribution is misspecified, as long as the

equation Q(a, b) = 0 has the unique solution a = 0 ∈ IRr(p) and b = 0 ∈ IR. In fact, we

investigated the model misspecification issue in our simulation study presented in Section 4.

We will consider misspecification for the error distribution, considering fat tail symmetric

and skewed distributions for the process generating the data, whereas the likelihood will be

build under the normal assumption for G.

3.2 Functional Shape Parameter Case

In this subsection we present the asymptotic distributions of θ̂j(x) for j = 0, 1, . . . , r, and

τ̂j(x) for j = 0, 1, . . . , s, defined at (2.3). We slightly modify the definitions of the terms

that are used in Subsection 3.1, whenever necessary, and introduce more to treat the case

where the shape parameter τ is an unknown function.

With slight abuse of notation, we continue to use the same notation ρij and vij , which

8
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are now defined as

ρij(x) = −E [ℓij(Y, f(x), τ(x)) | X = x] ,

v20(x) = E
[

ℓ210(Y, f(x), τ(x)) | X = x
]

,

v02(x) = E
[

ℓ201(Y, f(x), τ(x)) | X = x
]

,

v11(x) = E [ℓ10(Y, f(x), τ(x))ℓ01(Y, f(x), τ(x)) | X = x] .

For r(p)-vectors a ≡ (a0, . . . , ar(p)−1)
T and b ≡ (b0, . . . , br(p)−1)

T , we also modify the defini-

tions of Qj(a, b) as

Q1(a, b) =

∫

E
[

ℓ10
(

Y, f(x) + a0 + a1u1 + · · ·+ ar(p)−1u
p
d,

τ(x) + b0 + b1u1 + · · ·+ br(q)−1u
q
d

)

∣

∣

∣
X = x

]

zp(u)K(u) du,

Q2(a, b) =

∫

E
[

ℓ01
(

Y, f(x) + a0 + a1u1 + · · ·+ ar(p)−1u
p
d,

τ(x) + b0 + b1u1 + · · ·+ br(q)−1u
q
d

)

∣

∣

∣
X = x

]

zq(u)K(u) du.

As in the case of constant shape parameter, it can be also shown that, if (3.1) holds with

ρij(x, α) = −E [ℓij(Y, f(x) + α1, τ(x) + α2) | X = x], and K ≥ 0 is supported on a set which

contains a d-dimensional open rectangle, then the system of equations Q1(a, b) = 0 and

Q2(a, b) = 0 has the unique solution.

To state an analogue of Theorem 3.1, we need further notation. Define an r(p) × r(q)

matrix N (p,q) =
(

N
(p)
0 , . . . , N

(p)
q

)

. Also, define N (q,p) =
(

N
(q)
0 , . . . , N

(q)
p

)

and N (q,q) =
(

N
(q)
0 , . . . , N

(q)
q

)

, which are r(q) × r(p) and r(q) × r(q), respectively, matrices. Likewise,

define M (p,q), M (q,p) and M (q,q) with µk being replaced by κk =
∫

ukK2(u) du. With these

matrices, definitions of D(x) and V (x) are modified as

D(x) =

[

N (p,p)ρ20(x) N (p,q)ρ11(x)
N (q,p)ρ11(x) N (q,q)ρ02(x)

]

, V (x) =

[

M (p,p)v20(x) M (p,q)v11(x)
M (q,p)v11(x) M (q,q)v02(x)

]

.

These are [r(p) + r(q)] × [r(p) + r(q)] matrices.

As in Subsection 3.1, let D(p,p)(x) be the r(p) × r(p) upper-left block of D(x) = D(x)−1.

Let D(p,q)(x) be the r(p)×r(q) upper-right block, D(q,p)(x) be the r(q)×r(p) lower-left block,

and D(q,q)(x) be the r(q)× r(q) lower-right block of D(x). Define τ (j)(x) in the same way as

θ(j)(x) with f replaced by τ in (3.2). Also, define

τ̂ (j)(x) = E (q)T
j τ̂(x).

9
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To express the biases of the estimators, define

B1(x) = D(x)

[

hp+1ρ20(x)N
(p)
p+1θ

(p+1)(x)

hp+1ρ11(x)N
(q)
p+1θ

(p+1)(x)

]

,

B2(x) = D(x)

[

hq+1ρ11(x)N
(p)
q+1τ

(q+1)(x)

hq+1ρ02(x)N
(q)
q+1τ

(q+1)(x)

]

,

B1,f (x) = ρ20(x)D(p,p)N
(p)
p+1θ

(p+1)(x) + ρ11(x)D(p,q)(x)N
(q)
p+1θ

(p+1)(x),

B2,f (x) = ρ11(x)D(p,p)N
(p)
q+1τ

(q+1)(x) + ρ02(x)D(p,q)(x)N
(q)
q+1τ

(q+1)(x),

B1,τ (x) = ρ20(x)D(q,p)N
(p)
p+1θ

(p+1)(x) + ρ11(x)D(q,q)(x)N
(q)
p+1θ

(p+1)(x),

B2,τ (x) = ρ11(x)D(q,p)N
(p)
q+1τ

(q+1)(x) + ρ02(x)D(q,q)(x)N
(q)
q+1τ

(q+1)(x).

Extending the definition of U (p:0)
j,f in Subsection 3.1, let U (p:q)

j,f be the [r(p) + r(q)] ×mj

matrix obtained by adding the zero matrix Or(q)×mj
at the bottom of E (p)

j , i.e., U (p:q)T
j,f =

(E (p)T
j , Omj×r(q)). Also, let U (p:q)

j,τ be the [r(p) + r(q)] × mj matrix obtained by adding the

zero matrix Or(p)×mj
at the top of E (q)

j , i.e., U (p:q)T
j,τ = (Omj×r(p), E (q)T

j ). Define

âj(x) = hj
{

θ̂(j)(x) − θ(j)(x)
}

, b̂j(x) = hj
{

τ̂ (j)(x) − τ (j)(x)
}

,

â(x) =
(

â1(x)
T , . . . , âp(x)

T
)T

, and b̂(x) =
(

b̂1(x)
T , . . . , b̂q(x)

T
)T

.

