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y email: adam.rosen@ucl.ac.uk bootstrapping, or simulation for approximation of asymptotic critical values. In this paper, the test statistic used to perform inference has an asymptotic chi-bar-square distribution, and can be inverted to construct an asymptotic con…dence set for the parameter of interest. Relative to inferential methods based on subsampling or bootstrapping, this has the computational advantage of not requiring resampling of one's data to obtain critical values for a test statistic over each element of the parameter space.

To motivate the con…dence sets of this paper, it is useful to …rst consider inference when there is point-identi…cation. When 0 is point-identi…ed, one may construct a con…dence set C n such that in repeated sampling

lim n!1 P f 0 2 C n g = 1 , (1) 
for pre-speci…ed level 1 . This is the starting point taken for motivation of the con…dence regions constructed in this paper. However, when 0 is partially identi…ed, the standard methods for constructing such a set C n do not apply without modi…cation, as they rely on point identi…cation as a necessary condition. In this context, there is some set of values, , which are observationally equivalent to 0 , called the identi…ed set. In the class of models considered here, a con…dence set that satis…es (1) for one value of 0 = 0 2 , may not do so for another value 0 = 00 2 .

Because any two such values 0 and 00 are by de…nition observationally equivalent, no amount of sample data will allow the researcher to distinguish between any two such values.

Thus, the goal of this paper is construction of sets that satisfy

inf 2 lim n!1 P 2 C pt n = 1 , ( 2 
)
where P is taken to be the measure induced by repeated sampling from the true population distribution. Since 0 2 , i.e. the true 0 is necessarily a member of the identi…ed set, such sets C pt n will contain 0 with at least probability 1

for n su¢ ciently large, i.e. lim n!1 P

n 0 2 C pt n o 1 .
To this end, I employ a pointwise testing procedure, in the vein of [START_REF] Anderson | The Asymptotic Properties of Estimates of the Parameters of a Single Equation system in a Complete System of Stochastic Equations[END_REF] and [START_REF] Anderson | The Asymptotic Properties of Estimates of the Parameters of a Single Equation system in a Complete System of Stochastic Equations[END_REF]. In the face of either weak or partial identi…cation, pointwise approaches have also been employed by, for example, [START_REF] Dufour | Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models[END_REF], [START_REF] Staiger | Instrumental Variables Regression with Weak Instruments[END_REF], [START_REF] Stock | GMM with Weak Identi…cation[END_REF], [START_REF] Hu | Estimation of a Dynamic Panel Data Model[END_REF], [START_REF] Kleibergen | Testing Parameters in GMM Without Assuming that They Are Identi-…ed[END_REF], and [START_REF] Guggenberger | Generalized Empirical Likelihood Estimators and Tests Under Partial, Weak, and Strong Identi…cation[END_REF], among others. Some recent papers have also considered sets that provide uniform asymptotic coverage in both P and 2 , see for example [START_REF] Imbens | Con…dence Intervals for Partially Identi…ed Parameters[END_REF], [START_REF] Fan | Con…dence Sets for Some Partially Identi…ed Parameters[END_REF], and [START_REF] Stoye | More on Con…dence Regions for Partially Identi…ed Parameters[END_REF]. [START_REF] Andrews | Validity of Subsampling and Plug-In Asymptotic Inference for Parameters De…ned by Moment Inequalities[END_REF] and [START_REF] Andrews | Validity of Subsampling and Plug-In Asymptotic Inference for Parameters De…ned by Moment Inequalities[END_REF] provide conditions under which the con…dence sets of this paper have uniformly valid asymptotic coverage.

The procedure employed in this paper makes use of results on multivariate one-sided hypothesis testing, such as Bartholomew (1959a), Bartholomew (1959b), [START_REF] Kudo | A Multivariate Analog of a One-Sided Test[END_REF], [START_REF] Perlman | One-Sided Testing Problem in Multivariate Analysis[END_REF], [START_REF] Gourieroux | Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters[END_REF], [START_REF] Kodde | Wald Criteria for Jointly Testing Equality and Inequality Restrictions[END_REF] and Wolak (1991); see [START_REF] Sen | Constrained Statistical Inference: Inequality, Order, and Shape Restrictions[END_REF] for a thorough compendium. Results in this literature apply in cases where the parameter of interest is point-identi…ed. This paper extends these methods to the moment inequality setting, where there is no consistent point estimate for 0 , by relying on the asymptotic behavior of the moment restrictions. Speci…cally, I construct a test statistic Qn ( ) that, under su¢ cient regularity conditions, when scaled by n and evaluated at any element of the identi…ed set , has an asymptotic distribution that is a mixture of chi-square distributions, the chi-barsquare distribution. This test statistic is then inverted to construct con…dence sets for 0 with pre-speci…ed asymptotic coverage. The test statistic is a function of the moments that comprise the imposed modeling restrictions on 0 . As such, the theory needed to guarantee proper asymptotic coverage relies completely on the distribution of observables. The inferential method is relatively straightforward to implement in practice and is demonstrated with a speci…c example in section 5.

A drawback is that in general the cuto¤ value for the test statistic Qn ( ) di¤ers for di¤erent values of 2 . That is, n Qn ( ) is not asymptotically pivotal because its asymptotic distribution depends on the variance of those components of m (z; ) that have expected value zero. This problem is overcome by building con…dence sets for 0 by using an upper bound on the number of such components. The dimension of m (z; ), J, is clearly an upper bound, but in models with partially identi…ed parameters there is often a smaller upper bound which can be used to achieve more accurate inference. As discussed further in section 4, in some cases use of this upper bound may lead to coverage in ‡ation, in the sense that inf 2 lim n!1 P

n 2 C pt n o may exceed 1 ,
though the test on which the con…dence sets are based is consistent regardless. In cases where there is no obvious upper bound implied by the modeling restrictions, it is straightforward to estimate.

The paper proceeds as follows. Section 2 presents the moment inequality model. Section 3 describes the pointwise testing procedure. Section 4 then presents two ways to construct con…dence sets based on the hypothesis test of section 3. Section 5 presents a simple example as illustration and investigates the performance of con…dence sets via Monte Carlo simulation. Section 6 concludes and o¤ers avenues for continued research. All proofs are in the Appendix.