We obtain the following theorem.

Theorem 3.2. Under the assumptions (B1)–(B9) given in Section 7, it follows that

√
nhd

[(

â(x)

b̂(x)

)

− B1(x)h
p+1 − B2(x)h

p+2 + o(hp+1 + hq+1)

]

d−→ Nr(p)+r(q) [0,D(x)V (x)D(x)/g(x)] ,

where Nr denotes an r-variate normal distribution. Thus, for each j = 0, . . . , p

√
nh2j+d

[

θ̂(j)(x) − θ(j)(x) − E (p)T
j (B1,fh

p−j+1 +B2,fh
q−j+1) + o(hp−j+1 + hq−j+1)

]

d−→ Nmj

[

0,U (p:q)T
j,f D(x)V (x)D(x)U (p:q)

j,f /g(x)
]

,

and, for each j = 0, . . . , q,

√
nh2j+d

[

τ̂ (j)(x) − τ (j)(x) − E (q)T
j (B1,τh

p−j+1 +B2,τh
q−j+1) + o(hp−j+1 + hq−j+1)

]

d−→ Nmj

[

0,U (p:q)T
j,τ D(x)V (x)D(x)U (p:q)

j,τ /g(x)
]

.

10



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

The theorem tells that both θ̂(j) and τ̂ (j) have the same order of bias even if one fits

locally polynomials of different degrees for f and τ . The leading biases for θ̂(j) and τ̂ (j) are

of the same order h(p∧q)−j+1, where p ∧ q = p if p ≤ q and p ∧ q = q otherwise. Thus,

the smaller of p and q determines the order of the bias for both θ̂(j) and τ̂ (j). This means

that fitting a lower order polynomial for τ may jeopardize the estimator of f . This is a new

theoretical finding. It explains the failure of the local constant fit for τ in our preliminary

experiment, and justifies consideration of higher-order local polynomial fit for τ even if one

is interested in estimating the function f and its derivatives.

Here again, as discussed in Subsection 3.1, if all the odd moments of K vanish and

(p∧q)−j is even, then the leading bias terms of θ̂(j) and τ̂ (j) are of order h(p∧q)−j+2 provided

that θ((p∧q)+2)(x) and τ ((p∧q)+2)(x) exist and are continuous. Also, Theorem 3.2 is valid even

when the error distribution is misspecified, as long as the equation Q(a, b) = 0 has the unique

solution a = 0 ∈ IRr(p) and b = 0 ∈ IRr(q). We investigated the model misspecification issue

for the functional shape parameter case in our simulation study, by considering, here too,

fat tail symmetric and skewed error distributions, when using the normal for building our

estimator.

4 Simulation Results

While constructing scenarios we had in mind a dependent variable bounded between 1 and

infinity, with distribution skewed towards the unity bound, with most observations falling

in between 1 and 2. Intuitively, this would be an index (e.g., the Debreu-Farrell efficiency

index), whose reciprocal is then bounded between 0 and 100%, and most of which are between

50% and 100%. This is adequate to, for example, what many empirical studies report about

production efficiencies of firms or countries (e.g., see Kumar and Russell, 2002, Zelenyuk

and Zheka, 2006, etc. . . ). Such scenarios, with relatively small variation in the dependent

variable and most of which being near the bound, are especially difficult to handle and so

would be a good assessment experiment for our estimator.

Beyond the theoretical results of Section 3, the robustness of our estimator to misspeci-

fication errors is an empirical issue. So we will investigate how our estimator behaves under

various misspecification of the error distribution. Our likelihood is computed under the local

normal assumption and we will then also consider samples generated under a fat tails but

symmetric distribution and under a skewed distribution. All other elements of the simulation

scenario being kept the same. We will also consider a case where the true regression function

is highly non-linear. We will mostly consider univariate cases which is useful for visually ob-

serving the scenario and performance of our estimator relative to the plot of the true model
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and its traditional, fully parametric estimator. But we also show one case in a multivariate

nonlinear heteroskedastic setup, showing how partial derivatives can be recovered.

In the Example 1 below (constant shape parameter) we use local constant model for τ

and local linear fit for the regression f . In all the other cases, local linear approximation

was used for the shape parameter τ and we will compare in each case the local linear and

local quadratic fit for the regression function f . The latter is particularly useful when one

is interested in estimating the derivatives of the regression function. In all the examples,

we will be using the normal distribution for G to compute the likelihood function and the

Gaussian kernel. The bandwidth was determined by cross validation in the lines of e.g.

Kumbhakar et al. (2007). The true model in all the cases can be written as

Yi = f(Xi) + εi, i = 1, . . . , n, (4.1)

with εi ≥ 1 − f(Xi). The true distribution G of the error term before truncation will be

either a Normal, a Student with 5 d.f. or a Gamma with shape parameter α = 31, and

its conditional variance given Xi = x is denoted by σ2
ε (x). In the examples that follow we

chose specific values for the parameters and some particular heteroskedastic scenario, but

we have also tried many different values for the parameters and for the heteroskedasticity

and the results were qualitatively similar to those presented below and are not presented to

save space.

4.1 Example 1. Linear Model with Homoskedasticity

In this scenario we assume homoskedastic variance before truncation, i.e., σε(Xi) = σ. So

we mean here that the shape parameter of the error term is homoskedastic whereas, after

truncation the model obviously is heteroskedastic, because the variance would depend on

the truncation point (1 − f(Xi)). In addition, we assume also that the regression equation

is linear:

f(Xi) = β0 + β1Xi (4.2)

In this case, the traditional truncated regression model with linear regression function, and

with homoskedastic shape parameter (before truncation) would be based on fully parametric

maximum likelihood methods and would provide efficient estimators of the parameters. This

is the approach studied in Simar and Wilson (2007). The goal of doing this experiment is

to investigate how much do we lose (in a univariate case) by using our semiparametric

estimator described in Section 2.1 when the true error distribution is indeed Normal with

1To fix the notation here, α = 1 would be the exponential case.
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constant variance (so that the full parametric approach is correct) and how well our estimator

resists to misspecification of the error distribution. Figure 1 visualizes this scenario and the

estimation results for σ = 0.3, β0 = 1.5, β1 = 0.5. The Xi were generated according to a

uniform U(−2, 2) and the sample size n = 200.
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Figure 1: Example 1: Linear model with homoskedasticity. From top to bottom panels,
Normal /Student/Gamma error terms.

Left panels of Figure 1 shows the plot of the true function (solid line) we want to esti-

mate and the fit of two estimators: parametric ML estimator (dotted line) and local linear

likelihood estimator (dash-dotted line). The right panels of the figure shows the plot of the
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corresponding true and the three estimates of the constant shape parameter τ = σε (the

parametric MLE, the local constant τ̃ (x) and the root-n semiparametric estimator τ̂ defined

in Section 2.1). The error terms were simulated according (from top to bottom panels)

truncated normal, student and gamma adjusted to provide the same true standard deviation

σ = 0.3.

In the pictures we see that all the fits are very good (this was confirmed by other simulated

samples with this scenario) and our semiparametric estimator coincides in all the cases to

the parametric MLE, which is not a surprise since our anchorage model is the (true) linear

model and so, the selected bandwidth is very large, pushing our local linear estimator to the

simple parametric linear model. As a consequence, the estimation of τ are almost identical

in all the cases and for all the approaches. It appears also that the approach is robust

to the departures from normality of the error term analyzed here, but we observe slight

overestimation of the variance in the Student and Gamma cases, especially in the Student

case.

4.2 Example 2. Linear Model with Heteroskedasticity

In this scenario we assume heteroskedasticity for the shape parameter before truncation,

i.e., σε(Xi) now depends on x. We present here only one illustrative case with n = 400

observations where σε(x) = 0.15
√

3 − x. Otherwise, the model is the same as in Example 1.

Here we compare also local linear (with a correct anchorage model) and local quadratic

approximations for the regression. We use local linear approximation for the variance func-

tion. The results are provided in Figure 2. We also tried with a local constant approximation

for the variance function and a local linear for the regression. The results are not repro-

duced for saving space. As expected they are very similar to those of the parametric MLE fit

shown in Figure 2, since as in Example 1, the selected value of the bandwidth is very large

and the semiparametric fit is almost identical to its anchorage linear model. This estimator

persistently overestimated the regression function at the left end and, most importantly,

estimated τ as a constant rather than a function of x, as also the fully parametric estimator

did. This illustrates, from an empirical perspective, the usefulness of using at least linear

approximation for the variance function, as suggested by the theory.

As Figure 2 shows, for the Normal case, the semiparametric estimators perform very well

(both local linear and local quadratic), for both the estimation of the regression and of the

variance function. In all the cases, the semiparametric estimator outperforms the standard

parametric fit. For the Student and the Gamma cases, our semiparametric estimators resist

well to departure from the normal even if the fit of the variance function is less accurate.

In particular for the Gamma case, the local quadratic is less accurate than the local (true)
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linear fit for the regression function. This might be due to the fact that the second order

term essentially picks the heteroskedastic-skewness of the Gamma error term.
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Figure 2: Example 2: Linear model with heteroskedasticity. From top to bottom panels,
Normal /Student/Gamma error terms.

4.3 Example 3. Periodic Model with Heteroskedasticity

In this scenario we assume the regression function has some periodicity. In particular, we

assume that

f(Xi) = β0 + β1 sin(γXi) + β2Xi, i = 1, . . . , n. (4.3)
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Figure 3 shows a typical estimation result for n = 400. The specific values of the param-

eters in this example are β0 = 1, β1 = 0.5, β2 = 0.7, γ = π and Xi ∼ U(0, 4). Moreover, to

complicate the estimation problem, we also assume heteroskedasticity of σε. In the illustra-

tion we chose σε(x) = 0.15
√

6 − x, so that the closer to the truncation bound, the higher is

the variance.
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Figure 3: Example 3: Periodic model with heteroskedasticity. From top to bottom panels,
Normal /Student/Gamma error terms.

The goal of the exercise is to see if our estimators perform well for relationships that seri-

ously depart from linear or quadratic shape and, in fact, which might be fairly hard to guess
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about in practice. The problem is also complicated with the presence of heteroskedasticity.

Nevertheless, Figure 3 suggests that the performance is again quite good for both the linear

and the quadratic estimators, with some robustness to the departure from normality of the

error term, with again some overestimation of the variance function when the error is not

normal.

4.4 Example 4. Multivariate Model with Heteroskedasticity

Here we consider two regressors that influence the dependent variable through a quadratic

form. We want to see how our estimators perform for this type of scenario because the U -

shape relationships are fairly common in economic phenomena. In addition, we want to see

the performance when the situation is complicated by dependence of the variance on some

of the regressors. For example, the employment level in a company may positively influence

not only the mean of inefficiency but also company’s risk (variance) of being inefficient,

e.g., because of increased risk of principal-agent problems, of pressure from trade unions, of

strikes, etc. . . Formally, our scenario is given by (4.1), where for i = 1, . . . , n:

f(Xi) = β0 + β11X1i + β12X
2
1i + β21X2i + β22X

2
2i + γX1iX2i (4.4)

with σε(Xi) = σ − ζ(X1i + δ)2.