The Model

Let fz i : i = 1; :::; ng denote a random sample of observations of z distributed with population distribution P with support Z R s . Each observation z i represents all information observed by the econometrician for each i = 1; :::; n. If partial identi…cation is a result of missing data, for example, then z i excludes those characteristics of individual i in the population that are missing.

, rather than 0 , is used to denote a representative value of the parameter of interest. denotes the set of values of 2 that satisfy the restrictions of the model, i.e. is the identi…ed set for 0 . The "true" underlying value of in the model is denoted 0 , but in general 0 might not be point-identi…ed by the restrictions of the model. The focus of this paper is moment inequality models. The model is summarized by the restric-tions

E [m (z; 0 )] = E 2 6 6 4 m 1 (z; 0 ) . . . m J (z; 0 ) 3 7 7 5 0 B B @ 0 . . . 0 1 C C A .
(3)

J < 1 is the number of moment inequalities of the model. Formally, the model is given by the following three assumptions.

Assumption A1 (random sampling) Z fz i : i = 1; :::; N g are i.i.d. observations distributed P .

Assumption A2 (compact parameter space) 0 is an element of the compact space R k .

Assumption A3 (moment inequalities) E [m (z; 0 )] 0, where m ( ; ) : R s ! R J .

These assumptions yield the following identi…ed set for 0 .

De…nition 1 Given assumptions (A1)-(A3), the identi…ed set for 0 is

= f 2 : E [m (z; )] 0g .
The identi…ed set for 0 , , is the set of parameter values that satisfy the restrictions of the model, and thus 0 is necessarily an element of this set. If is a singleton, then = f 0 g and 0 is point identi…ed. If is empty, the model is misspeci…ed. If but is neither empty nor singleton, then 0 is partially identi…ed. In this case, the model is informative even though 0 is not point identi…ed. By de…nition of the identi…ed set, there is no way to distinguish between any of the elements of being the true 0 on the basis of observables; any element of the identi…ed set is a plausible value for 0 , as all elements of are observationally equivalent by de…nition.

The con…dence sets of this paper are based on a test of the hypothesis that 2 against the alternative = 2 , or equivalently, the test but can still be used to construct con…dence sets for 0 . Depending on the variance of the binding moments over , the con…dence sets may be conservative, in the sense that condition (2) may be satis…ed with weak inequality ( ) rather than equality. This is not relevant for the theoretical result of this section, but is an important consideration in the actual construction and accuracy of con…dence regions. A more detailed discussion is deferred to the details of implementation discussed in section 4.

H 0 : E [m (z; )] 0 (4) 
In order to test whether is contained in the identi…ed set implied by the restrictions (3), I employ the following statistic:

Qn ( ) = min t 0 h Ên [m (z; )] t i 0 V 1 h Ên [m (z; )] t i ,
where V is the sample variance of m (z; ), and where the minimization is taken over the vector t of dimension J, constrained to have all elements non-negative. The value of Qn ( ) is a function of the sample moment functions evaluated at , as well as V . Given any …xed value of being tested, Qn ( ) is the solution of a quadratic minimization problem over a polyhedral cone, for which the Kuhn-Tucker conditions characterize a unique minimum, see [START_REF] Kudo | A Multivariate Analog of a One-Sided Test[END_REF]. Thus, for any …xed value of being tested, Qn ( ) is straightforward to compute using the necessary and su¢ cient Kuhn-Tucker conditions, which are that for each j = 1; :::; J,

h V 1 h Ên [m (z; )] t ii j = 0 and t j > 0. or h V 1 h Ên [m (z; )] t ii j 0 and t j = 0.
Explicitly imposing these conditions substantially simpli…es the computation of Qn ( ).

If the moment restrictions E [m (z; )] 0 are true, i.e. if 2 , then Qn ( ) should be small.

In this case, violations of Ên [m (z; )] 0 are attributable to no more than sampling variation. This is because the population version of Qn ( ) (and the probability limit of Qn ( ) under su¢ cient regularity, see Proposition 1) is

Q ( ) = min t 0 [E [m (z; )] t] 0 V 1 [E [m (z; )] t] ,
where V is the variance of m (z; ). Q ( ) measures the distance of from , as Q ( ) = 0 if and only if E [m (z; )] 0, and is otherwise positive. [START_REF] Manski | Inference on Regressions with Interval Data on a Regressor or Outcome[END_REF] and [START_REF] Chernozhukov | Estimation and Con…dence Regions for Parameter Sets in Econometric Models[END_REF] derive conditions for consistency of parameter sets that minimize an objective function, and their results apply here. The focus of this paper is inference, yet in practice estimation precedes inference, so the application of these results to Qn ( ) is stated formally in Proposition 2.

Outside the context of estimating partially identi…ed parameters, test statistics of similar form have been used previously in the literature on multivariate one-sided hypothesis testing, e.g. Bartholomew (1959a), Bartholomew (1959b), [START_REF] Kudo | A Multivariate Analog of a One-Sided Test[END_REF], [START_REF] Perlman | One-Sided Testing Problem in Multivariate Analysis[END_REF], [START_REF] Gourieroux | Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters[END_REF], [START_REF] Kodde | Wald Criteria for Jointly Testing Equality and Inequality Restrictions[END_REF][START_REF] Kodde | Wald Criteria for Jointly Testing Equality and Inequality Restrictions[END_REF]Wolak (1991). In these prior studies, however, the distribution of unobservables is modeled parametrically, and 0 is point identi…ed and can be consistently estimated. Here, there is no parametric speci…cation for unobservables and 0 need not be point identi…ed. Thus, inference is based on the estimated moment functions rather than an estimate of 0 . The formulation that is closest to that considered here is that of Wolak (1991).

Wolak shows that the limiting distribution of test statistics of the form Qn ( ) depends only on those constraints that are satis…ed with equality, i.e. those that bind, at the least favorable value of satisfying the null hypothesis, here that E [m (z; )] 0. In his model, however, there is a known function which determines the boundary of the null hypothesis, h ( ) rather than E [m (z; )]. Thus, in the setting of this paper, aside from the complication that here 0 is only partially identi…ed, it is also the case that E [m (z; )], the function that determines the boundary of the null hypothesis, is not known, but rather must be estimated. This is a notable di¤erence because, as shown in Proposition 3, the asymptotic distribution of n Qn ( ) is degenerate except on the boundary of the hypothesis that E [m (z; )] 0 i.e. the set of such that E [m j (z; )] = 0 for at least one j 2 f1; :::; Jg.