As before, we tried different values for the parameters and the results are quite robust.

Figure 4 presents a typical result, where in this particular simulation we had β0 = 1.2, β11 =

−0.1, β12 = 0.2, β21 = −0.1, β22 = 0.2, γ = −0.1, σ = 0.3, ζ = 0.05, δ = 1 and n = 200. Note

that for these particular values, heteroskedasticity is such that the variance increases near

the truncation level, which complicates the estimation problem (homoskedastic case was also

studied and good performance was also observed but to save space we do not present them).

We see that the performance of the local linear is fairly good, but the quadratic one is much

better.
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Figure 4: Example 5: Multivariate model with heteroskedastic shape parameter. Left panel
is the model and right panel is the obtained fit.

Figure 5 gives a sense of the fit of the estimates of the partial derivatives of f w.r.t. X1

and X2 , respectively. We see that the quadratic approximation substantially outperforms

the linear one.
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Figure 5: Example 5: Multivariate model with heteroskedastic shape parameter. Fit of the
partial derivatives of f w.r.t. X1 (left panel) and X2 (right panel).

The observed superiority of the quadratic approach is not surprising at least for two

reasons. First of all, the true model is quadratic and so it is natural that the local quadratic

fit is better than the local linear one. Second, and more generally, the (finite-sample) bias

of our estimator reduces with the order of local approximation of our estimator, as precisely

stated in our Theorem 2.1. It is known that the higher the order approximations the better

shall be the fit (e.g., see Fan and Gijbels, 1996). In practice, however, researchers often stay

satisfied with local linear estimators, motivating it with similar asymptotic properties but

relative computational simplicity.
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All our simulations suggest a different practical conclusion: One should definitely prefer

the local quadratic likelihood estimator of the regression function relative to the local linear

one, despite the increased computational complexity. This is especially true for the following

cases: (i) when heteroskedasticity is expected; (ii) when one has many regressors with pos-

sible interaction among them; (iii) when the goal is to estimate the first partial derivatives

of the regression function. And, these cases, are more the rules than exceptions in empirical

studies. Higher order approximations (especially odd-order) theoretically should give better

fit. However, even for third-order approximation, the programming cost and optimization

cost increase dramatically and might not worth further improvements in the fit.

5 An Empirical Illustration

The goal of this section is not to make a solid empirical investigation but to get a feeling

of the use and value of our estimator in studying economic phenomena. For this, we use

data from a study about economic growth in the world, by Kumar and Russell (2002) that

received considerable attention in the recent literature. Specifically, we take their estimated

Farrell/Debreu-type efficiency scores for 57 countries in the world and relate it to capital-

labor ratio (in the year 1990) in these countries2.

We first use the same three estimators as in the simulations and obtain quite interesting

results, presenting them in Figure 6. First of all, recall that the main argument of Kumar

and Russell (2002) was that the change in capital per labor was the major source of eco-

nomic growth in 1965-1990 and especially of the change from uni-modality to bi-modality of

distribution of income per worker. The fully parametric linear model tells us that there is

also negative (positive) relationship between the inefficiency (efficiency) of a country and its

capital intensity. That is, the more capital per labor in a country the less inefficiency (the

more efficiency) score of this country relative to the other countries. The estimated3 slope

parameter is 2.

2In the regression estimation we had to drop one observation (Switzerland) that appeared to be an outlier
in terms of capital per worker and so causing computational problem in optimization of the likelihood function
(even in fully parametric case).

3We used the Algorithm 1 of Simar and Wilson (2007) to obtain the estimates. Also note that part of the
parametrically estimated curve is not observed in the left panel of Figure 6 because we trimmed the vertical
axis.
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Figure 6: Empirical illustration. Left panel is the model and right panel is the derivative.

On the other hand, observing the left panel of Figure 6, one can see that heteroskedas-

ticity is likely to be present in data: the less capital-labor the larger is the variance of

inefficiency variable. So the apparent negative relationship can in fact be a result of severe

heteroskedasticity.

From the plot of the linear fit in Figure 6, we might guess that the linear parametric

model might be inappropriate here, and exponential might be a better choice. Of course,

in practice such visually based conclusions on the parametric form can hardly be done for

multivariate regressions, but this is useful for illustration and discussion here. We thus

estimated the exponential (homoskedastic) model, Y = 1 + exp(Xβ)+ ε, which corresponds

to the dotted curves in Figure 6. We see that the relationship between the capital depth

and the inefficiency is indeed suggested to be negative, with relatively high marginal effect

at the low capital per worker ratio and monotonically decreasing to almost no effect at the

higher levels. We could also try various forms of heteroskedasticity with this or another

functional form, but guessing about the two functional forms for the regression and for the

shape parameter at the same time might be too much for a scientific approach.

So, instead, we try our non-parametric procedure that is capable of handling heteroskedas-

ticity of unknown form and we get quite different conclusion than what the parametric models

told us. Both linear and quadratic local likelihood estimators suggest that there is virtually

no relationship between the Farrell/Debreu-type efficiency score of a country vs. capital-

labor of this country. Specifically, the fitted curve characterizing the relationship is almost

flat and the slope coefficient is fluctuating near zero. We see an exception at the very end

(top 10% percentile) of the empirical range of the explanatory variable, where the quadratic

approximation suggests that the relationship might indeed be negative, but this is only in a
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small interval where there is only a few observations.