To derive asymptotics for Qn ( ), I impose the following two additional assumptions.

Assumption A4 (…nite variance of m on ) For some K < 1, for each (i; j) 2 f1; :::

; Jg 2 , A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT sup 2 E m (z; ) m (z; ) 0 ij < K, i.e. each element of E m (z; ) m (z;
) 0 is bounded for all 2 . This also implies that the moments E [m (z; )] are bounded.

Assumption A5 (positive de…nite variance) For each 2 , V is positive de…nite.

Assumption (A4), along with (A1), guarantees that the strong law of large numbers and a central limit theorem hold for E [m (z; )], while assumption (A5) guarantees that V is invertible.

Under (A1) and (A4), it follows that for all 2 ,

Ên [m (z; )] = 1 n n X i=1 m (z i ; ) a:s: ! E [m (z; )] , (5) 
Vn [m (z; )] = 1 n n X i=1 m (z; ) Ên [m (z; )] m (z; ) Ên [m (z; )] 0 (6) 
a:s:

! var fm (z; )g V , and p n n Ên [m (z; )] E [m (z; )] o d ! N (0; V ) . (7) 
The validity of assumption (A4) depends on the problem at hand. In the absence of ( A4), what is needed for the asymptotic results of this section are the three conditions written above; the consistency of the sample mean and variance for m (z; ) over , and a central limit theorem . While in many cases this restriction is plausible, it is restrictive. In particular, in the context of interval identi…cation it rules out the case where the estimators for the boundaries of the interval are perfectly correlated or when they are approximated by the same estimator. Because the goal here is construction of a con…dence set

C pt n such that inf 2 lim n!1 P n 2 C pt n o = 1
, it is enough for these conditions to hold pointwise over .

If instead the researcher's goal was to construct a con…dence set with uniform asymptotic coverage then stronger conditions would be needed, see [START_REF] Andrews | Validity of Subsampling and Plug-In Asymptotic Inference for Parameters De…ned by Moment Inequalities[END_REF].

Before proceeding with distributional results, Proposition 1 …rst establishes consistency of the sample objective function, and Proposition 2 o¤ers su¢ cient conditions for consistent set estimation, which typically precedes inference in applications. For these results, it is convenient to de…ne

q ( ; t) [E [m (z; )] t] 0 V 1 [E [m (z; )] t] ,
and

qn ( ; t) h Ên [m (z; )] t i 0 V 1 h Ên [m (z; )] t i , so that Q ( ) = min t 0
q ( ; t) and Qn ( ) = min t 0 qn ( ; t). Properties of the functions q and qn translate directly to properties of Qn and Q. 

p ! t ( ). Furthermore, t n ( ) t ( ) = O p n 1=2 .
Proposition 1 follows from the convexity and continuity of q ( ; t) and qn ( ; t) in t. These properties provide su¢ cient regularity to apply the results of [START_REF] Andrews | Estimation When a Parameter is on a Boundary[END_REF] The next proposition provides the asymptotic distribution of n Qn ( ), but …rst some additional notation is required. For expositional convenience, I refer to the subset of the J moment inequalities such that E [m j (z; )] = 0 as the set of binding moments. Without loss of generality, let the …rst b ( ) moments be the subset of binding moments at , so that E [m j (z; )] = 0, j = 1; :::; b ( ),

and E [m j (z; )] > 0, j = b ( ) + 1; :::; J. Let m (z; ) = m 1 (z; ) ; :::; m b( ) (z; ) 0 denote the subvector of moments that have mean zero, and let V = var (m (z; )). Pr

n 2 j c o denotes the
probability that a chi-square random variable with j degrees of freedom is at least as great as the constant c, where 2 0 denotes a point mass as zero. The following proposition characterizes the limiting distribution of n Qn ( ) under the hypothesis that 2 .

Proposition 3 Let assumptions (A1)-(A5) hold. Then for any value of 2 , for any constant c,

lim n!1 P n n Qn ( ) > c o = b( ) X j=0 w (b ( ) ; b ( ) j; V ) Pr 2 j > c , (8) 
where w ( ; ; ) is the weights function de…ned by [START_REF] Wolak | An Exact Test for Multiple Inequality and Equality Constraints in the Linear Regression Model[END_REF] and [START_REF] Kudo | A Multivariate Analog of a One-Sided Test[END_REF], and the 2 j random variables of the summation are independent. For those 2 such that E [m (z; )] > 0,

lim n!1 P n n Qn ( ) > 0 o = 0. If = 2 and each element of E m (z; ) m (z; ) 0 is …nite, then for any constant c > 0, lim n!1 P n n Qn ( ) > c o = 1.
Proposition 3 closely follows Lemma 1 of Wolak (1991) Conditional on any number r of binding nonnegativity constraints, the limit distribution of n Qn ( )

is 2 r .
Unconditionally, the weights of the chi-bar-square distribution are precisely the probabilities with which exactly r constraints bind for each r = 0; :::; b ( ). An immediate implication is that when E [m (z; )] > 0, t n ( ) = Ên [m (z; )] is chosen with probability going to one, i.e. none of the constraints bind, so that n Qn ( ) p ! 0. Finally, the test is consistent against …xed alternatives, as

= 2
implies that n Qn ( ) ! 1.

The weights function w (b ( ) ; b ( ) j; V ) has arisen repeatedly in research on multivariate onesided hypothesis tests. As the limit distribution of n Qn ( ) conditional on r constraints binding is 2 r , the weights correspond to the probabilities with which each feasible number of constraints bind, or equivalently the number of components of t n ( ) that are equal to zero, so that

w (b ( ) ; b ( ) j; V ) = lim n!1 P t n ( ) has j components equal to zero .
These weights are referred to as "level probabilities"of a chi-bar-square distribution. Closed form expressions for the weights are given by [START_REF] Wolak | An Exact Test for Multiple Inequality and Equality Constraints in the Linear Regression Model[END_REF] for the case where b 4, or where V is diagonal. More generally, closed-form expressions for the weights have not been obtained, but if V and b ( ) were known, they could be approximated with arbitrary accuracy by means of simulation. For example, one such method outlined by Sen and Silvapulle (2004, pp. 78-80) is to simulate draws of a random variable Z from the N (0; V ) distribution and compute the frequency with which arg min t 0 (Z t) V 1 (Z t) has j components equal to zero, each j, in place of 

P n n Qn ( ) C b o = 1 , (9) 
or, in some cases

inf 2 lim n!1 P n n Qn ( ) C b o 1 . ( 10 
)

Computing Con…dence Sets

This section provides two ways to compute cuto¤ values for n Qn ( ) and build con…dence sets that cover 0 with at least probability 1 asymptotically. Both methods have the advantage that the cuto¤ values are easy to compute with software that provides values of chi-square CDFs.

The …rst method is generally applicable. The second method shows how knowledge that V is diagonal can be used to compute a cuto¤ value that satis…es (9). It is also shown that in this case assumption (A5), which requires that V is nonsingular, can be relaxed. Cases where V is diagonal include both the mean with missing data and regression with censored outcomes such as those considered by [START_REF] Beresteanu | Asymptotic Properties for a Class of Partially Identi…ed Models[END_REF], [START_REF] Manski | Inference on Regressions with Interval Data on a Regressor or Outcome[END_REF], and [START_REF] Romano | Inference for Identi…able Parameters in Partially Identi…ed Econometric Models[END_REF]. This is a useful special case since it occurs with moment restrictions that comprise mutually exclusive conditioning events, as in the case of i.i.d. data with discrete covariates.

Both approaches make use of an upper bound on b ( ) for 2 ; an obvious upper bound is the total number of moment inequalities, J. In some settings, it may be credible to impose a smaller upper bound; more generally, I use b to denote the assumed upper bound. This may happen when the model implies both upper and lower bounds on the expectation of a function of , a common occurrence in models with partial identi…cation. Such knowledge can be useful for inference. In some cases, the model may not upon inspection deliver an obvious upper bound on the number of binding moments. However, it is straightforward to estimate such a bound employing similar reasoning to that of [START_REF] Andrews | Inference for Parameters De…ned by Moment Inequalities Using Generalized Moment Selection[END_REF] or [START_REF] Chernozhukov | Estimation and Con…dence Regions for Parameter Sets in Econometric Models[END_REF]. For As discussed in the introduction, the goal of the procedures is construction of a con…dence set

C pt n = n : n Qn ( ) C b o with …xed cuto¤ C b that satis…es inf 2 lim n!1 P 2 C pt n = 1 . ( 11 
)
If equality is replaced by , then C pt n is asymptotically conservative. Whether (11) holds with equality or inequality depends on the variance of the binding moments, V over the identi…ed set. This is because the cuto¤ value is based on the variance matrix that gives the highest (most conservative) possible value of C b , see [START_REF] Perlman | One-Sided Testing Problem in Multivariate Analysis[END_REF]. If this variance matrix is a member of fV : 2 g, then ( 11) is satis…ed with equality. If the worst-case variance matrix used to compute C b is not a feasible value for V for 2 , then ( 11) is satis…ed with weak inequality ( ). However, even in this case the set is not arbitrarily large, in the sense that a test based on the conservative cuto¤ is consistent.

Still, in some cases an estimator for the desired critical value which is not conservative asymptotically may be preferred. Critical values with this property for the test that uses n Qn ( ) can be computed via simulation or the bootstrap, see e.g. [START_REF] Chernozhukov | Estimation and Con…dence Regions for Parameter Sets in Econometric Models[END_REF] and [START_REF] Andrews | Inference for Parameters De…ned by Moment Inequalities Using Generalized Moment Selection[END_REF]. For instance, one of the generalized moment selection (GMS) procedures of [START_REF] Andrews | Inference for Parameters De…ned by Moment Inequalities Using Generalized Moment Selection[END_REF] can be implemented by taking a large number of simulation draws Z from the N (0; I J ) distribution and then computing the 1 quantile of

S n ( ) = min t 0 h V 1=2 Z + ' ( n ) t i 0 V 1 h V 1=2 Z + ' ( n ) t i ,
where n is a J-vector with elements nj

1 n n 1=2 Ên [m j (z; )] = V 1=2 ;jj , ' ( ) : R J ! R J such that ' j ( n ) = nj + ,
and where n is a sequence of constants such that n ! 1 and [START_REF] Andrews | Inference for Parameters De…ned by Moment Inequalities Using Generalized Moment Selection[END_REF] for details as well as other feasible simulation procedures.

1 n n 1=2 ! 1 as n ! 1. See
Such an approach requires computation of separate critical values for each being tested, but will not be asymptotically conservative and will have favorable asymptotic power properties. There is thus a trade-o¤ between the computational ease of employing critical values C b described here and the greater asymptotic precision of critical values based on GMS. A practical approach in applications might be to …rst construct a con…dence set C pt n using the easy to compute but potentially conservative critical value C b . If C pt n is su¢ ciently small for the application at hand (and in particular if it is empty), then one can stop here. However, if a more precise estimator is desired, one may then compute quantiles of S n ( ), say C ( ), and construct the con…dence set n 2 C pt n : n Qn ( ) C ( ) o . As n ! 1, this set should be smaller than C pt n , so that only values of 2 C pt n need to be tested, circumventing the need to compute C ( ) for = 2 C pt n .

General Implementation

The asymptotic distribution of n Qn ( ) obtained in Proposition 3 is discontinuous in b ( ) and V .

However, whatever V , an upper bound on b ( ) can be used to construct a cuto¤ value that can be used to perform the hypothesis test (4). This cuto¤ value can then be used to build conservative, asymptotically valid con…dence sets for 0 . The following corollary provides the result. 

Corollary 1 Let (A1)-(A5) hold. Let sup 2 b ( ) = b . Then for any c, sup 2 lim n!1 P n n Qn ( ) > c o 1 2 Pr 2 b > c + 1 2 Pr 2 b 1 > c .
1 2 Pr n 2 b > C b o + 1 2 Pr n 2 b 1 > C b o = , ( 12 
) then lim n!1 P n n Qn ( 0 ) 2 C pt n o 1 , where C pt n = n 2 : n Qn ( ) C b o .