The results from estimating the regression equation non-parametrically makes us conjec-

ture that the negative relationship between countries inefficiency score and its capital-labor

ratio is coming not through the level (mean) of inefficiency but through the dispersion of

inefficiency. Intuitively, we can say that the less capital-labor in a country the greater is the

risk of having high inefficiency score for that country. Figure 7 gives a plot of the estimated

variance of the error term vs. the explanatory variable, which supports our conjecture.
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Figure 7: Empirical illustration. Estimation of the heterskedastic shape function.

The result we obtained in our small application is consistent with capitalist philosophy:

if people possess a lot of capital within a country then they have a lot of incentives to create

a political system that would minimize the risk of underutilization (inefficiency) of their

capital. On the other hand, if people possess little of capital, “they have got little to lose”,

and so might be not as much interested or capable to build appropriate institutions that

would protect property rights, ensure positive incentives for efficient allocation of resources

and efforts and thus minimize the risk of underdevelopment. Looking at the data confirms

that it is mostly the underdeveloped countries that are in the range of high variance of

inefficiency scores and low capital per labor levels.

Finally, it might be worth reminding that in this section we had not intended to resolve the

puzzles of economic growth and differences in efficiency across countries. Such study would

require larger data set and more variables. Our goal was just to give a small illustration of

our estimator in practice and show how it could suggest radically different conclusions than

those obtained from commonly used, and sometimes abused, parametric methods.

21



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

6 Concluding Remarks

In this work we proposed a fairly flexible estimator for the context of truncated regression

that does not require parametric assumptions. For this, we extended the theory of local

maximum likelihood estimation, in particular the recent work of Kumbhakar et al. (2007),

to the truncated case. We provided the asymptotic results of our estimator. Specifically, the

estimator is consistent and asymptotically normally distributed with variance that can be

estimated from data. Also, we derived a root-n consistent semiparametric estimator of the

shape parameter in the homoskedastic case.

We also illustrated the performances of two variants of our estimator (namely, linear and

quadratic approximations) on various simulated data sets, comparing it to the truth and to

the parametric estimator. Remarkably, for the univariate case, our estimator performs as

good as the traditional, fully parametric estimator when the assumptions for the latter hold,

i.e., we do not lose virtually anything by allowing the flexibility. However, our estimator

performs much better when the parametric assumptions on the regression equation does not

hold or even only when the assumption of homoskedastic shape parameter of the error term

does not hold. We investigated how our semiparametric estimator behaved under departure

from the normality assumption of the error term. For both “fat tails” departure (Student

with 5 d.f.) and skewness (Gamma with shape parameter equal to 3) we have seen that our

estimator is rather robust and still able to capture most of the structure of the underlying

data generating process.

The use of our estimator on a real data set was illustrated from the recent study of

Kumar and Russell (2002), analyzing relationship between the efficiency scores and the

capital deepness in countries in the world. In this application we noticed that quite different

and perhaps more plausible implications can be inferred using our estimator instead of the

commonly used parametric one.

It became common that empirical researchers are often satisfied with local linear estima-

tors, motivating it with similar asymptotic properties but relative computational simplicity.

However, all our simulations suggested that, despite some increase in the computational

complexity, the local quadratic likelihood estimator of the regression function should be

preferred relative to the local linear one, especially if heteroskedasticity is expected and cer-

tainly when the focus is on estimating first derivatives. We also found that fitting a lower

order polynomial for the shape parameter τ may jeopardize the estimator of the regression

function f . This is a new theoretical finding, which was supported with preliminary simu-

lation results and justifies consideration of higher-order local polynomial for τ even if one is

interested in estimating the function f and its derivatives.
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Noteworthy, our study can be extended in many ways. One natural extension would be

to investigate endogeneity problem. Another extension is to incorporate the use of discrete

explanatory variables. Yet another extension is to analyze the panel data framework. Our

study is just the start, telling that the non-parametric estimator in the truncated regression

context should exhibit a fair degree of robustness to various deviations from linearity in the

regression equation and in the function defining the heteroskedastic shape parameter and to

departure from the normality assumption. Thus our semiparametric estimator should prove

to be very useful in practical applications.

7 Regularity Conditions and Proof of Theorems

7.1 Regularity Conditions

First, we collect the assumptions for the first part of Theorem 3.1. For a ∈ IRr(p) and b ∈ IR,

let ψ(a, b|x) ≡ [ψ1(a, b|x), ψ2(a, b|x)]T where

ψ1(a, b|x) = E
[

ℓ10
(

Y, f(x) + a0 + a1u1 + · · ·+ ar(p)−1u
p
d, τ + b

)

∣

∣

∣
X = x

]

,

ψ2(a, b|x) = E
[

ℓ01
(

Y, f(x) + a0 + a1u1 + · · ·+ ar(p)−1u
p
d, τ + b

)

∣

∣

∣
X = x

]

.

(A1) Q(a, b) = 0 has the unique solution a = 0 ∈ IRr(p) and b = 0 ∈ IR;

(A2) sup(aT ,b)T ∈A

∣

∣

∣
ψ(a, b|x + z) − ψ(a, b|x)

∣

∣

∣
→ 0 as z → 0 for some compact set A ⊂

IRr(p)+1;

(A3) for (i, j) = (1, 0) and (0, 1), the following condition holds: for any compact sets

A1,A2 ⊂ IR, there exist functions Uij such that supν∈A1,ω∈A2
|ℓij(y, ν, ω)| ≤ Uij(y) and

sup|z−x|≤εE
(

U2+δ
ij (Y )|X = z

)

<∞ for some ε, δ > 0;

(A4) for (i, j) = (2, 0), (0, 2) and (1, 1), the following condition holds: ℓij(y, ν, ω) are

continuous in (ν, ω) for each y, and for any compact sets A1,A2 ⊂ IR, there exist func-

tions Uij such that supν∈A1,ω∈A2
|ℓij(y, ν, ω)| ≤ Uij(y) and sup|z−x|≤εE

(

U2
ij(Y )|X = z

)

<

∞ for some ε > 0;

(A5) g(x) > 0, ρ20(x) > 0, ρ20(x)ρ02(x) − ρ11(x)
2 > 0, v20(x) > 0, v20(x)v02(x) −

v11(x)
2 > 0

(A6) g, all ρij and vij for (i, j) = (2, 0), (0, 2), (1, 1) are continuous at x;

(A7) K is nonnegative, bounded and supported on [−1, 1]d;
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(A8) The function f has (p+ 1)th continuous partial derivatives at x;

(A9) h→ 0 and nh→ ∞ as n→ ∞, and nh2p+d+2 < C for some positive constant C.