Implementation when V is diagonal

When V is a diagonal, then w (b ( ) ; b ( ) j; V ) only depends on b ( ) and j, but not V . This is because the weights function depends only on the correlation matrix associated with V . When all of the o¤ diagonal elements of V are zero, the weights function takes the simple form given by 2 Perlman derives upper bounds on tail probabilities of mixtures of F distributions that employ the same weights function.

the following corollary. This result also provides a smaller cuto¤ value for the hypothesis test (4) than that of Corollary 1, and thus a smaller con…dence region when V is diagonal.

Corollary 2 Let (A1)-(A5) hold. Suppose that V is diagonal for all 2 and that sup 2 b ( ) = b . Then

w (b ( ) ; b ( ) j; V ) = 2 b( ) b ( ) b ( ) j , ( 13 
)
and 8c 2 R,

sup 2 lim n!1 P n n Qn ( ) > c o = b X j=0 2 b b j Pr 2 j > c . ( 14 
)
Just as Corollary 1 provides a way to construct con…dence sets for 0 so does Corollary 2 when

V is diagonal. If C b solves b X j=0 2 b b j Pr n 2 j > C b o = , ( 15 
)
then

C pt n = n 2 : n Qn ( ) C b o satis…es (11).
In addition, when the variance of the binding moments is diagonal, a simpler test statistic, n Qn ( ), can be used that is in this case asymptotically equivalent to n Qn ( ). De…ne Qn ( )

J X j=1 1 h Ên fm j (z; )g < 0 i h Ên fm j (z; )g i 2 = V ;jj ,
where V ;jj is the j th diagonal entry of V , the estimated variance of m j (z; ). Moreover, the convergence in distribution of n Qn ( ) to a chi-bar square random variable holds when V is singular, as long as V is nonsingular. The result is driven by the fact that since the binding constraints have a diagonal variance matrix, replacing o¤-diagonal elements of V with zero in Qn ( ) has no e¤ect asymptotically. This modi…cation of Qn ( ) gives Qn ( ). The formal result is stated below.

Proposition 4 Suppose that V is diagonal and nonsingular for all 2 , sup 2 b ( ) = b , and that (A1)-(A4) hold. Then n Qn ( ) converges in distribution to a chi-bar square random variable and 8c 2 R,

sup 2 lim n!1 P n n Qn ( ) > c o = b X j=0 2 b b j Pr 2 j > c . If = 2
and each element of E m (z; ) m (z; ) 0 is …nite, then for any constant c > 0,

lim n!1 P n n Q ( ) > c o = 1.

A C C E P T E D M A N U S C R I P T

ACCEPTED MANUSCRIPT

Implementation Summary

In this subsection, I brie ‡y outline the steps required to compute a con…dence set C pt n for 0 with asymptotic coverage of at least 1 , when sup -

If V is diagonal, this is the value of C b that solves b X j=0 2 b b j Pr n 2 j > C b o = .
-If V is not diagonal, this is the value of C b that solves

1 2 Pr n 2 b > C b o + 1 2 Pr n 2 b 1 > C b o = .
2. Choose a …ne grid G of candidate values of over the parameter space . For each 2 G,

compute n Qn ( ). If n Qn ( ) C b , then 2 C pt n . If n Qn ( ) > C b , then = 2 C pt n .
Appropriate choice of grid values G depends on the particular application. How …ne the grid should be depends on the desired level of precision for C b . If is known to be su¢ ciently regular (e.g. closed and convex), certain values of may be able to be included or discarded without explicitly evaluating n Qn ( ). However, the characteristics of the con…dence set will depend on the particular moment functions in any given application. If the moment functions are irregular, then it may be advantageous to employ an adaptive method for selecting grid points, such as the Metropolis-Hastings algorithm. In section 5, the con…dence set can be characterized su¢ ciently well that use of a grid is unnecessary.

Monte Carlo Study

This section demonstrates the application and performance of the inferential method prescribed in the context of inference on the mean with missing data. An application to an incomplete model of oligopoly behavior with data from a cartel is given by [START_REF] Rosen | Identi…cation and Estimation of Firms' Marginal Cost Functions with Incomplete Knowledge of Strategic Behavior[END_REF].

Consider the setup of [START_REF] Imbens | Con…dence Intervals for Partially Identi…ed Parameters[END_REF]: Let f(x i ; d i ) : i = 1; :::ng be a random sample from a population of (x; d) pairs with support [0; 1] f0; 1g, where d = 1 indicates that x is observed, while if d = 0, x is not observed. The probability that x is observed, p = Pr fd = 1g, is assumed to be less than one, and is not known to the researcher, but is consistently estimated by its sample analog. The goal is inference on 0

E [x]. Let 1 = E [xjd = 1],
which is identi…ed by the sampling process. This model yields two moment inequalities:

L p 1 , U p 1 + 1 p,
or, in the form of ( 3),

E [m 1 (x; d; )] = E [ xd] 0, (16) 
E [m 2 (x; d; )] = E [1 d + xd ] 0.
The identi…ed set for 0 in this model is = [ L ; U ], and the variance of m (x; d; ) is

V = V = var ( xd; xd d) = 2 l lu lu 2 u ! ,
where 2 l = var (xd), 2 u = var (xd d),and lu = cov (xd; d) var (xd). Qn ( ) is given by Qn ( ) = min

t 1 ;t 2 0 Ên [ xd] t 1 Ên [1 d + xd ] t 2 ! 0 V 1 Ên [ xd] t 1 Ên [1 d + xd ] t 2 ! ,
where V is the sample analog of V . Since p < 1, only one of E [m 1 (x; d; )] or E [m 2 (x; d; )] can be equal to zero. Thus, the maximum number of binding constraints is one, and V is a scalar.

Because in this case the limit distribution of n Qn ( ) is a sum of only two terms, by the reasoning of Corollary 1 the weights are known exactly; each of the two terms of the summation have weight 1 2 . Applying this result, the cuto¤ value for n Qn ( ) needed to build a con…dence set for 0 with at least 1 asymptotic coverage is the unique value of C b that solves

1 2 Pr n 2 0 > C b o + 1 2 Pr n 2 1 > C b o = .
Since C b > 0, Pr 2 0 > C b = 0, and this equation simpli…es to

1 2 Pr n 2 1 > C b o = .
Algebraic manipulation of n Qn ( ) in this context yields a simple analytical form for the associated con…dence set:

C M I n = h ^ l z 1 ^ l = p n; ^ u + z 1 ^ u = p n i .
where z 1 is the 1 quantile of the standard normal distribution, ^ l and ^ u are sample analogs of l and u , ^ l = Ên [xd], and

^ u = Ên [1 d + xd]
. This con…dence set is straightforward to compute and no grid of candidate parameter values is needed to construct it.

I simulate i.i.d. draws of (x; d) in order to compare con…dence regions constructed according to the moment inequality approach to those of [START_REF] Imbens | Con…dence Intervals for Partially Identi…ed Parameters[END_REF]. The two methods yield nearly identical results. Let the moment inequality con…dence set of level be denoted C M I , for moment inequalities, and the Imbens/Manski con…dence set C IM . The sets C IM are constructed as described in section 4 of their paper. That is the con…dence sets constructed according to their method are:

C IM n = h ^ l C n ^ l = p n; ^ u + C n ^ u = p n i ,
where C n solves

C n + p n ^ u ^ l max (^ u ; ^ l ) ! C n = 1 . ( 17 
)
Their sets have the additional property that their coverage is uniform over all 2 [p 1 ; p 1 + 1 p] and the population distribution P , even if p is not bounded away from 1.

I provide simulations under two di¤erent speci…cations for the distribution of (x; d). For the …rst speci…cation, I draw x from the uniform(0; 1) distribution and d from the Bernoulli(p) distribution, independently of each other, inducing joint distribution F 1 . Under this speci…cation,

x is missing completely at random. The second distribution, denoted F 2 , is one in which (x; d) are not independent of each other, so that missingness is not at random. In this case, x is distributed beta(4; 2) conditional on d = 0, and beta(2; 4) when d = 1. In this case, x tends to be higher when it is not observed; the conditional distribution of x given d = 0 stochastically dominates that Tables 1 and2 compare the empirical coverage of each of the two con…dence sets for di¤erent choices of n; p; when (x; d) F 1 , while tables 3 and 4 do the same for (x; d) F 2 . The number of repetitions is …xed at R = 5000 in all cases. For the results reported in Tables 1 and3, p = 0:7, while for those in Tables 2 and4, p = 0:9. The empirical coverage probabilities for both types of regions are very close to each other and approximate the desired target coverage probability rather well. The case where the observed coverage probabilities of the two types di¤er most are those sets with nominal level 0:99. In this case, the coverage from the moment inequality approach is always slightly less than the coverage of Imbens and Manski's con…dence sets, though both are very close to the nominal level in all cases. The overall performance of the two approaches is comparable.

Table 1: Observed coverage probabilities for p=0.7 when x is uniformly distributed on the unit interval and missing completely at random. Target Coverage (p = 0:7) 0:75 0:85 0:95 0:99 Actual Coverage for 0 :

C IM n C M I n C IM n C M I n C IM n C M I n C IM n C M I n n ----------------------------- 100 
0:7496 0:7496 0:8514 0:8514 0:9514 0:9514 0:9982 0:9888 500 0:7520 0:7520 0:8498 0:8498 0:9516 0:9514 0:9986 0:9896 1000 0:7514 0:7514 0:8516 0:8516 0:9504 0:9504 0:9978 0:9888

Table 2: Observed coverage probabilities for p=0.9 when x is uniformly distributed on the unit interval and missing completely at random. Target Coverage (p = 0:9) 0:75 0:85 0:95 0:99 Actual Coverage for 0 : 

C IM n C M I n C IM n C M I n C IM n C M I n C IM n C M I n n ----------------------------- 100 
: C IM n C M I n C IM n C M I n C IM n C M I n C IM n C M I n n ----------------------------- 100 
0:7352 0:7352 0:8296 0:8292 0:9346 0:9340 0:9916 0:9890 500 0:7566 0:7566 0:8488 0:8488 0:9452 0:9452 0:9978 0:9890 1000 0:7358 0:7358 0:8374 0:8374 0:9446 0:9446 0:9954 0:9878

The con…dence sets of this paper are guaranteed to provide a pre-speci…ed level of asymptotic coverage for a parameter of interest in models that consist of a …nite number of moment inequalities.

Many models in this class have appeared in the literature, and these models comprise a large subset of models with partially identi…ed parameters. The method for constructing con…dence sets is easy to implement, as the cuto¤ values used to invert the test statistic are based on an analytical asymptotic distribution and do not require bootstrapping, subsampling, simulation, or tuning parameters to compute.

The cuto¤ values for the test statistic n Qn ( ) are computed by making use of an upper bound on the feasible number of moments that bind at . Upper bounds that are strictly smaller than the total number of inequalities are common in settings with partial identi…cation. This is used to provide an upper bound on the 1 critical value for the test of interest which is easy to compute. In some cases, the method may be asymptotically conservative, in the sense that asymptotic coverage may be greater than the nominal level. Methods that provide asymptotically exact critical values may in these cases be preferred, though these typically involve greater computation in practice and may employ tuning parameters. There is thus a trade-o¤ between ease of implementation and precision of the asymptotic approximation employed, as discussed in section 4.

This paper focuses on building con…dence sets for the parameter of interest 0 . Some other approaches to inference have resulted in con…dence sets as well as con…dence collections for ; see [START_REF] Beresteanu | Asymptotic Properties for a Class of Partially Identi…ed Models[END_REF] for the latter. These are each conceptually di¤erent, and which type is appropriate depends on the context and the researcher's goal in any particular application.

It would be of interest to determine whether the testing procedure of this paper could be modi…ed to perform inference on . In addition, this paper, like much of the literature to date, has focussed on inference based on a …nite number of moment restrictions. It seems an important direction for future research would be to devise inferential methods that can accommodate an in…nite set of unconditional restrictions asymptotically, as are implied by conditional moment inequalities with continuous conditioning variables.