For the second part of Theorem 3.1, we need the conditions for the first part hold uni-

formly for x in its support S. We assume S is compact. For the statement of the conditions,

we write Q(a, b; x) for Q(a, b) defined in Section 3.1 to stress its dependence on x.

(B1) Q(a, b; x) = 0 has the unique solution a = 0 ∈ IRr(p) and b = 0 ∈ IR for all x ∈ S;

(B2) sup(aT ,b)T ∈A, x∈S

∣

∣

∣
ψ(a, b|x + z) − ψ(a, b|x)

∣

∣

∣
→ 0 as z → 0 for some compact set

A ⊂ IRr(p)+1;

(B3) for (i, j) = (1, 0) and (0, 1), the following condition holds: for any compact sets

A1,A2 ⊂ IR, there exist functions Uij such that supν∈A1,ω∈A2
|ℓij(y, ν, ω)| ≤ Uij(y) and

supx∈S E
(

U2+δ
ij (Y )|X = x

)

<∞ for some δ > 0;

(B4) for (i, j) = (2, 0), (0, 2) and (1, 1), the following condition holds: ℓij(y, ν, ω) are

continuous in (ν, ω) for each y, and for any compact sets A1,A2 ⊂ IR, there exist func-

tions Uij such that supν∈A1,ω∈A2
|ℓij(y, ν, ω)| ≤ Uij(y) and supx∈S E

(

U2
ij(Y )|X = x

)

<

∞;

(B5) infx∈S g(x) > 0, infx∈S ρ20(x) > 0, infx∈S{ρ20(x)ρ02(x)−ρ11(x)
2} > 0, infx∈S v20(x) >

0, infx∈S{v20(x)v02(x) − v11(x)
2} > 0

(B6) g, all ρij and vij for (i, j) = (2, 0), (0, 2), (1, 1) are continuous on S;

(B7) K is nonnegative, bounded and supported on [−1, 1]d;

(B8) The function f has (p+ 1)th continuous partial derivatives on S;

(B9) nh2(p+1) → 0 and nh2d/(log n)2 → ∞ as n→ ∞.

Now, to list the assumptions for Theorem 3.2, let ψ(a, b|x) ≡ [ψ1(a, b|x), ψ2(a, b|x)]T for

a ∈ IRr(p) and b ∈ IRr(q), where

ψ1(a, b|x) = E
[

ℓ10
(

Y, f(x) + a0 + a1u1 + · · · + ar(p)−1u
p
d,

τ(x) + b0 + b1u1 + · · ·+ br(q)−1u
q
d

)

∣

∣

∣
X = x

]

,

ψ2(a, b|x) = E
[

ℓ01
(

Y, f(x) + a0 + a1u1 + · · · + ar(p)−1u
p
d,

τ(x) + b0 + b1u1 + · · ·+ br(q)−1u
q
d

)

∣

∣

∣
X = x

]

.
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(C1) Q(a, b) = 0 has the unique solution a = 0 ∈ IRr(p) and b = 0 ∈ IRr(q);

(C2) sup(aT ,bT )T ∈A

∣

∣

∣
ψ(a, b|x + z) − ψ(a, b|x)

∣

∣

∣
→ 0 as z → 0 for some compact set

A ⊂ IRr(p)+r(q);

(C3)–(C7) same as (A3)–(A7);

(C8) The function f has (p + 1)th continuous partial derivatives, and the function τ

has (q + 1)th continuous partial derivatives, at x;

(C9) h→ 0 and nh→ ∞ as n→ ∞, and nh2(p∧q)+d+2 < C for some positive constant

C.

7.2 Proofs of Theorems 3.1 and 3.2

We outline a proof of Theorem 3.2 first, and then give a proof of Theorem 3.1.

7.2.1 Proof of Theorem 3.2

Define u(j) =
(

uξj(1), . . . , uξj(mj)
)T

for a d-vector u, where ξj(s) is defined in Section 3. Let

f̃ be the pth order polynomial approximation of f around the point x, and τ̃ the qth order

polynomial approximation of τ , i.e.,

f̃(u) =

p
∑

j=0

θ(j)(x)T (u− x)(j),

τ̃(u) =

q
∑

j=0

τ (j)(x)T (u− x)(j),

where θ(j)(x) is defined at (3.2). Define

â(j) ≡ â(j)(x) = hj
(

θ̂(j)(x) − θ(j)
)

, j = 0, . . . , p,

b̂(j) ≡ b̂(j)(x) = hj
(

τ̂ (j)(x) − τ (j)
)

, j = 0, . . . , q.
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Also, define

Zp,i =

(

1,

(

Xi1 − x1

h

)

, . . . ,

(

Xid − xd

h

)p)T

,

ℓ̃jk(i, a, b) = ℓjk

(

Yi, f̃(Xi) + a0 + a1

(

Xi1 − x1

h

)

+ · · ·+ ar(p)−1

(

Xid − xd

h

)p

,

τ̃ (Xi) + b0 + b1

(

Xi1 − x1

h

)

+ · · · + br(q)−1

(

Xid − xd

h

)q)

Q1n(a, b) = n−1
n
∑

i=1

Zp,iℓ̃10(i, a, b)Kh(Xi − x),

Q2n(a, b) = n−1
n
∑

i=1

Zq,iℓ̃01(i, a, b)Kh(Xi − x).