Appendix: Proofs

Proposition 1 Proof. Let qn ( ; t) Ê [m (z; )] t 0 V 1 Ê [m (z; )] t , so that Qn ( ) = min t 0 qn ( ; t). Similarly, let q ( ; t) (E [m (z; )] t) 0 V 1 (E [m (z; )] t), so that Q ( ) = min t 0 q ( ; t). Fix .
Uniqueness of t ( ) follows from the strict convexity of q ( ; t) in t, guaranteed by (A5), and the fact that the minimizer of a strictly convex function on a convex set is unique. Consistency of V yields that t n ( ), the minimizer of qn ( ; t), is unique with probability going to 1 as n ! 1, since V is positive de…nite (and therefore qn ( ; t) is strictly convex) with probability approaching 1 under (A5). ( 5), ( 6), ( 7) and a Slutsky Theorem imply that qn ( ; t) p ! q ( ; t) pointwise for each ; t. Since qn ( ; t) is convex in t, Theorem 2.7 of [START_REF] Newey | Large Sample Estimation and Hypothesis Testing[END_REF] implies that qn ( ; t) converges uniformly in t > 0 to q ( ; t) for …xed . In addition, uniform convergence holds over any compact set [0; T ] by the continuity of q ( ; t) in t. Therefore qn ( ; t) p ! q ( ; t) uniformly over t 0, so that Qn ( ) As a preliminary step to proposition 3, I …rst prove the following lemma.

p ! Q ( ),

Lemma 1

Consider the minimization problem

QP = min t2R J (x t) 0 V 1 (x t) s.t. t 1 0, (18) 
where x; t 2 R J , and x 1 ; t 1 2 R b , b J, s.t. t = (t 0 1 ; t 0 2 ) 0 and x = (x 0 1 ; x 0 2 ) 0 . QP is a quadratic program in which the …rst b components of the minimand t are subject to nonnegativity constraints.

In the application of the lemma, b will correspond to the number of elements of E [m (z; )] equal to zero. Let V 11 be the b b leading submatrix of V so that

V = V 11 V 12 V 21 V 22 ! . Then QP = min t 1 2R b + (x 1 t 1 ) 0 V 1 11 (x 1 t 1 ) . ( 19 
)
Proof. Let V 1 and partition so that Let t be the value of t that solves QP , so that QP = (x t ) 0 (x t ) .

The Kuhn-Tucker conditions for ( 18) are (i) For j = 1; :::; b, Either t j = 0 and [ (x t )] j 0, or t j > 0 and [ (x t )] j = 0.

(ii) For j = b + 1; :::; J, [ (x t )] j = 0.

By conditions (i) and (ii),

11 (x 1 t 1 ) 12 (x 2 t 2 ) 0, ( 20 
) 21 (x 1 t 1 ) 22 (x 2 t 2 ) = 0. (21) 
Solving for (x 2 t 2 ), the latter condition is

(x 2 t 2 ) = 1 22 21 (x 1 t 1 ) . ( 22 
) Now QP = (x t ) 0 (x t ) = (x 1 t 1 ) 0 11 (x 1 t 1 ) + (x 1 t 1 ) 0 12 (x 2 t 2 ) + (x 2 t 2 ) 0 [ 21 (x 1 t 1 ) + 22 (x 2 t 2 )] = (x 1 t 1 ) 0 11 (x 1 t 1 ) + (x 1 t 1 ) 0 12 (x 2 t 2 ) , by (21) 
. Now using ( 22) it follows that

QP = (x 1 t 1 ) 0 11 (x 1 t 1 ) (x 1 t 1 ) 0 12 1 22 21 (x 1 t 1 ) = (x 1 t 1 ) 0 11 12 1 22 21 (x 1 t 1 ) = (x 1 t 1 ) 0 V 1 11 (x 1 t 1 ) ,
where the last equality follows by the partition inverse result. 3 All that remains is to show that

t 1 minimizes (19): min (x 1 t 1 ) 0 V 1 11 (x 1 t 1 ) s.t. t 1 
0, but this follows from the Kuhn-Tucker minimization condition (i) as shown below:

The Kuhn-Tucker conditions for t 1 that solves (19) are for j = 1; :::; b; either t j = 0 and V 1 11 (x 1 t 1 ) j 0; or t j > 0 and V 1 11 (x 1 t 1 ) j = 0: Let be the orthogonal matrix that diagonalizes , so that 0 is a diagonal matrix with diagonal entries equal to the eigenvalues of , i.e. 0 = diag (d ;1 ; :::; d ;J ), where the d ;j are the eigenvalues of . Since is positive de…nite, each d ;j > 0. Such a matrix exists by Corollary 21.5.9 of [START_REF] Harville | Matrix Algebra From a Statistician's Perspective[END_REF]. Then Proof. This follows by [START_REF] Perlman | One-Sided Testing Problem in Multivariate Analysis[END_REF], Theorem 8.1.

3 If V = 1 then V11 = 11 12 
[v n s n ] 0 ^ [v n s n ] = [v n s n ] 0 [v n s n ] + o p (1) = J X j=1 (v n s n ) 0 1

Corollary 2

Proof. The …rst part, (13), follows from [START_REF] Wolak | An Exact Test for Multiple Inequality and Equality Constraints in the Linear Regression Model[END_REF] who derives the result for V = 2 I, and from Sen and Silvapulle (2004, Proposition 3.6.1 (11)). The latter result is that the weights function only depends on the variance through its associated correlation matrix. If V is diagonal, the correlation matrix is the identity matrix, so that w (b; j; V ) = w (b; j; I b ). The second part, The proof of Proposition 3 goes through unchanged, as ~ p ! , with the partition inverse result used to prove lemma 1 applied to .

  assumption that the observations are i.i.d. and that the rate of convergence of Ên [m (z; )] to E n [m (z; )] is p n can be relaxed, as long as (5), (6), and (7) can be shown to hold at each 2 for some sequence of constants a n ! 1 replacing p n. Assumption (A5) rules out singularity of the asymptotic variance of p n n Ên [m (z; )] E [m (z; )] o

  d! N (0; V ), and these components do contribute to the asymptotic distribution of n Qn ( ). For any realization from the N (0; V ) distribution, any number of nonnegativity constraints up to b ( ) may bind in the solution to n Qn ( ), t n ( ). The number of binding constraints on t n ( ) generally di¤ers from the number of binding moment inequalities b ( ), but the latter provides an upper bound for the former.

w

  (b ( ) ; b ( ) j; V ).If V and b ( ) were known, then it would be straightforward using such techniques to compute the cuto¤ value C such that , V and b ( ) are not known. A seemingly intuitive solution might be to use sample analogs V and b ( ) in place of these, but this doesn't work here because the CDF of the limit distribution given by (8) is discontinuous in b ( ). This problem can, however, be overcome by considering the least favorable asymptotic distribution of the test statistic over . Section 4 details how this can be done by using an upper bound for b ( ) to construct a cuto¤ value C b such that inf

  example,[START_REF] Chernozhukov | Estimation and Con…dence Regions for Parameter Sets in Econometric Models[END_REF] Remark 4.5 motivates estimation of the number of binding moments for any , b ( One might then use b = sup 2 ^ n b ( ) in place of b in computation of critical values C b below, where ^ n is a consistent estimator for . 1

  This result is due to[START_REF] Perlman | One-Sided Testing Problem in Multivariate Analysis[END_REF] 2 , and follows from the fact that the weights function satis…es the properties 0 w (b ( ) ; b ( ) j; V ) 1=2, j, for any c > 0. The upper bound on the tail probability of the limit distribution of n Qn ( ) is obtained by putting as much weight as possible on the highest terms of the chi-barsquare summation of (8). Exactly how slack the inequality is depends on the feasible values of the variance matrix V over 2 . Corollary 1 provides a way to construct asymptotically valid con…dence sets for 0 since if C b solves

  2 b ( ) = b and assumptions (A1)-(A5) hold. 1. Compute the unique value of C b such that

  of x given d = 1, with E [xjd = 0] = 2=3 and E [xjd = 1] = 1=3 . The simulated sample data is then f(x i ; d i ) : i = 1; :::; n; xi = x i if d i = 1, xi = ; if d i = 0g. Since all values of 0 in the interval [ L ; U ] are observationally equivalent, a con…dence set is only guaranteed to have correct coverage for 0 if it achieves the desired asymptotic coverage for each 2 [ L ; U ]. The coverage frequencies reported here are thus the in…mum of observed coverage frequencies over 2 [ L ; U ].

  b b and 22 is (J b) (J b).

  x 1 t 1 ) j = 0.By(22), this is equivalent to condition (i) from the Kuhn-Tucker conditions for the initial program Suppose 2. Let b = b ( ) be the number of components of E [m (z; )] equal to zero, and letv n p n Ên [m (z; )] E [m (z; )] ,andv n p n Ên [m (z; )] E [m (z; )] s] 0 V 1 [v n s] subject to s = t p nE [m (z; )] ; t 0 = min s [v n s] 0 V 1 [v n s] : s p nE [m (z; )] .Partition s such that s = (s 0 b ; s 0 c ) 0 , so that s b are the …rst b elements of s, corresponding to those inequalities that bind, and s c the remainder. Furthermore, let m (z; ) = (m b+1 (z; ) ; :::; m J (z; )) 0 .Then because E [m j (z; )] = 0 for j b,n Qn ( ) = min s [v n s] 0 V 1 [v n s] : s b 0, s c p nE [ m (z; )] . Because p nE [ m (z; )] ! 1 as n ! 1, and V p ! V , it follows by a Slutsky Theorem that s] 0 V 1 [v n s] : s b 2 R b + , s c 2 R J b ,and by Lemma 1,min s [v n s] 0 V 1 [v n s] s.t. s b 2 R b + , s c 2 R J b = min s2R b + [v n s] 0 V 1 [v n s] . Under (A1) and (A4) v n d ! v where v N (0; V ). By a continuous mapping theorem it follows that ] 0 V 1 [v s] .The statistic min s2R b+ [v s] 0 V 1 [v s]measures the distance of the normal random variable v from the nonnegative orthant. By Wolak (1991) Now suppose that = 2 , so that there exists k 2 f1; :::Jg such that E [m k (z; )] < 0. Assume (A1)-(A5). Let ( ) E [m (z; )], and let ^ = V 1 , and = V 1 . 4 Then, s n ] 0 ^ [v n s n ] > C b o .

j 2 d

 2 ;j + o p (1) . The constraint s p n ( ) in (23), implies that the k-th component of s n diverges to 1. Since v n = O p (1), n Qn ( ) diverges to 1 and lim

  be a diagonal matrix with j th diagonal entry 1=V ;jj (1= V ;jj ), the inverse of the (estimated) variance of m (z; ). Assume (A1)-(A4) and that V is diagonal with all diagonal entries positive. Then n Qn ( ) = n

  . The …rst step to the proof shows that the limiting distribution of n Qn ( ) is determined only by those terms that correspond to components of E [m (z; )] that are exactly equal to 0. Multiplication of Qn ( ) by n is equivalent to multiplying each of the Ên [m (z; )] t terms in Qn ( ) by p n. For those moments j where E [m j (z; )] > 0, p n Ên [m j (z; )] diverges to in…nity, and the Kuhn-Tucker conditions for minimization guarantee that t n ( ), will satisfy the …rst order condition

	h	V 1	h	Ên [m (z; )] t	ii

j

= 0 with probability going to 1 as n ! 1. This implies that these moments do not contribute to n Qn ( ) asymptotically. On the other hand, for those moments that are equal to zero, p n Ên [m (z; )]

Table 4

 4 

	: Observed coverage probabilities for p=0.9 when x|d=1 is distributed beta(2,4) and x|d=0
	is distributed beta(4,2).			
	Target Coverage (p = 0:9) 0:75	0:85	0:95	0:99
	Actual Coverage for 0			

  further implying convergence in probability of the minimizer over t 0 of qn ( ; t) to that of q ( ; t), i.e. t n ( ) The …rst result follows from pointwise convergence of Qn to Q and[START_REF] Newey | Large Sample Estimation and Hypothesis Testing[END_REF], Theorem 2.8. Set consistency in the Hausdor¤ metric under the stated conditions follows from[START_REF] Chernozhukov | Estimation and Con…dence Regions for Parameter Sets in Econometric Models[END_REF], Theorem 3.1.

	p ! t ( ). This establishes that assumption 1 of Andrews (1999) holds, and his assumptions 2, and 3 follow because qn ( ; t) is quadratic in t and by (7). Thus Andrews (1999) Theorem 1 implies that p n t n ( ) t ( ) = O p (1).
	Proposition 2
	Proof.

I thank Victor Chernozhukov and Francesca Molinari for suggesting this approach for estimation of b ( ).

If V or V are singular a positive de…nite generalized inverse may be used, and the proof goes through unchanged. Such a generalized inverse exists by Lemma 14.4.1 of[START_REF] Harville | Matrix Algebra From a Statistician's Perspective[END_REF].