Write â = (â(0)T , . . . , â(p)T )T and b̂ = (b̂(0)T , . . . , b̂(q)T )T . Then (â, b̂) is the solution of the

equation Qn(a, b) = 0, where Qn(a, b) =
(

Q1n(a, b)T , Q2n(a, b)T
)T

is a [r(p) + r(q)]-vector.

One can prove in a similar way as in Kumbhakar et al. (2007) that for any compact set A

sup
(a,b)∈A

∣

∣

∣
Qn(a, b) −EQn(a, b)

∣

∣

∣
= Op

(

n−1/2h−d/2(logn)1/2
)

, (7.1)

sup
(a,b)∈A

∣

∣

∣
EQn(a, b) −Q(a, b)

∣

∣

∣
= o(1). (7.2)

By (7.1), (7.2) and the assumption (C1) it follows that

â = op(1), b̂ = op(1). (7.3)

Next, let Sn(a, b) be a [r(p) + r(q)] × [r(p) + r(q)] matrix defined as

Sn(a, b) = n−1

n
∑

i=1





Zp,iZ
T
p,iℓ̃20(i, a, b), Zp,iZ

T
q,iℓ̃11(i, a, b)

Zq,iZ
T
p,iℓ̃11(i, a, b), Zq,iZ

T
q,iℓ̃02(i, a, b)



Kh(Xi − x)

It can be proved that for any compact set A

sup
(a,b)∈A

∣

∣

∣
Sn(a, b) − ESn(a, b)

∣

∣

∣
= Op

(

n−1/2h−d/2(log n)1/2
)

(7.4)

A Taylor expansion of Qn(a, b) gives

0 = Qn(â, b̂) = Qn(0, 0) + Sn(a∗, b∗)

[

â

b̂

]

, (7.5)

where a∗ and b∗ are random vectors such that |(a∗T , b∗T )T | ≤ |(âT , b̂T )T |. The consistency of

(â, b̂) as given at (7.3) and the result (7.4) imply

Sn(a∗, b∗) − ESn(0, 0) = op(1). (7.6)
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Furthermore, one can show that

ESn(0, 0) = −D(x)g(x) + o(1). (7.7)

By (7.5)–(7.7) and the fact thatQn(0, 0) = Op(n
−1/2h−d/2), we obtain the following expansion

for (âT , b̂T )T :
[

â

b̂

]

= g(x)−1D(x)−1Qn(0, 0) + op(n
−1/2h−d/2). (7.8)

The mean and variance of (âT , b̂T )T come from those of Qn(0, 0). One can show

E[Qn(0, 0)] =

[

hp+1ρ20(x)N
(p)
p+1θ

(p+1)(x) + hq+1ρ11(x)N
(p)
q+1τ

(q+1)(x)

hp+1ρ11(x)N
(q)
p+1θ

(p+1)(x) + hq+1ρ02(x)N
(q)
q+1τ

(q+1)(x)

]

g(x) (7.9)

+o(hp+1 + hq+1),

var[Qn(0, 0)] = n−1h−d

[

M (p,p)v20(x) M (p,q)v11(x)
M (q,p)v11(x) M (q,q)v02(x)

]

g(x) + o(n−1h−d). (7.10)

The asymptotic normality of Qn(0, 0) follows from the assumption (C3) by a direct ap-

plication of the Lindeberg-Feller theorem. The theorem now follows from the asymptotic

normality of Qn(0, 0) and (7.8)–(7.10).

7.2.2 Proof of Theorem 3.1

With slight abuse of notation, we continue to use ℓ̃jk(i, a, b) to denote

ℓ̃jk(i, a, b) = ℓjk

(

Yi, f̃(Xi) + a0 + a1

(

Xi1 − x1

h

)

+ · · ·+ ar(p)−1

(

Xid − xd

h

)p

, τ + b

)

,

where b is now a scalar. Also, we define Qjn(a, b) for j = 1, 2 and Sn(a, b) as in the proof of

Theorem 3.2, but with replacing Zq,i by 1. Then, we get (7.8) where D(x) is now as defined

in Section 3.1. Since in this case τ (j) = 0 for all j ≥ 1, we obtain instead of (7.9) and (7.10),

respectively,

E[Qn(0, 0)] =

[

hp+1ρ20(x)N
(p)
p+1θ

(p+1)(x)
hp+1ρ11(x)N0,p+1θ

(p+1)(x)

]

g(x) + o(hp+1), (7.11)

var[Qn(0, 0)] = n−1h−dV (x)g(x) + o(n−1h−d),

where V (x) is as defined in Section 3.1. The first part of the theorem follows immediately

from these expansions.

For the proof of the second part, we need a stronger result than (7.8). To do this,

define (a(x)T , b(x))T = −{ESn(0, 0; x)}−1Qn(0, 0; x). Note that here we make explicit the

dependence of Qn(0, 0) and Sn(0, 0) on x. Also, we write f̃(u; x) and Zp,i(x) instead of f̃(u)
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and Zp,i defined in the proof of Theorem 3.2. Let cn = n−1/2h−d/2(logn)1/2. From (7.11)

and the fact that supx∈S |Qn(0, 0; x) − EQn(0, 0; x)| = Op(cn), we see that

Qn(0, 0; x) = Op(cn + hp+1) (7.12)

uniformly for x in S. Now, let ∆1(x) = â(x) − a(x) and ∆2(x) = b̂(x) − b(x). Write

∆(x) =
(

∆1(x)
T ,∆2(x)

)T
. Then, from the expansion

0 = Qn(â(x), b̂(x)) = Qn(a(x), b(x); x) + Sn(a(x), b(x); x)∆(x){1 + op(1)}
= Qn(a(x), b(x); x) + Sn(0, 0; x)∆(x){1 + op(1)},

we obtain

∆(x) = −Sn(0, 0; x)−1Qn(a(x), b(x); x){1 + op(1)} (7.13)

uniformly for x in S. Furthermore, we have from (7.12) that, uniformly for x ∈ S,

Qn(a(x), b(x); x) = Qn(0, 0; x) + Sn(0, 0; x)

[

a(x)

b(x)

]

+Op(c
2
n + h2(p+1))

= Qn(0, 0; x) − Sn(0, 0; x){ESn(0, 0; x)}−1Qn(0, 0; x) +Op(c
2
n + h2(p+1))

= −{Sn(0, 0; x) − ESn(0, 0; x)}{ESn(0, 0; x)}−1Qn(0, 0; x)

+Op(c
2
n + h2(p+1))

= Op(c
2
n + h2(p+1)).

This and (7.13) give supx∈S |∆(x)| = Op(c
2
n + h2(p+1)). Thus, we obtain for the estimator

f̂(x) of f(x) = θ(0)(x)

sup
x∈S

∣

∣

∣
f̂(x) − f(x) − n−1

n
∑

i=1

Wi(x)Kh(Xi − x)
∣

∣

∣
= Op(c

2
n + h2(p+1)), (7.14)

where Wi(x) is the first element of the vector,

Hn(x)−1

[

Zp,i(x)ℓ̃10(i, 0, 0)

ℓ̃01(i, 0, 0)

]

= Hn(x)−1

[

Zp,i(x)ℓ10(Yi, f̃(Xi; x), τ)

ℓ01(Yi, f̃(Xi; x), τ)

]

and Hn(x) = −{ESn(0, 0; x)}.
Define d̂ = τ̂ − τ . Then, d̂ is the solution of the equation Q3n(d) = 0, where

Q3n(d) = n−1

n
∑

i=1

ℓ01(Yi, f̂(Xi), τ + d).

Replacing f̂ by f in Q3n(d), let

Q4n(d) = n−1
n
∑

i=1

ℓ01(Yi, f(Xi), τ + d).

28



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

It follows that

Q3n(d) = Q4n(d) + n−1

n
∑

i=1

ℓ11(Yi, f(Xi), τ + d){f̂(Xi) − f(Xi)} (7.15)

+Op

(

c2n + h2(p+1)
)

,

uniformly for d in any compact subset of IR. Let W ∗
i (x) denote Wi(x) where f̃(Xi; x) is

replaced by f(Xi), i.e., it is the first element of

Hn(x)−1

[

Zp,i(x)ℓ10(Yi, f(Xi), τ)
ℓ01(Yi, f(Xi), τ)

]

.

We point out here that E[W ∗
i (x)|Xi = x] = 0. Since f̃(Xi; x) − f(Xi) = O{(Xi − x)p+1} by

the definition of f̃(u; x), (7.14) implies that the second term of (7.15) equals

n−2

n
∑

i=1

n
∑

j=1

ℓ11(Yi, f(Xi), τ + d)Wj(Xi)Kh(Xj −Xi) +Op

(

c2n + h2(p+1)
)

= n−2
n
∑

i=1

n
∑

j=1

ℓ11(Yi, f(Xi), τ + d)W ∗
j (Xi)Kh(Xj −Xi) +Op

(

c2n + hp+1
)

≡ Tn(d) +Op

(

c2n + hp+1
)

uniformly for d in any compact subset of IR. Define W 0
j to be the first element of the vector

Hn(Xj)
−1

[

N
(p)
0 ℓ10(Yj, f(Xj), τ)
N00ℓ01(Yj, f(Xj), τ)

]

.

Note that we again have E(W 0
j |Xj) = 0. Write ρ11(x; d) = E[ℓ11(Y, f(X), τ + d)|X = x].

Recall that with this definition ρ11(x; 0) = ρ11(x). Then, it can be shown that

Tn(d) = n−1
n
∑

j=1

ρ11(Xj; d)g(Xj)W
0
j + op(n

−1/2)

uniformly for d in any compact subset of IR. The above approximation can be obtained by

calculating the second moment of the difference. Note that ρ11(Xj ; d)g(Xj)W
0
j is nothing else

than an approximation of the conditional mean of ℓ11(Yi, f(Xi), τ + d)W ∗
j (Xi)Kh(Xj −Xi)

given (Xj , Yj) where j 6= i.

Since n1/2c2n → 0 and n1/2hp+1 → 0 by the condition (B9), we obtain from the above

approximations and (7.15) that

Q3n(d) = Q4n(d) + n−1

n
∑

j=1

ρ11(Xj; d)g(Xj)W
0
j + op(n

−1/2)
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uniformly for d in any compact subset of IR. This entails

n1/2d̂ =

(

−n−1

n
∑

i=1

ℓ02(Yi, f(Xi), τ)

)−1{

n1/2Q4n(0) + n−1/2

n
∑

i=1

ρ11(Xi)g(Xi)W
0
i

}

+ op(1)

= {Eρ02(X)}−1n−1/2
n
∑

i=1

{

ℓ01(Yi, f(Xi), τ) + ρ11(Xi)g(Xi)W
0
i

}

+ op(1)

= {Eρ02(X)}−1n−1/2

n
∑

i=1

ℓ∗(Yi, Xi) + op(1).

The last approximation follows from the fact that Hn(x) = D(x)g(x) + o(1) uniformly for

x ∈ S. Thus, we conclude that n1/2d̂
d→ N1 [0, {Eρ02(X)}−2Eℓ∗(Y,X)2].
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